首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present research was carried out by using artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), cokriging (CK) and ordinary kriging (OK) using the rainfall and streamflow data for suspended sediment load forecasting. For this reason, the time series of daily rainfall (mm), streamflow (m3/s), and suspended sediment load (tons/day) data were used from the Kojor forest watershed near the Caspian Sea between 28 October 2007 and 21 September 2010 (776 days). Root mean square error, efficiency coefficient, mean absolute error, and mean relative error statistics are used for evaluating the accuracy of the ANN, ANFIS, CK, and OK models. In the first part of the study, various combinations of current daily rainfall, streamflow and past daily rainfall, streamflow data are used as inputs to the neural network and neuro-fuzzy computing technique so as to estimate current suspended sediment. Also, the accuracy of the ANN and ANFIS models are compared together in suspended sediment load forecasting. Comparison results reveal that the ANFIS model provided better estimation than the ANN model. In the second part of the study, the ANN and ANFIS models are compared with OK and CK. The comparison results reveal that CK was a better estimation than the OK. The ANFIS and ANN models also provided better estimation than the OK and CK models.  相似文献   

2.
This paper proposes the application of neuro-wavelet technique for modeling daily suspended sediment–discharge relationship. The neuro-wavelet models are obtained by combining two methods, artificial neural networks (ANN) and discrete wavelet transform. The accuracy of the neuro-wavelet and the ANN models is compared with each other in suspended sediment load estimation. The daily streamflow and suspended sediment data from two stations on Tongue River in Montana are used as case studies. The comparison results reveal that the suggested model could increase the estimation accuracy.  相似文献   

3.
Regional rating curve models of suspended sediment transport for Turkey   总被引:2,自引:1,他引:1  
Estimations of annual suspended sediment loads are required for various types of water resources studies. Often estimation of the sediment load is needed for ungauged watersheds. Regionalization methods provide a practical solution to solve such problems. The purpose of this study is to classify suspended sediment yields in watersheds into homogeneous regions in order to identify their regional sediment rating curves. This study has been carried out for suspended sediment stations on 26 main basins of Turkey. Long term-scale suspended sediment rating curves of 115 gauging stations in Turkey were classified using cluster analysis on the basis of hydrological homogeneity. An agglomerative hierarchical clustering algorithm is used so that stations from different geographical locations are considered in the same cluster independently of their geographical location. 115 gauging stations were clustered into 4 different homogenous regions and the regional suspended sediment rating curve was developed for each region. The performance efficiencies of the developed regional rating curves were evaluated for 8 test stations and compared to the performances of rating curves in test sites. A regionalization model is developed for estimating suspended sediment rating curves for ungauged sites in Turkey. The developed regional rating curve models result in very close performances to those of their corresponding site rating curves.  相似文献   

4.
P. A. WOOD 《Sedimentology》1977,24(3):437-445
Suspended sediment concentrations were determined for samples collected from the River Rother, West Sussex, and rating loops constructed for several hydrographs. The rating loops often exhibit hysteresis with a greater suspended sediment concentration for a given discharge occurring on the rising limb than on the falling limb. A comparison of these loops indicates that the hysteresis, and the suspended sediment concentration (for a given discharge) become progressively reduced when storm events occur in rapid succession. Various types of rating curves can be identified, and a model of suspended sediment concentration and discharge constructed. Controlling factors of suspended sediment concentration are river discharge, duration and frequency of the storm event, the length of time between successive events, and the time of year.  相似文献   

5.
This paper is an assessment of the suspended sediment yield in the Mellah Catchment of northern Algeria. We use discharge–sediment load relationships to explore the variability of water discharge and sediment load, and to investigate the impact of geomorphic factors disturbance on erosion and sedimentation. Suspended sediment load was analyzed in the Mellah Catchment (550 km²) which was controlled by a gauging station to measure discharge and sediment transport. The relations between daily mean sediment concentration and daily mean water discharge were analyzed to develop sediment rating curves. For storms with no water samples, a sediment rating curve was developed. The technique involves stratification of data into discharge-based classes, the mean of which are used to fit a rating curve according to single flow data and season to provide various rating relationships. The mean annual sediment yield during the 24 years of the study period was 562 T km?2 in the Mellah Catchment. This drainage basin had high rainfall and runoff, the erosion was high. The high sediment yield in the Mellah basin could be explained by a high percentage of sparse grassland and cultivation developed on shallow marly silty-clayey soils with steep slopes often exceeding 12%. Almost all suspended sediment loads are transported during storm events that mainly occur in the winter and spring heavy and medium downpours. The scarceness of these events leads to a very large interseasonal variability of the wadi sediment fluxes. The negative impacts of this enhanced sediment mobility are directly felt in the western part of the basin which shows many mass movements, bank and gully erosion because cultivated areas are often bared during autumnal brief flash floods and furrowed downslope during the winter season.  相似文献   

6.
A hydrologic regression sediment-yield model was established to determine the relationship between water discharge and suspended sediment discharge at the Blue Nile and the Atbara River outlet stations during the flood season. The model consisted of two main submodels: (1) a suspended sediment discharge model, which was used to determine suspended sediment discharge for each basin outlet; and (2) a sediment rating model, which related water discharge and suspended sediment discharge for each outlet station. Due to the absence of suspended sediment concentration measurements at or near the outlet stations, a minimum norm solution, which is based on the minimization of the unknowns rather than the residuals, was used to determine the suspended sediment discharges at the stations. In addition, the sediment rating submodel was regressed by using an observation equations procedure. Verification analyses on the model were carried out and the mean percentage errors were found to be +12.59 and –12.39, respectively, for the Blue Nile and Atbara. The hydrologic regression model was found to be most sensitive to the relative weight matrix, moderately sensitive to the mean water discharge ratio, and slightly sensitive to the concentration variation along the River Nile's course.  相似文献   

7.
The application of numerical models for the simulation of coastal hydro-and sediment dynamics requires model verification, calibration and validation with field data. Yet, no commonly accepted rules for the evaluation of sediment transport models exist. This paper discusses the significance of statistical parameters and their limitations considering common time lags in tidal environments. It is shown that the occasionally used discrepancy ratio lacks quantitative and qualitative information on model performance, as the time context information on time series characteristics is lost. As an initial measure of association, the simple linear correlation coefficient r2 is proposed. To account for time lag errors in suspended transport models, a separate cross-correlation analysis for the flood and ebb tidal phase is proposed. For a comparison with other model applications, a concluding rating of model performance can be expressed by a dimensionless error definition which takes into account the quality of field data.  相似文献   

8.
This paper examines the credibility and predictability of sediment flux of the Changjiang River that has discharged into the seas on the basis of historical database. The assumption of the study stands on the lack of sufficient observation data of suspended sediment concentration (SSC) during peaking flood period, which most likely results in the application of an inappropriate method to the downstream-most Datong hydrological gauging station in the Changjiang basin. This insufficient method (only 30–50 times of SSC observation per year), that obviously did not cover the peaking SSC during peaking floods, would lead to an inaccuracy in estimating the Changjiang sediment load by 4.7×108 t/a (multiyearly) into the seas. Also, sediment depletion that often takes place upstream of the Changjiang basin has, to some extent, lowered the credibility of traditional sediment rating curve that has been used for estimating sediment budget. A newly-established sediment rating curve of the present study is proposed to simulate the sediment flux/load into the seas by using those SSC only under discharge of 60000 m3/s at the Datong station-the threshold to significantly correlate to SSC. Since discharge of 60000–80000 m3/s is often linked to extreme flood events and associated sediment depletion in the basin, unincorporating SSC of 60000–80000 m3/s into the sediment rating curve will increase the credibility for sediment load estimation. Using this approach of the present study would indicate the sediment load of 3.3×108–6.6×108 t/a to the seas in the past decades. Also, our analytical result shows a lower sediment flux pattern in the 1950 s, but higher pattern in the 1960 s–1980 s, reflecting the changes in landuse in the upstream of Changjiang basin, including widely devastated deforestation during the middle 20th century.  相似文献   

9.
Suspended sediment load prediction of river systems: GEP approach   总被引:1,自引:1,他引:0  
This study presents gene expression programming (GEP), an extension of genetic programming, as an alternative approach to modeling the suspended sediment load relationship for the three Malaysian rivers. In this study, adaptive neuro-fuzzy inference system (ANFIS), regression model, and GEP approaches were developed to predict suspended load in three Malaysian rivers: Muda River, Langat River, and Kurau River [ANFIS (R 2?=?0.93, root mean square error (RMSE)?=?3.19, and average error (AE)?=?1.12) and regression model (R 2?=?0.63, RMSE?=?13.96, and AE?=?12.69)]. Additionally, the explicit formulations of the developed GEP models are presented (R 2?=?0.88, RMSE?=?5.19, and AE?=?6.5). The performance of the GEP model was found to be acceptable compare to ANFIS and better than the conventional models.  相似文献   

10.
A strong coupling between hillslope and valley systems is often inferred for mountain landscapes dominated by bedrock landsliding. We reveal the nature of this link using data sets on landsliding and sediment transport from two montane catchments draining the eastern Central Range of Taiwan. Here, the magnitude-frequency distribution of landslides can be modeled by a robust power law, but this scale invariance is not mirrored in the sediment discharge at the mountain front. Instead, downstream sediment loads reflect a complex response to both sediment supply and ambient hydraulic conditions. The rivers do not transport significant amounts of sediment unless it is provided by hillslope mass wasting in the catchment. Removal of landslide debris is a function of the transport capacity of the stream at the site of entry; thus, there is a dual supply and transport control on sediment loads in bedrock-floored streams. Over a monitoring period of >25 yr, the bulk of the sediment leaving the mountain belt was supplied by climate-triggered mass wasting. Peaks in water discharge were always closely followed by sediment load maxima, and the rapid decay of the latter indicates an effective removal of most supply. Where an important part of a catchment's sediment yield is derived from interfluves, sediment transport cannot simply be estimated from known water discharge time series, using a sediment rating curve, but requires instead a detailed knowledge of the spatial and temporal patterns of hillslope mass wasting and sediment transfer into the fluvial system.  相似文献   

11.
有效流量是天然河流某一时段内悬移质输沙量最大所对应的流量,可反映中、短期造床作用。根据监利水文站1991—2016年逐月流量、输沙量及悬移质级配,分析三峡建库前后流量频率及不同粒径组悬移质泥沙输移特性;运用理论分析法与分组频率法计算下荆江分组悬移质输沙量对应有效流量的大小、重现期、历时。研究成果表明:受来水来沙、水流挟沙能力以及床沙补给等因素影响,有效流量随泥沙粒径增大而减小。建库后,因河床冲刷各粒径组间有效流量偏差增大,0. 062 mm0. 125 mm粒径组泥沙有效流量重现期减小;细颗粒泥沙含沙量严重不饱和河道输送粗颗粒泥沙的能力相对较大,悬移质级配粗化;累积50%的泥沙输移需43%~82%的累积流量以及62%~90%的累积历时,且累积流量和累积历时随着泥沙粒径的增大而减小和缩短。研究三峡建库前后有效流量变化对分析冲刷条件下下荆江河段河床演变具有重要意义。  相似文献   

12.
西太平洋副高形态指数的分解重构与集成预测   总被引:1,自引:0,他引:1  
用小波分解和自适应神经模糊推理系统(ANFIS)相结合的方法,建立了西太平洋副热带高压形态指数月、季时间尺度的集成预报模型。由于小波分解可在信号的频域—时域内自由伸缩,准确地分解和重构带通、低通信号,因而能将复杂的副高指数时间序列分解为相对简单的周期分量信号,既简化了系统结构,又突出了信号特征。随后基于ANFIS模糊系统的非线性、容错性、自适应性和联想学习功能,建立各分量信号的独立预报模型,最后对分量预报结果进行集成。试验结果表明,该方法在保留预报对象主要特征的前提下,有效降低了预报难度,预报准确率和预报时效均较传统方法有明显的改进和提高。  相似文献   

13.
黄发明  田玉刚 《地球科学》2014,39(3):368-374
由于月降水量时间序列含有大量噪声, 并表现出明显的混沌特性, 现有预测模型均存在一定程度的不足.基于混沌理论的小波分析-VOLTERRA级数自适应(WA-VOLTERRA)耦合预测模型, 在对月降水量时间序列进行混沌特性识别的基础上, 先用小波分析对月降水序列进行时频分解, 再分别对各频率分量进行相空间重构并用3阶VOLTERRA级数自适应模型建模预测, 最后综合得到原始序列的预测值.以相近区域杭州市和南通市的月降水序列为例, 并通过与小波分析-支持向量机(WA-SVM)模型进行比较, 发现该模型具有较强的适用性和更高的预测精度.   相似文献   

14.
The phenomenon of suspended sediment load is very complex in Mina River basin because of its important soil heterogeneity, vegetation deficiency and rainfall variability in time and space. The methodological approach adopted in this paper consists of finding a regressive power model, which may explain better the suspended sediment discharge as a function of the flow discharge collected at Wadi El-Abtal and Sidi AEK Djilali hydrometric stations by studying this relation at various temporal scales: daily, annual, monthly and seasonal. The obtained monthly power relations, explaining the greatest part of the variance, lead to interpolate, extrapolate and analyse suspended and bed loads deposited on Sidi M’hamed Ben Aouda (SMBA) reservoir since being in service in 1977/1978. These allow authors to find relations between specific erosion and effective rainfall and propose some solutions for river basin managers and policy makers to reduce the silting of SMBA reservoir.  相似文献   

15.
River flow is a complex dynamic system of hydraulic and sediment transport. Bed load transport have a dynamic nature in gravel bed rivers and because of the complexity of the phenomenon include uncertainties in predictions. In the present paper, two methods based on the Artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are developed by using 360 data points. Totally, 21 different combination of input parameters are used for predicting bed load transport in gravel bed rivers. In order to acquire reliable data subsets of training and testing, subset selection of maximum dissimilarity (SSMD) method, rather than classical trial and error method, is used in finding randomly manipulation of these subsets. Furthermore, uncertainty analysis of ANN and ANFIS models are determined using Monte Carlo simulation. Two uncertainty indices of d factor and 95% prediction uncertainty and uncertainty bounds in comparison with observed values show that these models have relatively large uncertainties in bed load predictions and using of them in practical problems requires considerable effort on training and developing processes. Results indicated that ANFIS and ANN are suitable models for predicting bed load transport; but there are many uncertainties in determination of bed load transport by ANFIS and ANN, especially for high sediment loads. Based on the predictions and confidence intervals, the superiority of ANFIS to those of ANN is proved.  相似文献   

16.
River bifurcations strongly control the distribution of water and sediment over a river system. A good understanding of this distribution process is crucial for river management. In this paper, an extensive data set from three large bifurcations in the Dutch Rhine is presented, containing data on bed‐load transport, suspended bed sediment transport, dune development and hydrodynamics. The data show complex variations in sediment transport during discharge waves. The objective of this paper is to examine and explain these measured variations in sediment transport. It is found that bend sorting upstream of the bifurcations leads to supply limitation, particularly in the downstream branch that originates in the outer bend of the main channel. Tidal water level variations lead to cyclical variations in the sediment distribution over the downstream branches. Lags in dune development cause complex hysteresis patterns in flow parameters and sediment transport. All bifurcations show evidence of sediment waves, which probably are intrinsic bifurcation phenomena. The complex transport processes at the three bifurcations cause distinct discontinuities in the downstream fining trend of the river. Differences among the studied river bifurcations are mainly due to differences in sediment mobility (Shields value). Because the variations in sediment transport are complex and poorly correlated with the flow discharge, prediction of the sediment distribution with existing relationships for one‐dimensional models is problematic.  相似文献   

17.
We discuss the present-day sediment transport by rivers, and hence the erosion rate in upstream basins, based on the example of Taiwan Rivers where large datasets are available. After data correction, the values of the suspended sediment load in the lower Kaoping River are nearly three times smaller than those from the literature. On the other hand, we add the bed load evaluated from numerical modelling, despite limitations from data and models. Whereas the contribution of the chemical denudation rate in Taiwan is minor, the bed load is significant and must be evaluated. We point out that biases in data collection may favour high values of suspended load data, and that large series of datasets are needed to reduce uncertainties and smooth the time variability effect. To cite this article: F.-C. Li et al., C. R. Geoscience 337 (2005).  相似文献   

18.
Deposition of Hudson River sediment into New York Harbor interferes with navigation lanes and requires continuous dredging. Sediment dynamics at the Hudson estuary turbidity maximum (ETM) have received considerable study, but delivery of sediment to the ETM through the freshwater reach of the estuary has received relatively little attention and few direct measurements. An acoustic Doppler current profiler was positioned at the approximate limit of continuous freshwater to develop a 4-year time series of water velocity, discharge, suspended sediment concentration, and suspended sediment discharge. This data set was compared with suspended sediment discharge data collected during the same period at two sites just above the Hudson head-of-tide (the Federal Dam at Troy) that together represent the single largest source of sediment entering the estuary. The mean annual suspended sediment–discharge from the freshwater reach of the estuary was 737,000 metric tons. Unexpectedly, the total suspended sediment discharge at the study site in November and December slightly exceeded that observed during March and April, the months during which rain and snowmelt typically result in the largest sediment discharge to the estuary. Suspended sediment discharge at the study site exceeded that from the Federal Dam, even though the intervening reach appears to store significant amounts of sediment, suggesting that 30–40% of sediment discharge observed at the study site is derived from tributaries to the estuary between the Federal Dam and study site. A simple model of sediment entering and passing through the freshwater reach on a timescale of weeks appears reasonable during normal hydrologic conditions in adjoining watersheds; however, this simple model may dramatically overestimate sediment delivery during extreme tributary high flows, especially those at the end of, or after, the “flushing season” (October through April). Previous estimates of annual or seasonal sediment delivery from tributaries and the Federal Dam to the ETM and harbor may be high for those years with extreme tributary high-flow events.  相似文献   

19.
Erosion potential method (EPM) and Modified Pacific Southwest Interagency Committee (MPSIAC) are two empirical models for estimating soil erosion and sediment delivery. These models use a relatively simple formulation, but they are still applied in various areas with different environmental conditions. However, evaluation of their efficiency is challenging. Accordingly, the main purpose of this study is investigating the performance of EPM and MPSIAC in estimating soil erosion and sediment yield using sediment rating curve (SRC) methods. Talar watershed in Iran was selected as the study area and suspended sediment load (SSL) of two Shirgah–Talar and Valikbon stations were used to assess the output of the models. Remote sensing and geographic information system were utilized in implementing the models. The estimated sediment yield values by the models were evaluated using the results of least square error regression and quantile regression (QR) SRC methods. Then, sediment yield values were obtained from 20-year discharge data (1992–2011). Despite the high uncertainty of QR results, the annual sediment delivery values of the models were achieved in an acceptable range. The most likely (with a probability of 0.5) average annual SSL values were between 713?×?103 and 840?×?103 ton for Shirgah–Talar station. Those values for Valikbon station were between 3142?×?101 and 3702?×?101. Moreover, the estimated average sediment yield in Shirgah–Talar station using MPSIAC and EPM were 591392 and 514054 ton/year, respectively. Those values for Valikbon station were 51881 and 27449 ton/year. Then, the results proved the better performance of MPSIAC in estimating SSL in the study area compared with EPM.  相似文献   

20.
Drought is accounted as one of the most natural hazards. Studying on drought is important for designing and managing of water resources systems. This research is carried out to evaluate the ability of Wavelet-ANN and adaptive neuro-fuzzy inference system (ANFIS) techniques for meteorological drought forecasting in southeastern part of East Azerbaijan province, Iran. The Wavelet-ANN and ANFIS models were first trained using the observed data recorded from 1952 to 1992 and then used to predict meteorological drought over the test period extending from 1992 to 2011. The performances of the different models were evaluated by comparing the corresponding values of root mean squared error coefficient of determination (R 2) and Nash–Sutcliffe model efficiency coefficient. In this study, more than 1,000 model structures including artificial neural network (ANN), adaptive neural-fuzzy inference system (ANFIS) and Wavelet-ANN models were tested in order to assess their ability to forecast the meteorological drought for one, two, and three time steps (6 months) ahead. It was demonstrated that wavelet transform can improve meteorological drought modeling. It was also shown that ANFIS models provided more accurate predictions than ANN models. This study confirmed that the optimum number of neurons in the hidden layer could not be always determined using specific formulas; hence, it should be determined using a trial-and-error method. Also, decomposition level in wavelet transform should be delineated according to the periodicity and seasonality of data series. The order of models with regard to their accuracy is as following: Wavelet-ANFIS, Wavelet-ANN, ANFIS, and ANN, respectively. To the best of our knowledge, no research has been published that explores coupling wavelet analysis with ANFIS for meteorological drought and no research has tested the efficiency of these models to forecast the meteorological drought in different time scales as of yet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号