首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We present results from coronagraphic imaging of Mercury’s sodium tail over a 7° field of view. Several sets of observations made at the McDonald Observatory since May 2007 show a tail of neutral sodium atoms stretching more than 1000 Mercury radii (Rm) in length, or a full degree of sky. However, no tail was observed extending beyond 120 Rm during the January 2008 MESSENGER fly-by period, or during a similar orbital phase of Mercury in July 2008. Large changes in Mercury’s heliocentric radial velocity cause Doppler shifts about the Fraunhofer absorption features; the resultant change in solar flux and radiation pressure is the primary cause of the observed variation in tail brightness. Smaller fluctuations in brightness may exist due to changing source rates at the surface, but we have no explicit evidence for such changes in this data set. The effects of radiation pressure on Mercury’s escaping atmosphere are investigated using seven observations spanning different orbital phases. Total escape rates of atmospheric sodium are estimated to be between 5 and 13 × 1023 atoms/s and show a correlation to radiation pressure. Candidate sources of Mercury’s sodium exosphere include desorption by UV sunlight, thermal desorption, solar wind channeled along Mercury’s magnetic field lines, and micro-meteor impacts. Wide-angle observations of the full extent of Mercury’s sodium tail offer opportunities to enhance our understanding of the time histories of these source rates.  相似文献   

2.
Abstract— Mercury is difficult to observe because it is so close to the Sun. However, when the angle of the ecliptic is near maximum in the northern hemisphere, and Mercury is near its greatest eastern elongation, it can be seen against the western sky for about a half hour after sunset. During these times, we were able to map sodium D2 emission streaming from the planet, forming a long comet‐like tail. On 2001 May 26 (U.T.) we mapped the tail downstream to a distance of ?40 000 km. Sodium velocities in the tail increased to ?11 km s?1 at 40 000 km as the result of radiation pressure acceleration. On 2000 June 5 (U.T.) we mapped the cross‐sectional extent of the tail at a distance of ?17 500 km downstream. At this distance, the half‐power full‐width of the emission was ?20 000 km. We estimated the transverse velocity of sodium in the tail to range from 2 to 4 km s?1. The velocities we observed imply source velocities from the planet surface of the order of 5 km s?1, or 4 eV. Particle sputtering is a likely candidate for production of sodium atoms at these velocities. The total flux of sodium in the tail was ?1 times 1023 atoms s?1, which corresponds to 1 to 10% of the estimated total production rate of sodium on the planet.  相似文献   

3.
We present a Monte Carlo model of the distribution of neutral sodium in Mercury’s exosphere and tail using data from the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft during the first two flybys of the planet in January and September 2008. We show that the dominant source mechanism for ejecting sodium from the surface is photon-stimulated desorption (PSD) and that the desorption rate is limited by the diffusion rate of sodium from the interior of grains in the regolith to the topmost few monolayers where PSD is effective. In the absence of ion precipitation, we find that the sodium source rate is limited to ∼106-107 cm−2 s−1, depending on the sticking efficiency of exospheric sodium that returns to the surface. The diffusion rate must be at least a factor of 5 higher in regions of ion precipitation to explain the MASCS observations during the second MESSENGER flyby. We estimate that impact vaporization of micrometeoroids may provide up to 15% of the total sodium source rate in the regions observed. Although sputtering by precipitating ions was found not to be a significant source of sodium during the MESSENGER flybys, ion precipitation is responsible for increasing the source rate at high latitudes through ion-enhanced diffusion.  相似文献   

4.
In this work we analyze and compare the vertical cloud structure of Saturn's Equatorial Zone in two different epochs: the first one close to the Voyagers flybys (1979-1981) and the second one in 2004, when the Cassini spacecraft entered its orbit around the planet. Our goal is to retrieve the altitude of cloud features used as zonal wind tracers in both epochs. We reanalyze three different sets of photometrically calibrated published data: ground-based in 1979, Voyager 2 PPS and ISS observations in 1981, and we analyze a new set of Hubble Space Telescope images for 2004. For all situations we reproduced the observed reflectivity by means of a similar vertical model with three layers. The results indicate the presence of a changing tropospheric haze in 1979-1981 (Ptop∼100 mbar, τ∼10) and in 2004 (Ptop∼50 mbar, τ∼15) where the tracers are embedded. According to this model the Voyager 2 ISS images locate cloud tracers moving with zonal velocities of 455 to 465 (±2) m/s at a pressure level of 360 ± 140 mbar. For HST observations, our previous works had showed cloud tracers moving with zonal wind speeds of 280±10 m/s at a pressure level of about 50±10 mbar. All these values are calculated in the same region (3°±2° N). This speed difference, if interpreted as a vertical wind shear, requires a change of per scale height, two times greater than that estimated from temperature observations. We also perform an initial guess on Cassini ISS vertical sounding levels, retrieving values compatible with HST ones and Cassini CIRS derived vertical wind shear, but not with Voyager wind measurements. We conclude that the wind speed velocity differences measured between 1979-1981 and 2004 cannot be explained as a wind shear effect alone and demand dynamical processes.  相似文献   

5.
High spectral resolution observations from the Cassini Composite Infrared Spectrometer [Flasar, F.M., and 44 colleagues, 2004. Space Sci. Rev. 115, 169-297] are analysed to derive new estimates for the mole fractions of CH4, CH3D and 13CH4 of (4.7±0.2)×10−3, (3.0±0.2)×10−7 and (5.1±0.2)×10−5 respectively. The mole fractions show no hemispherical asymmetries or latitudinal variability. The analysis combines data from the far-IR methane rotational lines and the mid-IR features of methane and its isotopologues, using both the correlated-k retrieval algorithm of Irwin et al. [Irwin, P., and 9 colleagues, 2008. J. Quant. Spectrosc. Radiat. Trans. 109, 1136-1150] and a line-by-line approach to evaluate the reliability of the retrieved quantities. C/H was found to be enhanced by 10.9±0.5 times the solar composition of Grevesse et al. [Grevesse, N., Asplund, M., Sauval, A., 2007. Space Sci. Rev. 130 (1), 105-114], 2.25±0.55 times larger than the enrichment on Jupiter, and supporting the increasing fractional core mass with distance from the Sun predicted by the core accretion model of planetary formation. A comparison of the jovian and saturnian C/N, C/S and C/P ratios suggests different reservoirs of the trapped volatiles in a primordial solar nebula whose composition varies with distance from the Sun. This is supported by our derived D/H ratio in methane of (1.6±0.2)×10−5, which appears to be smaller than the jovian value of Lellouch et al. [Lellouch, E., Bézard, B., Fouchet, T., Feuchtgruber, H., Encrenaz, T., de Graauw, T., 2001. Astron. Astrophys. 370, 610-622]. Mid-IR emission features provided an estimate of , which is consistent with both the terrestrial ratio and jovian ratio, suggesting that carbon was accreted from a shared reservoir for all of the planets.  相似文献   

6.
The kinetics of the reactions of C2H radical with ethane (k1), propane (k2), and n-butane (k3) are studied over the temperature range of T = 96-296 K with a pulsed Laval nozzle apparatus that utilizes a pulsed laser photolysis-chemiluminescence technique. The C2H decay profiles in the presence of both the alkane reactant and O2 are monitored by the CH(A2Δ) chemiluminescence tracer method. The results, together with available literature data, yield the following Arrhenius expressions: k1(T) = (0.51 ± 0.06) × 10−10 exp[(−76 ± 30)K/T] cm3 molecule−1 s−1 (T = 96-800 K), k2(T) = (0.98 ± 0.32) × 10−10exp[(−71 ± 60)K/T] cm3 molecule−1 s−1 (T = 96-361 K), and k3(T) = (1.23 ± 0.26) × 10−10 cm3 molecule−1 s−1 (T = 96-297 K). At T = 296 K, k1 is measured as a function of total pressure and has little or no pressure dependence. The results from this work support a direct hydrogen abstraction mechanism for the title reactions. Implications to the atmospheric chemistry of Titan are discussed.  相似文献   

7.
The paper is focused on the estimate of the impact of the non-gravitational perturbations on the orbit of the Mercury Planetary Orbiter (MPO), one of the two spacecrafts that will be placed in orbit around the innermost planet of the solar system by the BepiColombo space mission. The key rôle of the Italian Spring Accelerometer (ISA), that has been selected by the European Space Agency (ESA) to fly on-board the MPO, is outlined. In the first part of the paper, through a numerical simulation and analysis we have estimated, over a time span of several years, the long-period behaviours of the disturbing accelerations produced by the incoming direct solar radiation pressure, and the indirect effects produced by Mercury’s albedo. The variations in the orbital parameters of the spacecraft, together with their spectral contents, have been estimated over the analysed period. The direct solar radiation pressure represents the strongest non-gravitational perturbation on the MPO in the very complex radiation environment of Mercury. The order-of-magnitude of this acceleration is quite high, about 10?6 m/s2, because of the proximity to the Sun and the large area-to-mass ratio of the spacecraft. In the second part of the paper, we concentrated upon the short-period effects of direct solar radiation pressure and Mercury’s albedo. In particular, the disturbing accelerations have been compared with the ISA measurement error and the advantages of an on-board accelerometer are highlighted with respect to the best modelling of the non-gravitational perturbations in the strong radiation environment of Mercury. The readings from ISA, with an intrinsic noise level of about $10^{-9}\,m/s^{2}/\sqrt{Hz}The paper is focused on the estimate of the impact of the non-gravitational perturbations on the orbit of the Mercury Planetary Orbiter (MPO), one of the two spacecrafts that will be placed in orbit around the innermost planet of the solar system by the BepiColombo space mission. The key r?le of the Italian Spring Accelerometer (ISA), that has been selected by the European Space Agency (ESA) to fly on-board the MPO, is outlined. In the first part of the paper, through a numerical simulation and analysis we have estimated, over a time span of several years, the long-period behaviours of the disturbing accelerations produced by the incoming direct solar radiation pressure, and the indirect effects produced by Mercury’s albedo. The variations in the orbital parameters of the spacecraft, together with their spectral contents, have been estimated over the analysed period. The direct solar radiation pressure represents the strongest non-gravitational perturbation on the MPO in the very complex radiation environment of Mercury. The order-of-magnitude of this acceleration is quite high, about 10−6 m/s2, because of the proximity to the Sun and the large area-to-mass ratio of the spacecraft. In the second part of the paper, we concentrated upon the short-period effects of direct solar radiation pressure and Mercury’s albedo. In particular, the disturbing accelerations have been compared with the ISA measurement error and the advantages of an on-board accelerometer are highlighted with respect to the best modelling of the non-gravitational perturbations in the strong radiation environment of Mercury. The readings from ISA, with an intrinsic noise level of about in the frequency band of 3·10−5–10−1 Hz, guarantees a very significant reduction of the non-gravitational accelerations impact on the space mission accuracy, especially of the dominant direct solar radiation pressure.  相似文献   

8.
We show that the peak velocity of Jupiter’s visible-cloud-level zonal winds near 24°N (planetographic) increased from 2000 to 2008. This increase was the only change in the zonal velocity from 2000 to 2008 for latitudes between ±70° that was statistically significant and not obviously associated with visible weather. We present the first automated retrieval of fast (∼130 m s−1) zonal velocities at 8°N planetographic latitude, and show that some previous retrievals incorrectly found slower zonal winds because the eastward drift of the dark projections (associated with 5-μm hot spots) “fooled” the retrieval algorithms.We determined the zonal velocity in 2000 from Cassini images from NASA’s Planetary Data System using a global method similar to previous longitude-shifting correlation methods used by others, and a new local method based on the longitudinal average of the two-dimensional velocity field. We obtained global velocities from images acquired in May 2008 with the Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST). Longer-term variability of the zonal winds is based on comparisons with published velocities based on 1979 Voyager 2 and 1995-1998 HST images. Fluctuations in the zonal wind speeds on the order of 10 m s−1 on timescales ranging from weeks to months were found in the 1979 Voyager 2 and the 1995-1998 HST velocities. In data separated by 10 h, we find that the east-west velocity uncertainty due to longitudinal fluctuations are nearly 10 m s−1, so velocity fluctuations of 10 m s−1 may occur on timescales that are even smaller than 10 h. Fluctuations across such a wide range of timescales limit the accuracy of zonal wind measurements. The concept of an average zonal velocity may be ill-posed, and defining a “temporal mean” zonal velocity as the average of several zonal velocity fields spanning months or years may not be physically meaningful.At 8°N, we use our global method to find peak zonal velocities of ∼110 m s−1 in 2000 and ∼130 m s−1 in 2008. Zonal velocities from 2000 Cassini data produced by our local and global methods agree everywhere, except in the vicinity of 8°N. There, the local algorithm shows that the east-west velocity has large variations in longitude; vast regions exceed ∼140 m s−1. Our global algorithm, and all of the velocity-extraction algorithms used in previously-published studies, found the east-west drift velocities of the visible dark projections, rather than the true zonal velocity at the visible-cloud level. Therefore, the apparent increase in zonal winds between 2000 and 2008 at 8°N is not a true change in zonal velocity.At 7.3°N, the Galileo probe found zonal velocities of 170 m s−1 at the 3-bar level. If the true zonal velocity at the visible-cloud level at this latitude is ∼140 m s−1 rather than ∼105 m s−1, then the vertical zonal wind shear is much less than the currently accepted value.  相似文献   

9.
Observations of Jupiter by Cassini/CIRS, acquired during the December 2000 flyby, provide the latitudinal distribution of HCN and CO2 in Jupiter's stratosphere with unprecedented spatial resolution and coverage. Following up on a preliminary study by Kunde et al. [Kunde, V.G., and 41 colleagues, 2004. Science 305, 1582-1587], the analysis of these observations leads to two unexpected results (i) the total HCN mass in Jupiter's stratosphere in 2000 was (6.0±1.5)×1013 g, i.e., at least three times larger than measured immediately after the Shoemaker-Levy 9 (SL9) impacts in July 1994 and (ii) the latitudinal distributions of HCN and CO2 are strikingly different: while HCN exhibits a maximum at 45° S and a sharp decrease towards high Southern latitudes, the CO2 column densities peak over the South Pole. The total CO2 mass is (2.9±1.2)×1013 g. A possible cause for the HCN mass increase is its production from the photolysis of NH3, although a problem remains because, while millimeter-wave observations clearly indicate that HCN is currently restricted to submillibar (∼0.3 mbar) levels, immediate post-impact infrared observations have suggested that most of the ammonia was present in the lower stratosphere near 20 mbar. HCN appears to be a good atmospheric tracer, with negligible chemical losses. Based on 1-dimensional (latitude) transport models, the HCN distribution is best interpreted as resulting from the combination of a sharp decrease (over an order of magnitude in Kyy) of wave-induced eddy mixing poleward of 40° and an equatorward transport with velocity. The CO2 distribution was investigated by coupling the transport model with an elementary chemical model, in which CO2 is produced from the conversion of water originating either from SL9 or from auroral input. The auroral source does not appear adequate to reproduce the CO2 peak over the South Pole, as required fluxes are unrealistically high and the shape of the CO2 bulge is not properly matched. In contrast, the CO2 distribution can be fit by invoking poleward transport with a velocity and vigorous eddy mixing (). While the vertical distribution of CO2 is not measured, the combined HCN and CO2 results imply that the two species reside at different stratospheric levels. Comparing with the circulation regimes predicted by earlier radiative-dynamical models of Jupiter's stratosphere, and with inferences from the ethane and acetylene stratospheric latitudinal distribution, we suggest that CO2 lies in the middle stratosphere near or below the 5-mbar level.  相似文献   

10.
In this work we analyze the spatial structure of Jupiter's cloud reflectivity field in order to determine brightness periodicities and power spectra characteristics together with their relationship with Jupiter's dynamics and turbulence. The research is based on images obtained in the near-infrared (∼950 nm), blue (∼430 nm) and near-ultraviolet (∼260 nm) wavelengths with the Hubble Space Telescope in 1995 and the Cassini spacecraft Imaging Science Subsystem in 2000. Zonal reflectivity scans were analyzed by means of spatial periodograms and power spectra. The periodograms have been used to search for waves as a function of latitude. We present the values of the dominant wavenumbers for latitude bands between 32° N and 42° S. The brightness power spectra analysis has been performed in the meridional and zonal directions. The meridional analysis of albedo profiles are close to a k−5 law similarly to the wind profiles at blue and infrared wavelengths, although results differ from that in the ultraviolet. The zonal albedo analysis results in two distributions characterized by different slopes. In the near infrared and blue wavelengths, average spectral slopes are n1=−1.3±0.4 for shorter wavenumbers (k<80), and n2=−2.5±0.7 for greater wavenumbers, whereas for the ultraviolet n1=−1.9±0.4 and n2=−0.7±0.4, possibly showing a different dynamical regime. We find a turning point in the spectra between both regimes at wavenumber k∼80 (corresponding to L∼1000 km) for all wavelengths.  相似文献   

11.
New maps of martian water vapor and hydrogen peroxide have been obtained in November-December 2005, using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infra Red Telescope facility (IRTF) at Mauna Kea Observatory. The solar longitude Ls was 332° (end of southern summer). Data have been obtained at 1235-1243 cm−1, with a spectral resolution of 0.016 cm−1 (R=8×104). The mean water vapor mixing ratio in the region [0°-55° S; 345°-45° W], at the evening limb, is 150±50 ppm (corresponding to a column density of 8.3±2.8 pr-μm). The mean water vapor abundance derived from our measurements is in global overall agreement with the TES and Mars Express results, as well as the GCM models, however its spatial distribution looks different from the GCM predictions, with evidence for an enhancement at low latitudes toward the evening side. The inferred mean H2O2 abundance is 15±10 ppb, which is significantly lower than the June 2003 result [Encrenaz, T., Bézard, B., Greathouse, T.K., Richter, M.J., Lacy, J.H., Atreya, S.K., Wong, A.S., Lebonnois, S., Lefèvre, F., Forget, F., 2004. Icarus 170, 424-429] and lower than expected from the photochemical models, taking in account the change in season. Its spatial distribution shows some similarities with the map predicted by the GCM but the discrepancy in the H2O2 abundance remains to be understood and modeled.  相似文献   

12.
A.E. Potter  R.M. Killen 《Icarus》2007,186(2):571-580
A set of Mercury sodium emission data collected over a range of true anomaly angles during 1997-2003 was used to analyze the effect of solar radiation acceleration on sodium emissions. The variation of emission intensity with changing Doppler velocities throughout the orbit was minimized by normalizing the intensities to a constant true anomaly angle. The normalized intensities should be independent of orbital position if sodium density is constant. Plots of the normalized intensities against solar radiation acceleration showed very considerable scatter. However, the scatter was not random, but the result of a systematic variation, such that the normalized emission at a particular value of radiation acceleration took one or the other of two values, depending on the value of the true anomaly angle. We propose that this was the result of solar radiation acceleration changing the velocity of the sodium atoms, and consequently changing the solar continuum seen by the atoms. There is a positive feedback loop in the “out” leg of the orbit, such that radiation acceleration increases the solar continuum intensity seen by the atoms, and a negative feedback loop in the “in” leg of the orbit, such radiation acceleration decreases the continuum intensity. The observations could be approximately fit by assuming that sodium atoms are exposed to sunlight for an average of 1700 s. The emission values corrected for this effect showed much less scatter, with a general trend of about 30% to lower values from minimum to maximum radiation acceleration. The corrected emissions were used to calculate average column densities, and the result compared with the predictions of Smyth and Marconi [Smyth, W.H., Marconi, M.L., 1995. Astrophys. J. 441, 839-864] for the variation of column density with true anomaly angle. The comparison suggests that sodium atoms interact weakly with the surface. The effect of radiation acceleration on emission intensities should be taken into account if column densities are to be calculated from emission intensities.  相似文献   

13.
Radio spectroscopic observations of Comet 19P/Borrelly were performed during the 1994 apparition and at, and near, the time of the Deep Space 1 flyby in 2001. HCN, CS, CH3OH, and H2CO were detected using the 30-m telescope of the Institut de Radioastronomie Millimétrique and the James Clerk Maxwell Telescope, and their production rates relative to water are estimated to be 0.06-0.11, 0.07, 1.7, and 0.4%, respectively. Only upper limits are derived for H2S and CO. The upper limit for CO/H2O (<15%) is not very constraining, while the upper limit for the H2S/H2O ratio of 0.45% is near the bottom of the range of values measured for other comets. Observations of the OH radical at the Nançay radio telescope provide water production rates a few weeks before the 1994 and 2001 perihelia. Observations of the 110-101 water line at 557 GHz with the Odin satellite yield a water production rate of (2.5±0.5)×1028 s−1 on September 22, 2001, at the time of the Deep Space 1 encounter, and (3.3±0.6)×1028 s−1 averaged over the September 22-24, 2001 period. The line shapes are asymmetric and blueshifted by V0∼−0.18 km s−1 for the best observed HCN lines recorded one week after perihelion. The HCN line shapes, and the similar OH and HCN velocity shifts over the September-November 1994 and August-September 2001 periods, favor anisotropic outgassing towards the Sun. Strong outgassing directed along the primary dust jet seen on visible images is not excluded by the HCN line shapes, but unrealistically high gas expansion velocities are required to explain the line shapes in that case.  相似文献   

14.
Jon Legarreta 《Icarus》2008,196(1):184-201
Numerical simulations of jovian vortices at tropical and temperate latitudes, under different atmospheric conditions, have been performed using the EPIC code [Dowling, T.E., Fisher, A.S., Gierasch, P.J., Harrington, J., LeBeau, R.P., Santori, C.M., 1998. Icarus 132, 221-238] to simulate the high-resolution observations of motions and of the lifetimes presented in a previous work [Legarreta, J., Sánchez-Lavega, A., 2005. Icarus 174, 178-191] and infer the vertical structure of Jupiter's troposphere. We first find that in order to reproduce the longevity and drift rate of the vortices, the Brunt-Väisälä frequency of the atmosphere in the upper troposphere (pressures P∼1 to 7 bar) should have a lower limit value of 5×10−3 s−1, increasing upward up to 1.25×10−2 s−1 at pressures P∼0.5 bar (latitudes between 15° and 45° in both hemispheres). Second, the vortices drift also depend on the vertical structure of the zonal wind speed in the same range of altitudes. Simulations of the slowly drifting Southern hemisphere vortices (GRS, White Ovals and anticyclones at 40° S) require a vertically-constant zonal-wind with depth, but Northern hemisphere vortices (cyclonic “barges” and anticyclones at 19, 41 and 45° N) require decreasing winds at a rate of ∼5 m s−1 per scale height. However vortices drifting at a high speed, close to or in the peak of East or West jets and in both hemispheres, require the wind speed slightly increasing with depth, as is the case for the anticyclones at 20° S and at 34° N. We deduce that the maximum absolute vertical shear of the zonal wind from P∼1 bar up to P∼7 bar in these jets is ∼15 m s−1 per scale height. Intense vortices with tangential velocity at their periphery ∼100 m s−1 tend to decay asymptotically to velocities ∼40 to 60 m s−1 with a characteristic time that depends on the vortex intensity and static stability of the atmosphere. The vortices adjust their tangential velocity to the averaged peak to peak velocity of the opposed eastward and westward jets at their boundary. We show through our simulations that large-scale and long-lived vortices whose maximum tangential velocity is ∼100 m s−1 can survive by absorbing smaller intense vortices.  相似文献   

15.
A rare, but normal, astronomical event occurred on November 9th 2006 (JST) as Mercury passed in front of the Sun from the perspective of the Earth. The abundance of the sodium vapor above the planet limb was observed by detecting an excess absorption in the solar sodium line D1 during this event. The observation was performed with a 10-m spectrograph of Czerny-Turnar system at Domeless Solar Tower Telescope at the Hida Observatory in Japan. The excess absorption was red-shifted by 10 pm relative to the solar line, and was measured at the dawnside (eastside) and duskside (westside) of Mercury. Between the dawn and dusksides, an asymmetry of total sodium abundance was clearly identified. At the dawnside, the total sodium column density was 6.1×1010 Na atoms/cm2, while it was 4.1×1010 Na atoms/cm2 at the duskside. The investigation of dawn-dusk asymmetry of the sodium exosphere of Mercury is a clue to understand the release mechanism of sodium from the surface rock. Our result suggests that a thermal desorption is a main source process for sodium vapor in the vicinity of Mercury.  相似文献   

16.
Venus nightglow was observed at NASA IRTF using a high-resolution long-slit spectrograph CSHELL at LT = 21:30 and 4:00 on Venus. Variations of the O2 airglow at 1.27 μm and its rotational temperature are extracted from the observed spectra. The mean O2 nightglow is 0.57 MR at 21:30 at 35°S-35°N, and the temperature increases from 171 K near the equator to ∼200 K at ±35°. We have found a narrow window that covers the OH (1-0) P1(4.5) and (2-1) Q1(1.5) airglow lines. The detected line intensities are converted into the (1-0) and (2-1) band intensities of 7.2 ± 1.8 kR and <1.4 kR at 21:30 and 15.5 ± 2 kR and 4.7 ± 1 kR at 4:00. The f-component of the (1-0) P1(4.5) line has not been detected in either observation, possibly because of resonance quenching in CO2. The observed Earth’s OH (1-0) and (2-1) bands were 400 and 90 kR at 19:30 and 250 and 65 kR at 9:40, respectively. A photochemical model for the nighttime atmosphere at 80-130 km has been made. The model involves 61 reactions of 24 species, including odd hydrogen and chlorine chemistries, with fluxes of O, N, and H at 130 km as input parameters. To fit the OH vibrational distribution observed by VEX, quenching of OH (v > 3) in CO2 only to v ? 2 is assumed. According to the model, the nightside-mean O2 emission of 0.52 MR from the VEX and our observations requires an O flux of 2.9 × 1012 cm−2 s−1 which is 45% of the dayside production above 80 km. This makes questionable the nightside-mean O2 intensities of ∼1 MR from some observations. Bright nightglow patches are not ruled out; however, the mean nightglow is ∼0.5 MR as observed by VEX and supported by the model. The NO nightglow of 425 R needs an N flux of 1.2 × 109 cm−2 s−1, which is close to that from VTGCM at solar minimum. However, the dayside supply of N at solar maximum is half that required to explain the NO nightglow in the PV observations. The limited data on the OH nightglow variations from the VEX and our observations are in reasonable agreement with the model. The calculated intensities and peak altitudes of the O2, NO, and OH nightglow agree with the observations. Relationships for the nightglow intensities as functions of the O, N, and H fluxes are derived.  相似文献   

17.
A.E. Potter  T.H. Morgan 《Icarus》2009,204(2):355-367
Solar radiation acceleration imparts anti-sunward velocities to sodium atoms in the Mercury exosphere. The Earthward-directed vectors of the Sun-accelerated atom velocities can be observed from Earth as small Doppler shifts, either added to, or subtracted from the Earth-Mercury Doppler shifts. We measured these small Doppler shifts using high resolution spectrographs capable of detecting sodium velocity differences as small as 0.1 km/s. We report here four sets of observations performed at different Mercury true anomaly angles. For these measurements, the spectrograph slit was oriented first east-west, and then north-south on the planet so as to get east-west and north-south transects of the velocities. The velocity patterns in east-west transects could be explained in terms of sodium flows outwards from the subsolar point, except for unexpectedly large Earthward velocities observed above the dawn terminator, which we interpreted to be the result of evaporation of sodium as the cold surface is heated by the rising Sun. North-south transects also showed a general pattern consistent with sodium flows outwards from the subsolar point. However, in all cases, the velocities were higher in one hemisphere relative to the other. For two cases, excess sodium emission was observed in the same hemisphere as the velocity excess. We interpreted these results to mean that there existed sources of sodium at high latitudes, which could appear in either hemisphere.  相似文献   

18.
Yuan Lian  Adam P. Showman 《Icarus》2008,194(2):597-615
Three-dimensional numerical simulations of the atmospheric flow on giant planets using the primitive equations show that shallow thermal forcing confined to pressures near the cloud tops can produce deep zonal winds from the tropopause all the way down to the bottom of the atmosphere. These deep winds can attain speeds comparable to the zonal jet speeds within the shallow, forced layer; they are pumped by Coriolis acceleration acting on a deep meridional circulation driven by the shallow-layer eddies. In the forced layer, the flow reaches an approximate steady state where east-west eddy accelerations balance Coriolis accelerations acting on the meridional flow. Under Jupiter-like conditions, our simulations produce 25 to 30 zonal jets, similar to the number of jets observed on Jupiter and Saturn. The simulated jet widths correspond to the Rhines scale; this suggests that, despite the three-dimensional nature of the dynamics, the baroclinic eddies energize a quasi-two-dimensional inverse cascade modified by the β effect (where β is the gradient of the Coriolis parameter). In agreement with Jupiter, the jets can violate the barotropic and Charney-Stern stability criteria, achieving curvatures 2u/∂y2 of the zonal wind u with northward distance y up to 2β. The simulations exhibit a tendency toward neutral stability with respect to Arnol'd's second stability theorem in the upper troposphere, as has been suggested for Jupiter, although deviations from neutrality exist. When the temperature varies strongly with latitude near the equator, our simulations can also reproduce the stable equatorial superrotation with wind speeds greater than . Diagnostics show that barotropic eddies at low latitudes drive the equatorial superrotation. The simulations also broadly explain the distribution of jet-pumping eddies observed on Jupiter and Saturn. While idealized, these simulations therefore capture many aspects of the cloud-level flows on Jupiter and Saturn.  相似文献   

19.
We present results regarding the dynamical meteorology of Jupiter’s White Ovals at different points in their evolution. Starting from the era with three White Ovals FA, BC, and DE (Galileo), continuing to the post-merger epoch with only one Oval BA (Cassini), and finally to Oval BA’s current reddened state (New Horizons), we demonstrate that the dynamics of their flow have similarly evolved along with their appearance. In the Galileo epoch, Oval DE had an elliptical shape with peak zonal wind speeds of ∼90 m s−1 in both its northern and southern peripheries. During the post-merger epoch, Oval BA’s shape was more triangular and less elliptical than Oval DE; in addition to widening in the north-south direction, its northern periphery was 20 m s−1 slower, and its southern periphery was 20 m s−1 faster than Oval DE’s flow during the Galileo era. Finally, in the New Horizons era, the reddened Oval BA had evolved back to a classical elliptical form. The northern periphery of Oval BA increased in speed by 20 m s−1 from Cassini to New Horizons, ending up at a speed nearly identical to that of the northern periphery of Oval DE during Galileo. However, the peak speeds along the southern rim of the newly formed Oval BA were consistently faster than the corresponding speeds in Oval DE, and they increased still further between Cassini and New Horizons, ending up at ∼140-150 m s−1. Relative vorticity maps of Oval BA reveal a cyclonic ring surrounding its outer periphery, similar to the ring present around the Great Red Spot. The cyclonic ring around Oval BA in 2007 appears to be moderately stronger than observed in 1997 and 2001, suggesting that this may be associated with the coloration of the vortex. The modest strengthening of the winds in Oval BA, the appearance of red aerosols, and the appearance of a turbulent, cyclonic feature to Oval BA’s northwest create a strong resemblance with the Great Red Spot from both a dynamical and morphological perspective.In addition to the White Ovals, we also measure the winds within two compact cyclonic regions, one in the Galileo data set and one in the Cassini data set. In the images, these cyclonic features appear turbulent and filamentary, but our wind field reveals that the flow manifests as a coherent high-speed collar surrounding relatively quiescent interiors. Our relative vorticity maps show that the vorticity likewise concentrates in a collar near the outermost periphery, unlike the White Ovals which have peak relative vorticity magnitudes near the center of the vortex. The cyclones contain several localized bright regions consistent with the characteristics of thunderstorms identified in other studies. Although less studied than their anticyclonic cousins, these cyclones may offer crucial insights into the planet’s cloud-level energetics and dynamical meteorology.  相似文献   

20.
P. Hedelt  Y. Ito  L. Esposito 《Icarus》2010,210(1):424-435
Based on measurements performed by the Hydrogen Deuterium Absorption Cell (HDAC) aboard the Cassini orbiter, Titan’s atomic hydrogen exosphere is investigated. Data obtained during the T9 encounter are used to infer the distribution of atomic hydrogen throughout Titan’s exosphere, as well as the exospheric temperature.The measurements performed during the flyby are modeled by performing Monte Carlo radiative transfer calculations of solar Lyman-α radiation, which is resonantly scattered on atomic hydrogen in Titan’s exosphere. Two different atomic hydrogen distribution models are applied to determine the best fitting density profile. One model is a static model that uses the Chamberlain formalism to calculate the distribution of atomic hydrogen throughout the exosphere, whereas the second model is a Particle model, which can also be applied to non-Maxwellian velocity distributions.The density distributions provided by both models are able to fit the measurements although both models differ at the exobase: best fitting exobase atomic hydrogen densities of nH = (1.5 ± 0.5) × 104 cm−3 and nH = (7 ± 1) × 104 cm−3 were found using the density distribution provided by both models, respectively. This is based on the fact that during the encounter, HDAC was sensitive to altitudes above about 3000 km, hence well above the exobase at about 1500 km. Above 3000 km, both models produce densities which are comparable, when taking into account the measurement uncertainty.The inferred exobase density using the Chamberlain profile is a factor of about 2.6 lower than the density obtained from Voyager 1 measurements and much lower than the values inferred from current photochemical models. However, when taking into account the higher solar activity during the Voyager flyby, this is consistent with the Voyager measurements. When using the density profile provided by the particle model, the best fitting exobase density is in perfect agreement with the densities inferred by current photochemical models.Furthermore, a best fitting exospheric temperature of atomic hydrogen in the range of TH = (150-175) ± 25 K was obtained when assuming an isothermal exosphere for the calculations. The required exospheric temperature depends on the density distribution chosen. This result is within the temperature range determined by different instruments aboard Cassini. The inferred temperature is close to the critical temperature for atomic hydrogen, above which it can escape hydrodynamically after it diffused through the heavier background gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号