首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
La Pacana is one of the largest known calderas on Earth, andis the source of at least two major ignimbrite eruptions witha combined volume of some 2700 km3. These ignimbrites have stronglycontrasting compositions, raising the question of whether theyare genetically related. The Toconao ignimbrite is crystal poor,and contains rhyolitic (76–77 wt % SiO2) tube pumices.The overlying Atana ignimbrite is a homogeneous tuff whose pumiceis dacitic (66–70 wt % SiO2), dense (40–60% vesicularity)and crystal rich (30–40 % crystals). Phase equilibriaindicate that the Atana magma equilibrated at temperatures of770–790°C with melt water contents of 3·1–4·4wt %. The pre-eruptive Toconao magma was cooler (730–750°C)and its melt more water rich (6·3–6·8 wt% H2O). A pressure of 200 MPa is inferred from mineral barometryfor the Atana magma chamber. Isotope compositions are variablebut overlapping for both units (87Sr/86Sri 0·7094–0·7131;143Nd/144Nd 0·51222–0·51230) and are consistentwith a dominantly crustal origin. Glass analyses from Atanapumices are similar in composition to those in Toconao tubepumices, demonstrating that the Toconao magma could representa differentiated melt of the Atana magma. Fractional crystallizationmodelling suggests that the Toconao magma can be produced by30% crystallization of the observed Atana mineral phases. Toconaomelt characteristics and intensive parameters are consistentwith a volatile oversaturation-driven eruption. However, thelow H2O content, high viscosity and high crystal content ofthe Atana magma imply an external eruption trigger. KEY WORDS: Central Andes; crystal-rich dacite; eruption trigger; high-silica rhyolite; zoned magma chamber  相似文献   

2.
The caldera-forming 26·5 ka Oruanui eruption (Taupo,New Zealand) erupted 530 km3 of magma, >99% rhyolitic, <1%mafic. The rhyolite varies from 71·8 to 76·7 wt% SiO2 and 76 to 112 ppm Rb but is dominantly 74–76 wt% SiO2. Average rhyolite compositions at each stratigraphiclevel do not change significantly through the eruption sequence.Oxide geothermometry, phase equilibria and volatile contentsimply magma storage at 830–760°C, and 100–200MPa. Most rhyolite compositional variations are explicable by28% crystal fractionation involving the phenocryst and accessoryphases (plagioclase, orthopyroxene, hornblende, quartz, magnetite,ilmenite, apatite and zircon). However, scatter in some elementconcentrations and 87Sr/86Sr ratios, and the presence of non-equilibriumcrystal compositions imply that mixing of liquids, phenocrystsand inherited crystals was also important in assembling thecompositional spectrum of rhyolite. Mafic compositions comprisea tholeiitic group (52·3–63·3 wt % SiO2)formed by fractionation and crustal contamination of a contaminatedtholeiitic basalt, and a calc-alkaline group (56·7–60·5wt % SiO2) formed by mixing of a primitive olivine–plagioclasebasalt with rhyolitic and tholeiitic mafic magmas. Both maficgroups are distinct from other Taupo Volcanic Zone eruptivesof comparable SiO2 content. Development and destruction by eruptionof the Oruanui magma body occurred within 40 kyr and Oruanuicompositions have not been replicated in vigorous younger activity.The Oruanui rhyolite did not form in a single stage of evolutionfrom a more primitive forerunner but by rapid rejuvenation ofa longer-lived polygenetic, multi-age ‘stockpile’of silicic plutonic components in the Taupo magmatic system. KEY WORDS: Taupo Volcanic Zone; Taupo volcano; Oruanui eruption; rhyolite, zoned magma chamber; juvenile mafic compositions; eruption withdrawal systematics  相似文献   

3.
The Neoproterozoic Aries kimberlite was emplaced in the centralKimberley Basin, Western Australia, as a N–NNE-trendingseries of three diatremes infilled by lithic-rich kimberlitebreccias. The breccias are intruded by hypabyssal macrocrysticphlogopite kimberlite dykes that exhibit differentiation toa minor, high-Na–Si, olivine–phlogopite–richteritekimberlite, and late-stage macrocrystic serpentine–diopsideultramafic dykes. Mineralogical and geochemical evidence suggeststhat the high-Na–Si, olivine–phlogopite–richteritekimberlite was derived from the macrocrystic phlogopite kimberliteas a residual liquid following extended phlogopite crystallizationand the assimilation of country rock sandstone, and that themacrocrystic serpentine–diopside ultramafic dykes formedas mafic cumulates from a macrocrystic phlogopite kimberlite.Chemical zonation of phlogopite–biotite phenocrysts indicatesa complex magmatic history for the Aries kimberlite, with theearly inheritance of a range of high-Ti phlogopite–biotitexenocrysts from metasomatized mantle lithologies, followed bythe crystallization of a population of high-Cr phlogopite phenocrystswithin the spinel facies lithospheric mantle. A further oneto two phlogopite–biotite overgrowth rims of distinctcomposition formed on the phlogopite phenocrysts at higher levelsduring ascent to the surface. Ultra-violet laser 40Ar/39Ar datingof mica grain rims yielded a kimberlite eruption age of 815·4± 4·3 Ma (95% confidence). 40Ar/39Ar laser profilingof one high-Ti phlogopite-biotite macrocryst revealed a radiogenic40Ar diffusive loss profile, from which a kimberlite magma ascentduration from the spinel facies lithospheric mantle was estimated(assuming an average kimberlite magma temperature of 1000°C),yielding a value of 0·23–2·32 days for thenorth extension lobe of the Aries kimberlite. KEY WORDS: 40Ar/39Ar; diamond; kimberlite; mantle metasomatism; phlogopite–biotite  相似文献   

4.
Vico volcano has erupted potassic and ultrapotassic magmas,ranging from silica-saturated to silica-undersaturated types,in three distinct volcanic periods over the past 0·5Myr. During Period I magma compositions changed from latiteto trachyte and rhyolite, with minor phono-tephrite; duringPeriods II and III the erupted magmas were primarly phono-tephriteto tephri-phonolite and phonolite; however, magmatic episodesinvolving leucite-free eruptives with latitic, trachytic andolivine latitic compositions also occurred. In Period II, leucite-bearingmagmas (87Sr/86Srinitial = 0·71037–0·71115)were derived from a primitive tephrite parental magma. Modellingof phonolites with different modal plagioclase and Sr contentsindicates that low-Sr phonolitic lavas differentiated from tephri-phonoliteby fractional crystallization of 7% olivine + 27% clinopyroxene+ 54% plagioclase + 10% Fe–Ti oxides + 4% apatite at lowpressure, whereas high-Sr phonolitic lavas were generated byfractional crystallization at higher pressure. More differentiatedphonolites were generated from the parental magma of the high-Srphonolitic tephra by fractional crystallization of 10–29%clinopyroxene + 12–15% plagioclase + 44–67% sanidine+ 2–4% phlogopite + 1–3% apatite + 7–10% Fe–Tioxides. In contrast, leucite-bearing rocks of Period III (87Sr/86Srinitial= 0·70812–0·70948) were derived from a potassictrachybasalt by assimilation–fractional crystallizationwith 20–40% of solid removed and r = 0·4–0·5(where r is assimilation rate/crystallization rate) at differentpressures. Silica-saturated magmas of Period II (87Sr/86Srinitial= 0·71044–0·71052) appear to have been generatedfrom an olivine latite similar to some of the youngest eruptedproducts. A primitive tephrite, a potassic trachybasalt andan olivine latite are inferred to be the parental magmas atVico. These magmas were generated by partial melting of a veinedlithospheric mantle sources with different vein–peridotite/wall-rockproportions, amount of residual apatite and distinct isolationtimes for the veins. KEY WORDS: isotope and trace element geochemistry; polybaric differentiation; veined mantle; potassic and ultrapotassic rocks; Vico volcano; central Italy  相似文献   

5.
The Campanian Ignimbrite is a > 200 km3 trachyte–phonolitepyroclastic deposit that erupted at 39·3 ± 0·1ka within the Campi Flegrei west of Naples, Italy. Here we testthe hypothesis that Campanian Ignimbrite magma was derived byisobaric crystal fractionation of a parental basaltic trachyandesiticmelt that reacted and came into local equilibrium with smallamounts (5–10 wt%) of crustal rock (skarns and foid-syenites)during crystallization. Comparison of observed crystal and magmacompositions with results of phase equilibria assimilation–fractionationsimulations (MELTS) is generally very good. Oxygen fugacitywas approximately buffered along QFM + 1 (where QFM is the quartz–fayalite–magnetitebuffer) during isobaric fractionation at 0·15 GPa ( 6km depth). The parental melt, reconstructed from melt inclusionand host clinopyroxene compositions, is found to be basaltictrachyandesite liquid (51·1 wt% SiO2, 9·3 wt%MgO, 3 wt% H2O). A significant feature of phase equilibria simulationsis the existence of a pseudo-invariant temperature, 883 °C,at which the fraction of melt remaining in the system decreasesabruptly from 0·5 to < 0·1. Crystallizationat the pseudo-invariant point leads to abrupt changes in thecomposition, properties (density, dissolved water content),and physical state (viscosity, volume fraction fluid) of meltand magma. A dramatic decrease in melt viscosity (from 1700Pa s to 200 Pa s), coupled with a change in the volume fractionof water in magma (from 0·1 to 0·8) and a dramaticdecrease in melt and magma density acted as a destabilizingeruption trigger. Thermal models suggest a timescale of 200kyr from the beginning of fractionation until eruption, leadingto an apparent rate of evolved magma generation of about 10–3km3/year. In situ crystallization and crystal settling in density-stratifiedregions, as well as in convectively mixed, less evolved subjacentmagma, operate rapidly enough to match this apparent volumetricrate of evolved magma production. KEY WORDS: assimilation; Campanian Ignimbrite; fractional crystallization; magma dynamics; phase equilibria  相似文献   

6.
The processes operating in the development of chemical zonationin silicic magma chambers have been addressed with a Sr–Nd–Pb–Hf–Thisotope study of the chemically zoned trachyte pumice depositof the Fogo A eruption, Fogo volcano, Azores. Sr isotopic variationis observed in whole rocks, glass separates and sanidine phenocrysts(whole-rock 87Sr/86Sr: 0·7049–0·7061; glass87Sr/86Sr: 0·7048–0·7052; sanidine 87Sr/86Sr:0·7048–0·7062). Thorium isotopic variationis observed in glass separates, with (230Th/232Th)o rangingfrom 0·8737 to 0·8841, and exhibiting a negativecorrelation with Sr isotopes. The Nd, Pb and Hf isotopic compositionsof the whole-rock trachytic pumices are invariant and indistinguishablefrom basalts flanking the volcano. The Sr isotope variationsin the whole rocks are proposed to be the result of three distinctprocesses: contamination of the Fogo A magma by assimilationof radiogenic seawater-altered syenite wall rock, to explainthe Sr and Th isotopic compositions of the glass separates;incorporation of xenocrysts into the trachytic magma, requiredto explain the range in feldspar Sr isotopic compositions; andpost-eruptive surface alteration. This study emphasizes theimportance of determining the isotopic composition of glassand mineral separates rather than whole rocks when pre-eruptivemagmatic processes are being investigated. KEY WORDS: Azores; open-system processes; Sr isotopes; trachytic pumices; zoned magma chambers  相似文献   

7.
Crystallization experiments were conducted on dry glasses fromthe Unzen 1992 dacite at 100–300 MPa, 775–875°C,various water activities, and fO2 buffered by the Ni–NiObuffer. The compositions of the experimental products and naturalphases are used to constrain the temperature and water contentsof the low-temperature and high-temperature magmas prior tothe magma mixing event leading to the 1991–1995 eruption.A temperature of 1050 ± 75°C is determined for thehigh-temperature magma based on two-pyroxene thermometry. Theinvestigation of glass inclusions suggests that the water contentof the rhyolitic low-temperature magma could be as high as 8wt % H2O. The phase relations at 300 MPa and in the temperaturerange 870–900°C, which are conditions assumed to berepresentative of the main magma chamber after mixing, showthat the main phenocrysts (orthopyroxene, plagioclase, hornblende)coexist only at reduced water activity; the water content ofthe post-mixing dacitic melt is estimated to be 6 ± 1wt % H2O. Quartz and biotite, also present as phenocrysts inthe dacite, are observed only at low temperature (below 800–775°C).It is concluded that the erupted dacitic magma resulted fromthe mixing of c. 35 wt % of an almost aphyric pyroxene-bearingandesitic magma (1050 ± 75°C; 4 ± 1 wt % H2Oin the melt) with 65 wt % of a phenocryst-rich low-temperaturemagma (760–780°C) in which the melt phase was rhyolitic,containing up to 8 ± 1 wt % H2O. The proportions of rhyoliticmelt and phenocrysts in the low-temperature magma are estimatedto be 65% and 35%, respectively. It is emphasized that the strongvariations of phenocryst compositions, especially plagioclase,can be explained only if there were variations of temperatureand/or water activity (in time and/or space) in the low-temperaturemagma. KEY WORDS: Unzen volcano; magma mixing; experimental study  相似文献   

8.
Heterogeneous andesitic and dacitic lavas on Cordn El Guadalbear on the general problem of how magmas of differing compositionsand physical properties interact in shallow reservoirs beneathcontinental arc volcanoes. Some of the lavas contain an exceptionallylarge proportion (<40%) of undercooled basaltic andesiticmagma in various states of disaggregation. Under-cooled maficmagma occurs in the silicic lavas as large (<40 cm) basalticandesitic magmatic inclusions, as millimeter-sized crystal-clotsof Mg-rich olivine phenocrysts plus adhering Carich plagioclasemicrophenocrysts (An50–70), and as uniformly distributed,isolated phenocrysts and microphenocrysts. Compositions andtextures of plagioclase phenocrysts indicate that inclusion-formingmagmas are hybrids formed by mixing basaltic and dacitic melts,whereas textural features and compositions of groundmass phasesindicate that the andesitic and dacitic lavas are largely mechanicalmixtures of dacitic magma and crystallized basaltic andesiticmagma. This latter observation is significant because it indicatesthat mechanical blending of undercooled mafic magma and partiallycrystallized silicic magma is a possible mechanism for producingthe common porphyritic texture of many calc-alkaline volcanicrocks. The style of mafic-silicic magma interaction at CordonEl Guadal was strongly dependent upon the relative proportionsof the endmembers. Equally important in the Guadal system, however,was the manner in which the contrasting magmas were juxtaposed.Textural evidence preserved in the plagioclase phenocrysts indicatesthat the transition from liquid-liquid to solid-liquid mixingwas not continuous, but was partitioned into periods of magmachamber recharge and eruption, respectively. Evidently, duringperiods of recharge, basaltic magmas rapidly entrained smallamounts of dacitic magma along the margins of a turbulent injectionfountain. Conversely, during periods of eruption, dacitic magmagradually incorporated small parcels of basaltic andesitic magma.Thus, the coupled physical-chemical transition from mixed inclusionsto commingled lavas is presumably not coincidental. More likely,it probably provides a partial record of the dynamic processesoccurring in shallow magma chambers beneath continental arevolcanoes. KEY WORDS: Chile; commingling; magma mixing; magmatic inclusions *Present address: Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA  相似文献   

9.
Batholith-sized bodies of crystal-rich magmatic ‘mush’are widely inferred to represent the hidden sources of manylarge-volume high-silica rhyolite eruptive units. Occasionallythese mush bodies are ejected along with their trapped interstitialliquid, forming the distinctive crystal-rich ignimbrites knownas ‘monotonous intermediates’. These ignimbritesare notable for their combination of high crystal contents (35–55%),dacitic bulk compositions with interstitial high-silica rhyoliticglass, and general lack of compositional zonation. The 5000km3 Fish Canyon Tuff is an archetypal eruption deposit of thistype, and is the largest known silicic eruption on Earth. Ejectafrom the Fish Canyon magmatic system are notable for the limitedcompositional variation that they define on the basis of whole-rockchemistry, whereas 45 vol. % crystals in a matrix of high-silicarhyolite glass together span a large range of mineral-scaleisotopic variability (microns to millimetres). Rb/Sr isotopicanalyses of single crystals (sanidine, plagioclase, biotite,hornblende, apatite, titanite) and sampling by micromillingof selected zones within glass plus sanidine and plagioclasecrystals document widespread isotopic disequilibrium at manyscales. High and variable 87Sr/86Sri values for euhedral biotitegrains cannot be explained by any model involving closed-systemradiogenic ingrowth, and they are difficult to rationalize unlessmuch of this radiogenic Sr has been introduced at a late stagevia assimilation of local Proterozoic crust. Hornblende is theonly phase that approaches isotopic equilibrium with the surroundingmelt, but the melt (glass) was isotopically heterogeneous atthe millimetre scale, and was therefore apparently contaminatedwith radiogenic Sr shortly prior to eruption. The other mineralphases (plagioclase, sanidine, titanite, and apatite) have significantlylower 87Sr/86Sri values than whole-rock values (as much as –0·0005).Such isotopic disequilibrium implies that feldspars, titaniteand apatite are antecrysts that crystallized from less radiogenicmelt compositions at earlier stages of magma evolution, whereashighly radiogenic biotite xenocrysts and the development ofisotopic heterogeneity in matrix melt glass appear to coincidewith the final stage of the evolution of the Fish Canyon magmabody in the upper crust. Integrated petrographic and geochemicalevidence is consistent with pre-eruptive thermal rejuvenationof a near-solidus mineral assemblage from 720 to 760°C (i.e.partial dissolution of feldspars + quartz while hornblende +titanite + biotite were crystallizing). Assimilation and blendingof phenocrysts, antecrysts and xenocrysts reflects chamber-wide,low Reynolds number convection that occurred within the last10 000 years before eruption. KEY WORDS: Fish Canyon Tuff; Rb–Sr isotopes; microsampling; magmatic processes; crystal mush  相似文献   

10.
Volcán Popocatépetl has been the site of voluminousdegassing accompanied by minor eruptive activity from late 1994until the time of writing (August 2002). This contribution presentspetrological investigations of magma erupted in 1997 and 1998,including major-element and volatile (S, Cl, F, and H2O) datafrom glass inclusions and matrix glasses. Magma erupted fromPopocatépetl is a mixture of dacite (65 wt % SiO2, two-pyroxenes+ plagioclase + Fe–Ti oxides + apatite, 3 wt % H2O, P= 1·5 kbar, fO2 = NNO + 0·5 log units) and basalticandesite (53 wt % SiO2, olivine + two-pyroxenes, 3 wt % H2O,P = 1–4 kbar). Magma mixed at 4–6 km depth in proportionsbetween 45:55 and 85:15 wt % silicic:mafic magma. The pre-eruptivevolatile content of the basaltic andesite is 1980 ppm S, 1060ppm Cl, 950 ppm F, and 3·3 wt % H2O. The pre-eruptivevolatile content of the dacite is 130 ± 50 ppm S, 880± 70 ppm Cl, 570 ± 100 ppm F, and 2·9 ±0·2 wt % H2O. Degassing from 0·031 km3 of eruptedmagma accounts for only 0·7 wt % of the observed SO2emission. Circulation of magma in the volcanic conduit in thepresence of a modest bubble phase is a possible mechanism toexplain the high rates of degassing and limited magma productionat Popocatépetl. KEY WORDS: glass inclusions; igneous petrology; Mexico; Popocatépetl; volatiles  相似文献   

11.
Rhyolite pumices and co-erupted granophyric (granite) xenolithsyield evidence for rapid magma generation and crystallizationprior to their eruption at 15·2 ± 2·9 kaat the Alid volcanic center in the Danikil Depression, Eritrea.Whole-rock U and Th isotopic analyses show 230Th excesses upto 50% in basalts <10 000 years old from the surroundingOss lava fields. The 15 ka rhyolites also have 30–40%230Th excesses. Similarity in U–Th disequilibrium, andin Sr, Nd, and Pb isotopic values, implies that the rhyolitesare mostly differentiated from the local basaltic magma. Giventhe (230Th/232Th) ratio of the young basalts, and presumablythe underlying mantle, the (230Th/232Th) ratio of the rhyolitesupon eruption could be generated by in situ decay in about 50000 years. Limited (5%) assimilation of old crust would hastenthe lowering of (230Th/232Th) and allow the process to takeplace in as little as 30 000 years. Final crystallization ofthe Alid granophyre occurred rapidly and at shallow depths at20–25 ka, as confirmed by analyses of mineral separatesand ion microprobe data on individual zircons. Evidently, 30000–50 000 years were required for extraction of basaltfrom its mantle source region, subsequent crystallization andmelt extraction to form silicic magmas, and final crystallizationof the shallow intrusion. The granophyre was then ejected duringeruption of the comagmatic rhyolites. KEY WORDS: U-series; zircon; ion microprobe; volcano; geochronology  相似文献   

12.
A diverse assemblage of small mafic and ultramafic xenolithsoccurs in alkalic lava from Davidson and Pioneer seamounts locatedat the continental margin of central California. Based on mineralcompositions and textures, they form three groups: (1) mantlexenoliths of lherzolite, pyroxenite, and dunite with olivineof >Fo90; (2) ocean crust xenoliths of dunite with olivine<Fo90, troctolite, pyroxene-gabbro, and anorthosite withlow-K2O plagioclase; (3) cumulates of seamount magmas of alkalicgabbro with primary amphibole and biotite and anorthosites withhigh-K2O plagioclase. The alkalic cumulates are geneticallyrelated to, but more evolved than, their host lavas and probablycrystallized at the margins of magma reservoirs. Modeling andcomparison with experimentally derived phases suggest an originat moderate pressures (0·5–0·9 GPa). Thehigh volatile contents of the alkalic host lavas may have pressurizedthe magma chambers and helped to propel the xenolith-bearinglavas directly from deep storage at the base of the lithosphereto the eruption site on the ocean floor, entraining fragmentsof the upper mantle and ocean crust cumulates from the underlyingabandoned spreading center. KEY WORDS: basaltic magmatism; continental margin seamounts; geothermobarometry; mineral chemistry; xenoliths  相似文献   

13.
A detailed study of the pyroclastic deposits of the AD 79 ‘Pompei’Plinian eruption of Vesuvius has allowed: (1) reconstructionof the thermal, compositional and isotopic (87Sr/86Sr) pre-eruptivelayering of the shallow magma chamber; (2) quantitative definitionof the syn-eruptive mixing between the different magmas occupyingthe chamber, and its relationships with eruption dynamics; (3)recognition of the variability of mafic magma batches supplyingthe chamber. During the different phases of the eruption 25–30%of the magma was ejected as white K-phonolitic pumice, and 70–75%as grey K-tephri-phonolitic pumice. The white pumice resultsfrom the tapping of progressively deeper magma from a body (T= 850–900%C) consisting of two distinct layers mainlyformed by crystal fractionation. The grey pumice results fromsyn-eruptive mixing involving three main end-members: the phonolitic‘white’ magmas (salic end-member, SEM), mafic cumulates(cumulate end-member, CEM) and a crystal-poor ‘grey’phono-tephritic magma (mafic end-member, MEM), which was nevererupted without first being mixed with ‘white’ magma.Evidence is provided that mixing occurred within the chamberand was characterized by a transition with time from physicalmixing at a microscopic scale to chemical hybridization. TheMEM magma had a homogeneous composition and constant 87Sr86Srisotopic ratio, possibly as a result of sustained convection.No unambiguous liquidus phases were found, suggesting that theMEM magma was superheated (T = 1000–1100C); its verylow viscosity was a main cause in the establishment of a physicaldiscontinuity separating the white and the grey magmas. Thewhite-grey boundary layer possibly consisted of a multiply diffusiveinterface, periodically broken and recreated, supplying thephonolitic body through mixing of moderate amounts of fractionatedgrey melts with the overlying white magma. The presence of alarge overheated mass indicates the young, growing stage ofthe AD 79 chamber, whose main engine was the periodic arrivalof hot mafic magma batches. These were characterized by K-tephriticto K-basanitic compositions, high temperatures (>1150C),high volatile contents (20–25% H2O +Cl+F+S), low viscosities[(1+2 102 poises)] and relatively low densities (2500–2600kg/m3). The birth of the Pompei chamber followed the repeatedarrival of these batches (on average characterized by 87Sr/86Sr070729)into a reservoir containing a tephriticphonolitic, crystal-enriched,magma, a residue from the preceding ‘Avellino’ Plinianeruption (3400 BP).In fact, about half of magma ejected duringthe AD 79 eruption could have been inherited from pre-Avellinotimes. KEY WORDS: Vesuvius; magma chamber; magma mixing; compositional layering phonolites; magma supply; potassic magmas *Correponding author  相似文献   

14.
The 12·7–10·5 Ma Cougar Point Tuff in southernIdaho, USA, consists of 10 large-volume (>102–103 km3each), high-temperature (800–1000°C), rhyolitic ash-flowtuffs erupted from the Bruneau–Jarbidge volcanic centerof the Yellowstone hotspot. These tuffs provide evidence forcompositional and thermal zonation in pre-eruptive rhyolitemagma, and suggest the presence of a long-lived reservoir thatwas tapped by numerous large explosive eruptions. Pyroxene compositionsexhibit discrete compositional modes with respect to Fe andMg that define a linear spectrum punctuated by conspicuous gaps.Airfall glass compositions also cluster into modes, and thepresence of multiple modes indicates tapping of different magmavolumes during early phases of eruption. Equilibrium assemblagesof pigeonite and augite are used to reconstruct compositionaland thermal gradients in the pre-eruptive reservoir. The recurrenceof identical compositional modes and of mineral pairs equilibratedat high temperatures in successive eruptive units is consistentwith the persistence of their respective liquids in the magmareservoir. Recurrence intervals of identical modes range from0·3 to 0·9 Myr and suggest possible magma residencetimes of similar duration. Eruption ages, magma temperatures,Nd isotopes, and pyroxene and glass compositions are consistentwith a long-lived, dynamically evolving magma reservoir thatwas chemically and thermally zoned and composed of multiplediscrete magma volumes. KEY WORDS: ash-flow tuff; Bruneau–Jarbidge; rhyolite; Yellowstone hotspot; residence time  相似文献   

15.
The volcanic history of Santo Antão, NW Cape Verde Islands,includes the eruption of basanite–phonolite series magmasbetween 7·5 and 0·3 Ma and (melilite) nephelinite–phonoliteseries magmas from 0·7 to 0·1 Ma. The most primitivevolcanic rocks are olivine ± clinopyroxene-phyric, whereasthe more evolved rocks have phenocrysts of clinopyroxene ±Fe–Tioxide ± kaersutite ± haüyne ± titanite± sanidine; plagioclase occurs in some intermediate rocks.The analysed samples span a range of 19–0·03% MgO;the most primitive have 37–46% SiO2, 2·5–7%TiO2 and are enriched 50–200 x primitive mantle in highlyincompatible elements; the basanitic series is less enrichedthan the nephelinitic series. Geochemical trends in each seriescan be modelled by fractional crystallization of phenocrystassemblages from basanitic and nephelinitic parental magmas.There is little evidence for mineral–melt disequilibrium,and thus magma mixing is not of major importance in controllingbulk-rock compositions. Mantle melting processes are modelledusing fractionation-corrected magma compositions; the modelssuggest 1–4% partial melting of a heterogeneous mantleperidotite source at depths of 90–125 km. Incompatibleelement enrichment among the most primitive magma types is typicalof HIMU OIB. The Sr, Nd and Pb isotopic compositions of theSanto Antão volcanic sequence and geochemical characterchange systematically with time. The older volcanic rocks (7·5–2Ma) vary between two main mantle source components, one of whichis a young HIMU type with 206Pb/204Pb = 19·88, 7/4 =–5, 8/4 0, 87Sr/86Sr = 0·7033 and 143Nd/144Nd= 0·51288, whereas the other has somewhat less radiogenicSr and Pb and more radiogenic Nd. The intermediate age volcanicrocks (2–0·3 Ma) show a change of sources to two-componentmixing between a carbonatite-related young HIMU-type source(206Pb/204Pb = 19·93, 7/4 = –5, 8/4 = –38,87Sr/86Sr = 0·70304) and a DM-like source. A more incompatibleelement-enriched component with 7/4 > 0 (old HIMU type) isprominent in the young volcanic rocks (0·3–0·1Ma). The EM1 component that is important in the southern CapeVerde Islands appears to have played no role in the petrogenesisof the Santo Antão magmas. The primary magmas are arguedto be derived by partial melting in the Cape Verde mantle plume;temporal changes in composition are suggested to reflect layeringin the plume conduit. KEY WORDS: radiogenic isotopes; geochemistry; mantle melting; Cape Verde  相似文献   

16.
Alaskan-type platinum-bearing plutons and potassium-enrichedmafic to ultramafic volcanic rocks are temporally and spatiallyassociated within the Late Cretaceous–Paleocene Achaivayam–Valaginskiiintra-oceanic palaeo-arc system, allochthonously present inthe Koryak Highland and Kamchatka Peninsula (Far East Russia).The compositions of the parental magmas to the Alaskan-typecomplexes are estimated using the Galmoenan plutonic complexas an example. This complex, composed of dunites, pyroxenitesand minor gabbros, is the largest (20 km3) in the system andthe best studied owing to associated platinum placer deposits.The compositions of the principal mineral phases in the Galmoenanintrusive rocks [olivine (Fo79–92), clinopyroxene (1–3·5wt % Al2O3, 0·1–0·5 wt % TiO2), and Cr-spinel(5–15 wt % Al2O3 and 0·3–0·7 wt %TiO2)] are typical of liquidus assemblages in primitive island-arcmagmas in intra-oceanic settings, and closely resemble the mineralcompositions in the Achaivayam–Valaginskii ultramaficvolcanic rocks. The temporal and spatial association of intrusiveand extrusive units, and the similarity of their mineral compositions,suggest that both suites were formed from similar parental magmas.The composition of the parental magma for the Galmoenan plutonicrocks is estimated using previously reported data for the Achaivayam–Valaginskiiultramafic volcanic rocks and phenocryst-hosted melt inclusions.Quantitative simulation of crystallization of the parental magmain the Galmoenan magma chamber shows that the compositions ofthe cumulate units are best modelled by fractional crystallizationwith periodic magma replenishment. The model calculations reproducewell the observed mineral assemblages and the trace elementabundances in clinopyroxene. Based upon the estimated compositionof the parental magmas and their mantle source, we considerthat fluxing of a highly refractory mantle wedge (similar tothe source of boninites) by chlorine-rich aqueous fluids isprimarily responsible for both high degrees of partial meltingand the geochemical characteristics of the magmas, includingtheir enrichment in platinum-group elements. KEY WORDS: subduction; platinum-group elements; clinopyroxene; trace elements; fractional crystallization; Alaskan-type plutons  相似文献   

17.
Calc-alkaline batholiths of the Archaean Minto block, northeasternSuperior Province, Canada, have pyroxene- and hornblende-bearingmineral assemblages inferred to have crystallized from hot,water-undersaturated magmas at 2·729–2·724Ga. A regional amphibolite- to granulite-facies tectonothermalevent at 2·70 Ga resulted in mild to negligible metamorphiceffects on the dominantly granodioritic units. Geochemical,textural and thermobarometric studies define the crystallizationhistory in compositions ranging from cumulate pyroxenite throughquartz diorite, granodiorite, granite, and syn-magmatic gabbroicdykes. Early magmatic assemblages include orthopyroxene, clinopyroxene,plagioclase, biotite, Fe–Ti oxides and ternary feldspar,indicating crystallization from magmas containing <2 wt %H2O at 1100–900°C. Water enrichment in the residualmelt induced hornblende crystallization at 5 ± 1 kbar,800–600°C. Characterized by a continuum of large ionlithophile element (LILE)-enriched, high field strength element(HFSE)-depleted compositions, the I-type suite resembles moderncontinental arc batholiths in composition and size but not primarymineralogy. Magmatic arcs produced between 2·75 and 1·85Ga commonly have charnockitic components, possibly because slab-derivedfluids interacted with mantle wedges at ambient temperatureshigher by 100°C than at present, producing large volumesof water-deficient magma. KEY WORDS: granitoid rocks; igneous pyroxenes; water-undersaturated magma; charnockite  相似文献   

18.
The Baikal Rift is a zone of active lithospheric extension adjacentto the Siberian Craton. The 6–16 Myr old Vitim VolcanicField (VVF) lies approximately 200 km east of the rift axisand consists of 5000 km3 of melanephelinites, basanites, alkaliand tholeiitic basalts, and minor nephelinites. In the volcanicpile, 142 drill core samples were used to study temporal andspatial variations. Variations in major element abundances (e.g.MgO = 3·3–14·6 wt %) reflect polybaric fractionalcrystallization of olivine, clinopyroxene and plagioclase. 87Sr/86Sri(0·7039–0·7049), 143Nd/144Ndi (0·5127–0·5129)and 176Hf/177Hfi (0·2829–0·2830) ratiosare similar to those for ocean island basalts and suggest thatthe magmas have not assimilated significant amounts of continentalcrust. Variable degrees of partial melting appear to be responsiblefor differences in Na2O, P2O5, K2O and incompatible trace elementabundances in the most primitive (high-MgO) magmas. Fractionatedheavy rare earth element (HREE) ratios (e.g. [Gd/Lu]n > 2·5)indicate that the parental magmas of the Vitim lavas were predominantlygenerated within the garnet stability field. Forward major elementand REE inversion models suggest that the tholeiitic and alkalibasalts were generated by decompression melting of a fertileperidotite source within the convecting mantle beneath Vitim.Ba/Sr ratios and negative K anomalies in normalized multi-elementplots suggest that phlogopite was a residual mantle phase duringthe genesis of the nephelinites and basanites. Relatively highlight REE (LREE) abundances in the silica-undersaturated meltsrequire a metasomatically enriched lithospheric mantle source.Results of forward major element modelling suggest that meltingof phlogopite-bearing pyroxenite veins could explain the majorelement composition of these melts. In support of this, pyroxenitexenoliths have been found in the VVF. High Cenozoic mantle potentialtemperatures (1450°C) predicted from geochemical modellingsuggest the presence of a mantle plume beneath the Baikal RiftZone. KEY WORDS: Baikal Rift; mafic magmatism; mantle plume; metasomatism; partial melting  相似文献   

19.
Rates of magmatic processes in a cooling magma chamber wereinvestigated for alkali basalt and trachytic andesite lavaserupted sequentially from Rishiri Volcano, northern Japan, bydating of these lavas using 238U–230Th radioactive disequilibriumand 14C dating methods, in combination with theoretical analyses.We obtained the eruption age of the basaltic lavas to be 29·3± 0·6 ka by 14C dating of charcoals. The eruptionage of the andesitic lavas was estimated to be 20·2 ±3·1 ka, utilizing a whole-rock isochron formed by U–Thfractionation as a result of degassing after lava emplacement.Because these two lavas represent a series of magmas producedby assimilation and fractional crystallization in the same magmachamber, the difference of the ages (i.e. 9 kyr) is a timescaleof magmatic evolution. The thermal and chemical evolution ofthe Rishiri magma chamber was modeled using mass and energybalance constraints, as well as quantitative information obtainedfrom petrological and geochemical observations on the lavas.Using the timescale of 9 kyr, the thickness of the magma chamberis estimated to have been about 1·7 km. The model calculationsshow that, in the early stage of the evolution, the magma cooledat a relatively high rate (>0·1°C/year), and thecooling rate decreased with time. Convective heat flux fromthe main magma body exceeded 2 W/m2 when the magma was basaltic,and the intensity diminished exponentially with magmatic evolution.Volume flux of crustal materials to the magma chamber and rateof convective melt exchange (compositional convection) betweenthe main magma and mush melt also decreased with time, from 0·1 m/year to 10–3 m/year, and from 1 m/yearto 10–2 m/year, respectively, as the magmas evolved frombasaltic to andesitic compositions. Although the mechanism ofthe cooling (i.e. thermal convection and/or compositional convection)of the main magma could not be constrained uniquely by the model,it is suggested that compositional convection was not effectivein cooling the main magma, and the magma chamber is consideredto have been cooled by thermal convection, in addition to heatconduction. KEY WORDS: convection; magma chamber; heat and mass transport; timescale; U-series disequilibria  相似文献   

20.
A localized dehydration zone, Söndrum stone quarry, Halmstad,SW Sweden, consists of a central, 1 m wide granitic pegmatoiddyke, on either side of which extends a 2·5–3 mwide dehydration zone (650–700°C; 800 MPa; orthopyroxene–clinopyroxene–biotite–amphibole–garnet)overprinting a local migmatized granitic gneiss (amphibole–biotite–garnet).Whole-rock chemistry indicates that dehydration of the graniticgneiss was predominantly isochemical. Exceptions include [Y+ heavy rare earth elements (HREE)], Ba, Sr, and F, which aremarkedly depleted throughout the dehydration zone. Systematictrends in the silicate and fluorapatite mineral chemistry acrossthe dehydration zone include depletion in Fe, (Y + HREE), Na,K, F, and Cl, and enrichment in Mg, Mn, Ca, and Ti. Fluid inclusionchemistry is similar in all three zones and indicates the presenceof a fluid containing CO2, NaCl, and H2O components. Water activitiesin the dehydration zone average 0·36, or XH2O = 0·25.All lines of evidence suggest that the formation of the dehydrationzone was due to advective transport of a CO2-rich fluid witha minor NaCl brine component originating from a tectonic fracture.Fluid infiltration resulted in the localized partial breakdownof biotite and amphiboles to pyroxenes releasing Ti and Ca,which were partitioned into the remaining biotite and amphibole,as well as uniform depletion in (Y + HREE), Ba, Sr, Cl, andF. At some later stage, H2O-rich fluids (H2O activity >0·8)gave rise to localized partial melting and the probable injectionof a granitic melt into the tectonic fracture, which resultedin the biotite and amphibole recording a diffusion profile forF across the dehydration zone into the granitic gneiss as wellas a diffusion profile in Fe, Mn, and Mg for all Fe–Mgsilicate minerals within 100 cm of the pegmatoid dyke. KEY WORDS: charnockite; fluids; CO2; brines; localized dehydration; Söndrum  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号