首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fractal dimensions of solar radio fluxes at 245, 410, 610, 1415, 2695, 2800, 4995, 8800, and 15400 MHz are calculated for the data period 1976–1990. The fractal dimension used here is an index to quantify the time variability of radio emission. The fractal dimensions were found to have values in the range of 1.2–2.0 for time scales of 10 days, 1–10 months, and 10 months. The lowest values were found around 3 GHz. The annual variations of fractal dimensions are small and are not in concert with the solar cycle for most of the fractal dimension at the analyzed frequencies except those for 4995 and 8800 MHz. The annual variations of the fractal dimensions are similar for the sunspot number and radio emission around 3 GHz; this implies a close relation between them. According to a simulation, larger fractal dimensions correspond to shorter e-folding time constants in the distribution of radio-source lifetimes.  相似文献   

2.
Shadow formation around supermassive black holes were simulated. Due to enormous progress in observational facilities and techniques of data analysis researchers approach to opportunity to measure shapes and sizes of the shadows at least for the closest supermassive black hole at the Galactic Center. Measurements of the shadow sizes around the black holes can help to evaluate parameters of black hole metric. Theories with extra dimensions (Randall–Sundrum II braneworld approach, for instance) admit astrophysical objects (supermassive black holes, in particular) which are rather different from standard ones. Different tests were proposed to discover signatures of extra dimensions in supermassive black holes since the gravitational field may be different from the standard one in the general relativity (GR) approach. In particular, gravitational lensing features are different for alternative gravity theories with extra dimensions and general relativity. Therefore, there is an opportunity to find signatures of extra dimensions in supermassive black holes. We show how measurements of the shadow sizes can put constraints on parameters of black hole in spacetime with extra dimensions.  相似文献   

3.
4.
Supergranulation is visible at the solar surface as a cellular pattern of horizontal outflows. Although it does not show a distinct intensity pattern, it manifests itself indirectly in, for example, the chromospheric network. Previous studies have reported significant differences in the inferred basic parameters of the supergranulation phenomenon. Here we study the structure and temporal evolution of a large sample of supergranules, measured by using local helioseismology and SOHO/MDI data from the year 2000 at solar activity minimum. Local helioseismology with f modes provides maps of the horizontal divergence of the flow velocity at a depth of about 1 Mm. From these divergence maps supergranular cells were identified by using Fourier segmentation procedures in two dimensions and in three dimensions (two spatial dimensions plus time). The maps that we analyzed contain more than 105 supergranular cells and more than 103 lifetime histories, which makes possible a detailed analysis with high statistical significance. We find that the supergranular cells have a mean diameter of 27.1 Mm. The mean lifetime is estimated to be 1.6 days from the measured distribution of lifetimes (three-dimensional segmentation), with a clear tendency for larger cells to live longer than smaller ones. The pair and mark correlation functions do not show pronounced features on scales larger than the typical cell size, which suggests purely random cell positions. The temporal histories of supergranular cells indicate a smooth evolution from their emergence and growth in the first half of their lives to their decay in the second half of their lives (unlike exploding granules, which reach their maximum size just before they fragment).  相似文献   

5.
A homogeneous cosmological model in higher dimension is obtained assuming a timedependent equation of state. It is observed that as usual 3-D space expands, extra space (space belonging to the other dimensions) reduces with time, thus exhibiting the desired feature of dimensional reduction. The dynamical behavior of the model is examined and it is noted that with a decrease in extra space the observable 3-D space entropy increase, thus accounting for the large value of entropy observable at present.  相似文献   

6.
This article contains the tomographic problem's solution of the radiants distribution study by the meteor radar data. It was received the distribution of meteors velocities for the parts of celestial sphere with angular dimensions 10° × 10° and 1° × 1°. Was shown that the angular dimensions of most of radiants are equal 1° – 3° and larger part of the sporadic background looks like a totality of microstreams.  相似文献   

7.
Plasma kinetic theory is based on the Atomic Hypothesis as well as two branches of physics with different definitions of the concept of force: Gas dynamics (pressure on impact forces) and Electromagnetism (action at distance forces). A brief historical background of the above branches is given and the average force exerted on a test particle of the plasma is calculated in 1, 2 and 3 dimensions both for pressure on impact and action at distance models.  相似文献   

8.
Abstract— Scaling laws describing crater dimensions are defined in terms of projectile velocity and mass, densities of the materials involved, strength of the target, and the local gravity. Here, the additional importance of target porosity and saturation, and an overlying water layer, are considered through 15 laboratory impacts of 1 mm diameter stainless steel projectiles at 5 km s?1 into a) an initially uncharacterized sandstone (porosity ?17%) and b) Coconino Sandstone (porosity ?23%). The higher‐porosity dry sandstone allows a crater to form with a larger diameter but smaller depth than in the lower‐porosity dry sandstone. Furthermore, for both porosities, a greater volume of material is excavated from a wet target than a dry target (by 27–30%). Comparison of our results with Pi‐scaling (dimensionless ratios of key parameters characterizing cratering data over a range of scales) suggests that porosity is important for scaling laws given that the new data lie significantly beneath the current fit for ice and rock targets on a πv versus π3 plot (πv gives cratering efficiency and π3 the influence of target strength). An overlying water layer results in a reduction of crater dimensions, with larger craters produced in the saturated targets compared to unsaturated targets. A water depth of approximately 12 times the projectile diameter is required before craters are no longer observed in the targets. Previous experimental studies have shown that this ratio varies between 10 and 20 (Gault and Sonett 1982). In our experiments ?25% of the original projectile mass survives the impact.  相似文献   

9.
Recent discovery of magnetars (B~1015 G) motivates us to consider magnetic universes in general relativity a new. A regular class of static, cylindrically symmetric pure magnetic field metrics is rederived in a different metric ansatz in all dimensions. Radial, time dependent perturbations show that for dimensions d>3 such spacetimes are stable at both near r≈0 and large radius r→∞. For d=3, however, simultaneous stability requirement at both, near and far radial distances can not be reconciled for time-dependent perturbations. We argue that this distinct property may be the cause for the absence of pure magnetic black holes in d=3. Restricted, numerical geodesics for neutral particles reveal a gravitational confinement around the center in the polar plane. Charged, time-like geodesics for d=4 are shown numerically to remain confined as well.  相似文献   

10.
11.
《Astroparticle Physics》2010,32(6):421-430
Stereoscopic arrays of Imaging Atmospheric Cherenkov Telescopes allow to reconstruct gamma-ray-induced showers in three dimensions, which offers several advantages: direct access to the shower parameters in space and straightforward calorimetric measurement of the incident energy. In addition, correlations between the different images of the same shower are taken into account. An analysis method based on a simple 3D-model of electromagnetic showers was recently implemented in the framework of the H.E.S.S. experiment. In the present article, the method is completed by an additional quality criterion, which reduces the background contamination by a factor of about 2 in the case of extended sources, while keeping gamma-ray efficiency at a high level. On the other hand, the dramatic flares of the blazar PKS 2155-304 in July 2006, which provided H.E.S.S. data with an almost pure gamma-ray sample, offered the unique opportunity of a precision test of the 3D-reconstruction method as well as of the H.E.S.S. simulations used in its calibration. An agreement at a few percent level is found between data and simulations for the distributions of all 3D shower parameters.  相似文献   

12.
Herbert Frey 《Icarus》1975,25(3):439-446
It may be possible to understand the apparent intermittent nature of the post-eclipse brightenings and nonbrightenings of Io in terms of a nonuniform distribution of blue reflectors grouped in the hemisphere centered at 0° longitude. The dimensions required for such blue mirrors are consistent with very large craters. The high blue albedo of water frost and other ices makes these materials likely candidates for the reflectors.  相似文献   

13.
Stereoscopic arrays of Imaging Atmospheric Cherenkov Telescopes allow to reconstruct gamma-ray-induced showers in three dimensions, which offers several advantages: direct access to the shower parameters in space and straightforward calorimetric measurement of the incident energy. In addition, correlations between the different images of the same shower are taken into account. An analysis method based on a simple 3D-model of electromagnetic showers was recently implemented in the framework of the H.E.S.S. experiment. In the present article, the method is completed by an additional quality criterion, which reduces the background contamination by a factor of about 2 in the case of extended sources, while keeping gamma-ray efficiency at a high level. On the other hand, the dramatic flares of the blazar PKS 2155-304 in July 2006, which provided H.E.S.S. data with an almost pure gamma-ray sample, offered the unique opportunity of a precision test of the 3D-reconstruction method as well as of the H.E.S.S. simulations used in its calibration. An agreement at a few percent level is found between data and simulations for the distributions of all 3D shower parameters.  相似文献   

14.
We study the large scale structure of galaxy distribution from the fractal point of view using the CfA survey data. Main results are as follows: 1. Within certain ranges, the galaxy distribution is fractal with fractal dimension about 2.0. This result is different fron the value 1.2 – 1.4, expected from the galaxy two-point correlation function. 2. Galaxies of different luminosities show somewhat different fractal dimensions. This result indicates that they may correspond to different perturbation ranges in the early universe, in apparent agreement with thepredictions of biased galaxy formation theory. 3. Scales smaller and greater than 10 Mpc seem to have different fractal dimensions. A preliminary analysis of these results is included.  相似文献   

15.
Hyperspectral imaging is an ubiquitous technique in solar physics observations and the recent advances in solar instrumentation enabled us to acquire and record data at an unprecedented rate. The huge amount of data which will be archived in the upcoming solar observatories press us to compress the data in order to reduce the storage space and transfer times. The correlation present over all dimensions, spatial, temporal and spectral, of solar data-sets suggests the use of a 3D base wavelet decomposition, to achieve higher compression rates. In this work, we evaluate the performance of the recent JPEG2000 Part 10 standard, known as JP3D, for the lossless compression of several types of solar data-cubes. We explore the differences in: a) The compressibility of broad-band or narrow-band time-sequence; I or V Stokes profiles in spectropolarimetric data-sets; b) Compressing data in [x,y, λ] packages at different times or data in [x,y,t] packages of different wavelength; c) Compressing a single large data-cube or several smaller data-cubes; d) Compressing data which is under-sampled or super-sampled with respect to the diffraction cut-off.  相似文献   

16.
Abstract— We used synchrotron X‐ray microtomography to image in 3‐dimensions (3D) eight whole chondrules in a ?1 cm3piece of the Renazzo (CR) chondrite at ?17 μm per volume element (voxel) edge. We report the first volumetric (3D) measurement of metal/silicate ratios in chondrules and quantify indices of chondrule sphericity. Volumetric metal abundances in whole chondrules range from 1 to 37 volume % in 8 measured chondrules and by inspection in tomography data. We show that metal abundances and metal grain locations in individual chondrules cannot be reliably obtained from single random 2D sections. Samples were physically cut to intersect representative chondrules multiple times and to verify 3D data. Detailed 2D chemical analysis combined with 3D data yield highly variable whole‐chondrule Mg/Si ratios with a supra‐chondritic mean value, yet the chemically diverse, independently formed chondrules are mutually complementary in preserving chondritic (solar) Fe/Si ratios in the aggregate CR chondrite. These results are consistent with localized chondrule formation and rapid accretion resulting in chondrule + matrix aggregates (meteorite parent bodies) that preserve the bulk chondritic composition of source regions.  相似文献   

17.
Using the high-quality data set of 165 images taken at 11 epochs over the 5.13 h rotation of the large C-type Asteroid 511 Davida, we find the dimensions of its triaxial ellipsoid model to be 357±2×294±2×231±50 km. The images were acquired with the adaptive optics system on the 10 m Keck II telescope on December 27, 2002. The a and b diameters are much better determined than previously estimated from speckle interferometry and indirect measurements, and our mean diameter, (abc)1/3=289±21 km, is 19% below previous estimates. We find the pole to lie within 2° of [RA=295°; Dec=0°] or in Ecliptic coordinates [λ=297°; β=+21°], a significant improvement to the pole direction. Otherwise, previous determinations of the axial ratios agree with our new results. These observations illustrate that our technique of finding the dimensions and pole of an asteroid from its changing projected size and shape is very powerful because it can be done in essentially one night as opposed to decades of lightcurves. Average departures of 3% (5 km) of the asteroid's mean radius from a smooth outline are detected, with at least two local positive-relief features and at least one flat facet showing approximately 15 km deviations from the reference best-fit ellipsoid. The facet is reminiscent of large global-scale craters on Asteroid 253 Mathilde (also a C-type) when seen edge-on in close-up images from the NEAR mission flyby. We show that giant craters (up to 150 km diameter, the size of the largest facets seen on Davida) can be expected from the impactor size distribution, without likelihood of catastrophic disruption of Davida.  相似文献   

18.
We consider a scenario where the interior spacetime, described by a heat conducting fluid sphere is matched to a Vaidya metric in higher dimensions. Interestingly we get a class of solutions, where following heat radiation the boundary surface collapses without the appearance of an event horizon at any stage and this happens with reasonable properties of matter field. The non-occurrence of a horizon is due to the fact that the rate of mass loss was exactly counterbalanced by the fall of boundary radius. Evidently this poses a counter example to the so-called cosmic censorship hypothesis. Two explicit examples of this class of solutions are also given and it is observed that the rate of collapse is delayed with the introduction of extra dimensions. The work extends to higher dimensions our previous investigation in 4D.  相似文献   

19.
A spacetime manifold generated by the pencil of conics defined by two distinct pairs of complex-conjugated lines and a pair of real lines is considered. The manifold, originally endowed with two spatial and two temporal dimensions, is shown to substantially change its properties as we change the affine properties of the pencil. Two kinds of transformation are of particular interest. A dimensionality-preserving process, characterized by the transmutation of a temporal coordinate into a spatial one and leading to familiar (3+1)D spacetime, and a dimensionality-reducing scenario, featuring simultaneous annihilation of one temporal and one spatia dimension and ending up with a (1+1)D spacetime. A striking difference between the nature of temporal and spatial is revealed; whereas we find purely spatial manifolds, those comprising exclusively temporal dimensions donot exist.  相似文献   

20.
We present a steady-state model for reconnecting current sheets, which relates the central values of temperature, density and pressure within the sheet to the prescribed external values of these parameters as well as the magnetic field strength and inflow velocity (or reconnection rate). The simplifying feature of our model is the assumption of quasi-one-dimensionality so that only variations across the sheet at the centre of symmetry are considered in detail. The dimensions of the sheet, the spatial profiles and their variation with the prescribed dimensionless parameters are obtained from the model. We also obtain the conditions on the dimensionless parameters for the existence of a steady state. A beta-limitation is discovered, such that steady reconnection is impossible when the plasma beta is too small. Also, the sheet dimensions may be an order of magnitude larger than previously thought. Finally, these general results are applied to the emerging flux model for solar flares. A state of thermal nonequilibrium ensues when the current sheet between the emerging and ambient flux reaches a critical height. The effect of the beta-limitation is to make this critical height decrease with increasing magnetic field strength.Now at A.W.R.E., Aldermaston, Berks., England.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号