首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we compare the outcome of high-velocity impact experiments on porous targets, composed of pumice, with the results of simulations by a 3D SPH hydrocode in which a porosity model has been implemented. The different populations of small bodies of our Solar System are believed to be composed, at least partially, of objects with a high degree of porosity. To describe the fragmentation of such porous objects, a different model is needed than that used for non-porous bodies. In the case of porous bodies, the impact process is not only driven by the presence of cracks which propagate when a stress threshold is reached, it is also influenced by the crushing of pores and compaction. Such processes can greatly affect the whole body's response to an impact. Therefore, another physical model is necessary to improve our understanding of the collisional process involving porous bodies. Such a model has been developed recently and introduced successfully in a 3D SPH hydrocode [Jutzi, M., Benz, W., Michel, P., 2008. Icarus 198, 242-255]. Basic tests have been performed which already showed that it is implemented in a consistent way and that theoretical solutions are well reproduced. However, its full validation requires that it is also capable of reproducing the results of real laboratory impact experiments. Here we present simulations of laboratory experiments on pumice targets for which several of the main material properties have been measured. We show that using the measured material properties and keeping the remaining free parameters fixed, our numerical model is able to reproduce the outcome of these experiments carried out under different impact conditions. This first complete validation of our model, which will be tested for other porous materials in the future, allows us to start addressing problems at larger scale related to small bodies of our Solar System, such as collisions in the Kuiper Belt or the formation of a family by the disruption of a porous parent body in the main asteroid belt.  相似文献   

2.
K. Wünnemann  G.S. Collins 《Icarus》2006,180(2):514-527
Numerical modelling of impact cratering has reached a high degree of sophistication; however, the treatment of porous materials still poses a large problem in hydrocode calculations. We present a novel approach for dealing with porous compaction in numerical modelling of impact crater formation. In contrast to previous attempts (e.g., P-alpha model, snowplow model), our model accounts for the collapse of pore space by assuming that the compaction function depends upon volumetric strain rather than pressure. Our new ?-alpha model requires only four input parameters and each has a physical meaning. The model is simple and intuitive and shows good agreement with a wide variety of experimental data, ranging from static compaction tests to highly dynamic impact experiments. Our major objective in developing the model is to investigate the effect of porosity and internal friction on transient crater formation. We present preliminary numerical model results that suggest that both porosity and internal friction play an important role in limiting crater growth over a large range in gravity-scaled source size.  相似文献   

3.
Impact experiments on porous targets consisting of sintered glass beads have been performed at different impact velocities in order to investigate the disruption impact energy threshold (also called Q) of these targets, the influence of the target compressive strength on this threshold and a scaling parameter of the degree of fragmentation that takes into account material strength. A large fraction of small bodies of our Solar System are expected to be composed of highly-porous material. Depending on their location and on the period considered during the Solar System history, these bodies collide with each other at velocities which cover a wide range of values from a few m/s to several km/s. Determining the impact response of porous bodies in both high- and low-velocity regimes is thus crucial to understand their collisional evolution over the entire Solar System history, from the early stages of planetary formation through collisional accretion at low impact velocities to the current and future stages during which impact velocities are much higher and lead to their disruption. While these problems at large scale can only be addressed directly by numerical simulations, small scale impact experiments are a necessary step which allows the understanding of the physical process itself and the determination of the small scale behavior of the material used as target. Moreover, they are crucial to validate numerical codes that can then be applied to larger scales.Sintered glass beads targets of different shapes and porosity have been built and their main material properties, in particular their compressive strength and their porosity, have been measured. The outcomes of their disruptions both at low and high impact velocities have then been analyzed.We then found that the value of Q strongly depends on the target compressive strength. Measuring the particle velocities as a function of their distance to the impact point, we first found that the attenuation rate of the stress wave in our sintered glass bead targets does not depend on the impact velocity regime. Ejecta velocities as a function of the distance from the impact point can thus be well fitted by a power law with an exponent about −2 in both velocity regimes. We then looked for a scaling parameter that can apply to both regimes. We found that the scaling parameter PI, which is related to the initial peak pressure and to the stress wave attenuation can be used to represent the outcome in a general way. Future investigations will be performed to determine whether these results can be generalized to other kinds of porous materials.  相似文献   

4.
More and more small bodies are found to be porous. Laboratory impact experiments of various porous materials have been performed, which increased our understanding of the impact process of porous bodies. In this review, we classify porous targets according to the internal structure, describe the physical properties that characterize these materials, and summarize some results of impact strength and the general tendency upon impact condition and material properties. The material property presented here includes a relation between applied load and distension although measured in static condition. Further investigation is required to clarify the role of crack growth and compaction in the time evolution of physical properties of porous materials upon impact. Laboratory experiments with detailed material properties will be useful as a database that can serve as a reference for numerical modeling and theoretical scaling considerations.  相似文献   

5.
Yuichi Fujii 《Icarus》2009,201(2):795-801
We performed low-velocity impact experiments of gypsum spheres with porosity ranging from 0 to 61% and diameter ranging from 25 to 83 mm. The impact velocity was from 0.2 to 22 m/s. The target was an iron plate. The outcome of gypsum spheres with porosity 31-61% was different from those of non-porous ice [Higa M., Arakawa, M., Maeno, N., 1996. Planet. Space Sci. 44, 917-925; Higa M., Arakawa, M., Maeno, N., 1998. Icarus 133, 310-320] and non-porous gypsum. In between the intact and fragmentation modes, the outcome of the non-porous ice and gypsum was crack growth at the impact point. However, the outcome of the porous gypsum was compaction. We found that the restitution coefficients of the porous gypsum spheres were all in a similar range, in spite of the difference of the porosity and size at impact velocities up to about 10 m/s where they begin to be fragmented in pieces. Moreover, there is not a large difference between the restitution coefficient of porous and non-porous gypsum. These results collectively indicate that restitution coefficient of gypsum spheres of cm-size is not strongly dependent upon the porosity and compaction process.  相似文献   

6.
Generation and propagation of shock waves by meteorite impact is significantly affected by material properties such as porosity, water content, and strength. The objective of this work was to quantify processes related to the shock‐induced compaction of pore space by numerical modeling, and compare the results with data obtained in the framework of the Multidisciplinary Experimental and Modeling Impact Research Network (MEMIN) impact experiments. We use mesoscale models resolving the collapse of individual pores to validate macroscopic (homogenized) approaches describing the bulk behavior of porous and water‐saturated materials in large‐scale models of crater formation, and to quantify localized shock amplification as a result of pore space crushing. We carried out a suite of numerical models of planar shock wave propagation through a well‐defined area (the “sample”) of porous and/or water‐saturated material. The porous sample is either represented by a homogeneous unit where porosity is treated as a state variable (macroscale model) and water content by an equation of state for mixed material (ANEOS) or by a defined number of individually resolved pores (mesoscale model). We varied porosity and water content and measured thermodynamic parameters such as shock wave velocity and particle velocity on meso‐ and macroscales in separate simulations. The mesoscale models provide additional data on the heterogeneous distribution of peak shock pressures as a consequence of the complex superposition of reflecting rarefaction waves and shock waves originating from the crushing of pores. We quantify the bulk effect of porosity, the reduction in shock pressure, in terms of Hugoniot data as a function of porosity, water content, and strength of a quartzite matrix. We find a good agreement between meso‐, macroscale models and Hugoniot data from shock experiments. We also propose a combination of a porosity compaction model (ε–α model) that was previously only used for porous materials and the ANEOS for water‐saturated quartzite (all pore space is filled with water) to describe the behavior of partially water‐saturated material during shock compression. Localized amplification of shock pressures results from pore collapse and can reach as much as four times the average shock pressure in the porous sample. This may explain the often observed localized high shock pressure phases next to more or less unshocked grains in impactites and meteorites.  相似文献   

7.
Abstract— In order to study the catastrophic disruption of porous bodies such as asteroids and planetesimals, we conducted several impact experiments using porous gypsum spheres (porosity: 50%). We investigated the fragment mass and velocity of disrupted gypsum spheres over a wide range of specific energies from 3 times 103 J/kg to 5 times 104 J/kg. We compared the largest fragment mass (m1/Mt) and the antipodal velocity (Va) of gypsum with those of non‐porous materials such as basalt and ice. The results showed that the impact strength of gypsum was notably higher than that of the non‐porous bodies; however, the fragment velocity of gypsum was slower than that of the non‐porous bodies. This was because the micro‐pores dispersed in the gypsum spheres caused a rapid attenuation of shock pressure in them. From these results, we expect that the collisional disruption of porous bodies could be significantly different from that of non‐porous bodies.  相似文献   

8.
Impact cratering on porous asteroids   总被引:1,自引:0,他引:1  
The increasing evidence that many or even most asteroids are rubble piles underscores the need to understand how porous structures respond to impact. Experiments are reported in which craters are formed in porous, crushable, silicate materials by impacts at 2 km/s. Target porosity ranged from 34 to 96%. The experiments were performed at elevated acceleration on a centrifuge to provide similarity conditions that reproduce the physics of the formation of asteroid craters as large as several tens of kilometers in diameter.Crater and ejecta blanket formation in these highly porous materials is found to be markedly different from that observed in typical dry soils of low or moderate porosity. In highly porous materials, the compaction of the target material introduces a new cratering mechanism. The ejection velocities are substantially lower than those for impacts in less porous materials. The experiments imply that, while small craters on porous asteroids should produce ejecta blankets in the usual fashion, large craters form without ejecta blankets. In large impacts, most of the ejected material never escapes the crater. However, a significant crater bowl remains because of the volume created by permanent compaction of the target material. Over time, multiple cratering events can significantly increase the global density of an asteroid.  相似文献   

9.
The extremely porous structure and low strength of most comets and their fragments is opposed to the properties observed in relatively pristine chondritic asteroids, even although both are sharing important chemical similitude. Laboratory experiments and observational evidence suggest that the original extremely porous aggregates that were born from the protoplanetary-disk-forming materials were highly retentive of water and organic compounds present in their forming environment. After consolidation, many of them experienced a particular dynamic history. Some bodies, quickly scattered during the formation of the giant planets and later stored in the Kuiper Belt (KB) or the Oort Cloud (OC) regions, would have suffered a lower degree of impact processing than previously thought. In such category would be comet 81P/Wild 2, whose materials have not experienced aqueous alteration. Other bodies originally volatile-rich that were transiting other regions with higher impact rate were experiencing progressively significant compaction processing, together with subsequent aqueous alteration and loss of volatiles. The release of water from hydrated minerals or interior ices, participated in soaking the forming materials, and transforming their initial mineralogy and physical properties. As a consequence of the physico-chemical evolution promoted by impact processing of undifferentiated bodies, most of the bodies present in the inner solar system are not representative of the planetesimals. Thus, highly porous progenitors and their fragments are the preferential sources of water and organics to the early Earth, even in higher amounts than previously thought.  相似文献   

10.
Impact strength and cratering ejecta were studied for porous targets of pure ice and icy-silicate mixture in order to clarify the accumulation and destruction (shattering) condition of small icy bodies. The icy projectile impacted on the cylindrical targets with the porosity up to 55% at a velocity of 150 to 670 m/s at −10°C. The porosity dependence of the impact strength and that of the maximum ejecta velocity were measured in each type of these targets. As a result, the maximum ejecta velocity normalized by the impact velocity (Ve-max/Vi) is found to depend only on the porosity (φ), irrespective of the target type; a relationship is derived to be Ve-max/Vi=−2.17φ+1.29. The impact strength of pure ice increased with increased target porosity, but that of mixture target had an opposite trend; that is, the strength decreased with increased porosity. These porosity dependencies of the impact strength could be explained by the porosity dependence of the physical parameters such as impact pressure, pressure decay, and static strength. Finally, the accumulation of small icy bodies is discussed to show that the collisional events can be divided into three types by the porosity and the collision velocity according to our experimental results: mass loss, rubble pile formation, and regolith formation (compaction).  相似文献   

11.
The outcome of collisions between small icy bodies, such as Kuiper belt objects, is poorly understood and yet a critical component of the evolution of the trans-neptunian region. The expected physical properties of outer Solar System materials (high porosity, mixed ice-rock composition, and low material strength) pose significant computational challenges. We present results from catastrophic small body collisions using a new hybrid hydrocode to N-body code computational technique. This method allows detailed modeling of shock propagation and material modification as well as gravitational reaccumulation. Here, we consider a wide range of material strengths to span the possible range of Kuiper belt objects. We find that the shear strength of the target is important in determining the collision outcome for 2 to 50-km radius bodies, which are traditionally thought to be in a pure gravity regime. The catastrophic disruption and dispersal criteria, , can vary by up to a factor of three between strong crystalline and weak aggregate materials. The material within the largest reaccumulated remnants experiences a wide range of shock pressures. The dispersal and reaccumulation process results in the material on the surfaces of the largest remnants having experienced a wider range of shock pressures compared to material in the interior. Hence, depending on the initial structure and composition, the surface materials on large, reaccumulated bodies in the outer Solar System may exhibit complex spectral and albedo variations. Finally, we present revised catastrophic disruption criteria for a range of impact velocities and material strengths for outer Solar System bodies.  相似文献   

12.
Surfaces of planets and small bodies of our Solar System are often covered by a layer of granular material that can range from a fine regolith to a gravel-like structure of varying depths. Therefore, the dynamics of granular materials are involved in many events occurring during planetary and small-body evolution thus contributing to their geological properties.We demonstrate that the new adaptation of the parallel N-body hard-sphere code pkdgrav has the capability to model accurately the key features of the collective motion of bidisperse granular materials in a dense regime as a result of shaking. As a stringent test of the numerical code we investigate the complex collective ordering and motion of granular material by direct comparison with laboratory experiments. We demonstrate that, as experimentally observed, the scale of the collective motion increases with increasing small-particle additive concentration.We then extend our investigations to assess how self-gravity and external gravity affect collective motion. In our reduced-gravity simulations both the gravitational conditions and the frequency of the vibrations roughly match the conditions on asteroids subjected to seismic shaking, though real regolith is likely to be much more heterogeneous and less ordered than in our idealised simulations. We also show that collective motion can occur in a granular material under a wide range of inter-particle gravity conditions and in the absence of an external gravitational field. These investigations demonstrate the great interest of being able to simulate conditions that are to relevant planetary science yet unreachable by Earth-based laboratory experiments.  相似文献   

13.
Knowing the collisional process among small porous icy bodies in the outer solar system is a key to understanding the formation of EKBOs and the evolution of icy planetesimals. Impact experiments of sintered porous ice spheres with 40%, 50%, 60% and 70% porosity were conducted by using three types of projectiles at the impact velocity from 2.4 to 489 m/s, and we studied the effects of porosity on the collisional processes. Projectile sticking occurred at the impact velocity higher than 44 m/s for 60% porosity targets and higher than 13 m/s for 70% porosity targets. The antipodal velocity of the porous ice target increased with the increase of energy density, Q, and it increased slightly with the increase of porosity, although it was exceptionally high in cases when the projectile penetrated the target. The shattering strength of porous ice targets was found to decrease from 100 to 31 J/kg with the increase of porosity from 40% to 70%. The cumulative fragment mass distribution was found to depend on the energy density and the target porosity, and the slopes of the distribution in the small fragment region were almost flat for more porous targets. We reanalyzed the cumulative fragment mass distribution and first obtained the empirical equation showing the fragment mass distribution of porous ice targets as a function of the energy density and the porosity.  相似文献   

14.
Patrick Michel  Willy Benz 《Icarus》2004,168(2):420-432
In this paper, we analyze the effect of the internal structure of a parent body on its fragment properties following its disruption in different impact energy regimes. To simulate an asteroid breakup, we use the same numerical procedure as in our previous studies, i.e., a 3D SPH hydrocode to compute the fragmentation phase and the parallel N-body code pkdgrav to compute the subsequent gravitational re-accumulation phase. To explore the importance of the internal structure in determining the collisional outcome, we consider two different parent body models: (1) a purely monolithic one and (2) a pre-shattered one which consists of several fragments separated by damaged zones and small voids. We present here simulations spanning two different impact energy regimes—barely disruptive and highly catastrophic—corresponding to the formation of the Eunomia and Koronis families, respectively. As we already found for the intermediate energy regime represented by the Karin family, pre-shattered parent bodies always lead to outcome properties in better agreement with those of real families. In particular, the fragment size distribution obtained by disrupting a monolithic body always contains a large gap between the largest fragment and the next largest ones, whereas it is much more continuous in the case of a pre-shattered parent body. In the latter case, the ejection speeds of large fragments are also higher and a smaller impact energy is generally required to achieve a similar degree of disruption. Hence, unless the internal structure of bodies involved in a collision is known, predicting accurately the outcome is impossible. Interestingly, disrupting a pre-shattered parent body to reproduce the Koronis family yields a fragment size distribution characterized by four almost identical largest objects, as observed in the real family. This peculiar outcome has been found before in laboratory experiments but is obtained for the first time following gravitational re-accumulation. Finally, we show that material belonging to the largest fragments of a family originates from well-defined regions inside the parent body (the extent and location of which are dependent upon internal structure), despite the many gravitational interactions that occur during the re-accumulation process. Hence fragment formation does not proceed stochastically but results directly from the velocity field imparted during the impact.  相似文献   

15.
《Icarus》1998,132(1):113-124
We present results of two-dimensional gravitationalN-body simulations of the late stage of planetary formation. This stage is characterized by the direct accretion of hundreds of lunar-sized planetesimals into planetary bodies. Our simulation code is based on the Hermite Individual Timestep integration algorithm, and gravitational interactions among all bodies are included throughout the simulations. We compare our simulation with earlier works that do not include all interactions, and we find very good agreement. A previously published collisional fragmentation model is included in our simulation to study the effects of the production of fragments on the subsequent evolution of the larger planetary bodies. It is found that for realistic two-body collisions that, according to this model, both bodies will suffer fragmentation, and that the outcome of the collision will be a relatively large core containing most of the mass and a few small fragments. We present the results of simulations that include this simple fragmentation model. They indicate that the presence of small fragments have only a small effect on the growth or orbital evolution of the large planet-sized bodies.  相似文献   

16.
We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix's remanent magnetization was found to be consistent and low (~6 μT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization was formed during or after an impact event. Recent mesoscale impact modeling, where chondrules and matrix are resolved, has shown that low‐velocity collisions can generate significant matrix temperatures, as pore‐space compaction attenuates shock energy and dramatically increases the amount of heating. Nonporous chondrules are unaffected, and act as heat‐sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1 km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero‐porosity chondrules make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating.  相似文献   

17.
Composed of rocks, dirt, ices and metals, the small bodies of the Solar System generally show features of strength; and that property undoubtedly played a major role in their collisional evolution. But the quantification of strength is difficult because there are many different measures of strength, and those measures depend significantly on a body's composition, previous history and size. Although it is at the foundations of our scaling theories for the disruption of small bodies, and an essential part of code calculations, we have only recently begun to understand and come to grips with that strength property and in appropriate ways to model it in our theories and calculations.This is a general overview of strength theories for geological-type materials as needed for impact analyses. Dominant features of strength models are discussed, and comparisons of various models in the literature against that feature template is given. A summary of the use of strength theories in impact calculations is presented.  相似文献   

18.
T.M. Davison  G.S. Collins 《Icarus》2010,208(1):468-481
Collisions between planetesimals at speeds of several kilometres per second were common during the early evolution of our Solar System. However, the collateral effects of these collisions are not well understood. In this paper, we quantify the efficiency of heating during high-velocity collisions between planetesimals using hydrocode modelling. We conducted a series of simulations to test the effect on shock heating of the initial porosity and temperature of the planetesimals, the relative velocity of the collision and the relative size of the two colliding bodies. Our results show that while heating is minor in collisions between non-porous planetesimals at impact velocities below 10 km s−1, in agreement with previous work, much higher temperatures are reached in collisions between porous planetesimals. For example, collisions between nearly equal-sized, porous planetesimals can melt all, or nearly all, of the mass of the bodies at collision velocities below 7 km s−1. For collisions of small bodies into larger ones, such as those with an impactor-to-target mass ratio below 0.1, significant localised heating occurs in the target body. At impact velocities as low as 5 km s−1, the mass of melt will be nearly double the mass of the impactor, and the mass of material shock heated by 100 K will be nearly 10 times the mass of the impactor. We present a first-order estimate of the cumulative effects of impact heating on a porous planetesimal parent body by simulating the impact of a population of small bodies until a disruptive event occurs. Before disruption, impact heating is volumetrically minor and highly localised; in no case was more than about 3% of the parent body heated by more than 100 K. However, heating during the final disruptive collision can be significant; in about 10% of cases, almost all of the parent body is heated to 700 K (from an initial temperature of ∼300 K) and more than a tenth of the parent body mass is melted. Hence, energetic collisions between planetesimals could have had important effects on the thermal evolution of primitive materials in the early Solar System.  相似文献   

19.
Understanding the collisional behavior of ice dust aggregates at low velocity is a key to determining the formation process of small icy bodies such as icy planetesimals, comets and icy satellites, and this collisional behavior is also closely related to the energy dissipation mechanism in Saturn’s rings. We performed head-on collision experiments in air by means of free-falling centimeter-sized sintered snowballs with porosities from 44% to 80% at impact velocities from 0.44 m s?1 to 4.12 m s?1 at ?10 °C. In cases of porosity larger than 70%, impact sticking was the dominant collision outcome, while bouncing was dominant at lower porosity. Coefficients of restitution of snow in this velocity range were found to depend strongly on the porosity rather than the impact velocity and to decrease with the increase of the porosity. We successfully measured the compaction volume of snowballs after the impact, and it enabled us to estimate the dynamic compressive strength of snow with the assumption of the energy conservation between kinetic energy and work for deformation, which was found to be consistent with the upper limit of static compressive strength. The velocity dependence of coefficients of restitution of snow was analyzed using a Johnson’s model, and a diagram for collision outcomes among equal-sized sintered snowballs was successfully drawn as a function of porosity and impact velocity.  相似文献   

20.
Laboratory experiments on the impact disruption of ice-silicate mixtures were conducted to clarify the accretion process of small icy bodies. Since the icy bodies are composed of ice and silicates with various porosities, we investigated the effect of porosity on the impact disruption of mixtures. We tested the mixture target with the mass ratio of ice to silicate, 0.5 and with 5 different porosities (0, 12.5, 25, 32, 37%) at the impact velocities of 150 to 670 m/s. The silicate mass ratio was changed from 0 to 0.5 in steps of 0.1 at a porosity of 12.5% and a constant impact velocity of about 300 m/s. The impact strength of the mixture was found to decrease with increasing porosity and the silicate mass ratio between 0.1 and 0.5 could enhance the strength of the icy target. The observed dependence of the impact strength on the porosity is opposite to that observed for pure ice. This difference could play an important role in ice-silicate fractionation during the accretion process. Because, ice rich bodies are easily broken as the porosity decreases in their evolution, the collisional growth could be prohibited. On the other hand, among the silicate rich bodies the collisional growth could be enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号