首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Based on archived images obtained with the Hubble Space Telescope, stellar photometry for 105 irregular galaxies has been conducted. We have shown the red supergiant and giant branches in the obtained Hertzsprung-Russel diagrams. Using the TRGB method, distances to galaxies and metallicity of red giants have been determined. The color index (V ? I) of the supergiant branch at the luminosity level MI = ?7 was chosen as the metallicity index of red supergiants. For the galaxies under study, the diagrams have been built, in which the correlation can be seen between the luminosity of galaxies (MB) and metallicity of red giants and supergiants. The main source of variance of the results in the obtained diagrams is, in our opinion, uncertainty inmeasurements of galaxy luminosities and star-forming outburst. The relation between metallicity of young and old stars shows that main enrichment of galaxies with metals has taken place in the remote past. Deviations of some galaxies in the obtained relation can possibly be explained with the fall of the intergalactic gas on them, although, this inconsiderably affects metallicities of the stellar content.  相似文献   

2.
3.
By considering the physical and orbital characteristics of G type stars and their exoplanets, we examine the association between stellar mass and its metallicity that follows a power law. Similar relationship is also obtained in case of single and multiplanetary stellar systems suggesting that, \(\hbox {Sun}^{\prime }\)s present mass is about 1% higher than the estimated value for its metallicity. Further, for all the stellar systems with exoplanets, association between the planetary mass and the stellar metallicity is investigated, that suggests planetary mass is independent of stellar metallicity. Interestingly, in case of multiplanetary systems, planetary mass is linearly dependent on the stellar absolute metallicity, that suggests, metal rich stars produce massive (\(\ge \)1 Jupiter mass) planets compared to metal poor stars. This study also suggests that there is a solar system planetary missing mass of \({\sim }\)0.8 Jupiter mass. It is argued that probably 80% of missing mass is accreted onto the Sun and about 20% of missing mass might have been blown off to the outer solar system (beyond the present Kuiper belt) during early history of solar system formation. We find that, in case of single planetary systems, planetary mass is independent of stellar metallicity with an implication of their non-origin in the host star’s protoplanetary disk and probably are captured from the space. Final investigation of dependency of the orbital distances of planets on the host stars metallicity reveals that inward migration of planets is dominant in case of single planetary systems supporting the result that most of the planets in single planetary systems are captured from the space.  相似文献   

4.
As part of an ongoing project aimed at studying the age and metallicity gradients of the stellar populations along the bars of a sample of barred spirals of different morphological types, we present our first results on NGC 4314 (SBa). We have obtained optical and NIR colours and spectral indices along the bar and we interpret some of these results here and discuss their uncertainties on the basis of single stellar population models. In a preliminary analysis, we constrain the limits for the age and metallicity of the nucleus and two selected regions in the star formation ring of NGC 4314, characterizing both as metal rich (Z<Z solar) stellar populations, and finding a difference in the mean luminosity-weighted age of at least ∼ 3–4 Gyr. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
We examine the thermal and chemical evolution of gravitationally collapsing protostellar clouds with metallicity 0≤Z/Z ≤1.During the first collapse stage, the temperatures are higher for lower metallicity clouds. However, in the course of the adiabatic contraction of transient cores, the evolutionary trajectories of the clouds converge to a curve that is determined only by fundamental physical constants. The trajectories coincide each other thereafter. The size of the stellar core at formation is the same regardless of metallicity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Blue Supergiants (BSGs) are the brightest stars in the universe at visual light with absolute magnitudes up to M V =−10 mag. They are ideal stellar objects for the determination of extragalactic distances, in particular, because the perennial uncertainties troubling most of the other stellar distance indicators, interstellar extinction and metallicity, do not affect them. The quantitative spectral analysis of low resolution spectra of individual BSGs provides accurate stellar parameters and chemical composition, which are then used to determine accurate reddening and extinction from photometry for each individual object. Accurate distances can be determined from stellar gravities and effective temperatures using the “Flux Weighted Gravity–Luminosity Relationship (FGLR)”.  相似文献   

7.
We show that there is a relationship between the age excess, defined as the difference between the stellar isochrone and chromospheric ages, and the metallicity as measured by the index [Fe/H] for late-type dwarfs. The chromospheric age tends to be lower than the isochrone age for metal-poor stars, and the opposite occurs for metal-rich objects. We suggest that this could be an effect of neglecting the metallicity dependence of the calibrated chromospheric emission–age relation. We propose a correction to account for this dependence. We also investigate the metallicity distributions of these stars, and show that there are distinct trends according to the chromospheric activity level. Inactive stars have a metallicity distribution which resembles the metallicity distribution of solar neighbourhood stars, while active stars appear to be concentrated in an activity strip on the log  R 'HK × [Fe/H] diagram. We provide some explanations for these trends, and show that the chromospheric emission–age relation probably has different slopes on the two sides of the Vaughan–Preston gap.  相似文献   

8.
As a tool for interpreting nearby and high-redshift galaxy data from the optical to K-band we present our chemically consistent spectrophotometric evolutionary synthesis models. These models take into account the increasing initial metallicity of successive stellar generations using recently published metallicity-dependent stellar evolutionary tracks, stellar yields and model atmosphere spectra. The influence of the metallicity is analysed. Dust absorption is included on the basis of gas content and abundance as it varies with time and galaxy type. We compare our models with IUE template spectra and are able to predict UV fluxes for different spectral types. Combining our models with a cosmological model we obtain evolutionary and k corrections for various galaxy types and show the differences from models using only solar metallicity input physics as a function of redshift, wavelength band and galaxy type. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
High spatial resolution visible and NIR observations of the bar of NGC 5850, a prototype of double barred spirals, together with visible intermediate and high dispersion spectra along the primary bar, are being used, with the aid of simple stellar population synthesis models, to investigate the mean age and metallicity of the different stellar components of the central part of the galaxy. The determination of stellar ages and metallicities would constrain theoretical scenarios for secondary bar formation and the evolution of barred spirals. Unfortunately, we cannot obtain a good fit with simple stellar populations (SSPs) to the spectral indices, so it can not give us, by now, insight into the mean stellar age and metallicity of the real populations in the central region of the galaxy. These preliminary results show a relatively old primary bar with metallicity about solar, although absolute values must be taken with care. The nucleus has a young stellar component, and is very dusty. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
We apply the method of principal component analysis to a sample of simple stellar populations to select some age-sensitive spectral indices. Besides the well-known age-sensitive index, H β , we find that some other spectral indices have great potential to determine the age of stellar populations, such as G4300, Fe4383, C24668, and Mg b . In addition, we find that the sensitivity to age of these spectral indices depends on the metallicity of the simple stellar population (SSP): H β and G4300 are more suited to determine the age of the low-metallicity stellar population, C24668 and Mg b are more suited to the high-metallicity stellar population. The results suggest that the principal component analysis method provides a more objective and informative alternative to diagnostics by individual spectral lines.  相似文献   

11.
We have defined a new Hβ absorption index definition,  Hβo  , which has been optimized as an age indicator for old and intermediate age stellar populations. Rather than using stellar spectra, we employed for this purpose a library of stellar population spectral energy distributions of different ages and metallicities at moderately high resolution.  Hβo  provides us with improved abilities for lifting the age–metallicity degeneracy affecting the standard Hβ Lick index definition. The new index, which has also been optimized against photon noise and velocity dispersion, is fully characterized with wavelength shift, spectrum shape, dust extinction and [α/Fe] abundance ratio effects.  Hβo  requires spectra of similar qualities as those commonly used for measuring the standard Hβ Lick index definition. Aiming at illustrating the use and capabilities of  Hβo  as an age indicator we apply it to Milky Way globular clusters and to a well selected sample of early-type galaxies covering a wide range in mass. The results shown here are particularly useful for applying this index and understand the involved uncertainties.  相似文献   

12.
《New Astronomy》2002,7(7):395-433
The stellar initial mass function at high redshift is an important defining property of the first stellar systems to form and may also play a role in various dark matter problems. We here determine the faint stellar luminosity function in an apparently dark-matter-dominated external galaxy in which the stars formed at high redshift. The Ursa Minor dwarf spheroidal galaxy is a system with a particularly simple stellar population—all of the stars being old and metal-poor—similar to that of a classical halo globular cluster. A direct comparison of the faint luminosity functions of the UMi dSph and of similar metallicity, old globular clusters is equivalent to a comparison of the initial mass functions and is presented here, based on deep HST WFPC2 and STIS imaging data. We find that these luminosity functions are indistinguishable, down to a luminosity corresponding to ∼0.3 M. Our results show that the low-mass stellar IMF for stars that formed at very high redshift is apparently invariant across environments as diverse as those of an extremely low-surface-brightness, dark-matter-dominated dwarf galaxy and a dark-matter-free, high-density globular cluster within the Milky Way.  相似文献   

13.
We analyse the evolutionary history of galaxies formed in a hierarchical scenario consistent with the concordance Lambda cold dark matter (ΛCDM) model focusing on the study of the relation between their chemical and dynamical properties. Our simulations consistently describe the formation of the structure and its chemical enrichment within a cosmological context. Our results indicate that the luminosity–metallicity and the stellar mass–metallicity (LZR and MZR) relations are naturally generated in a hierarchical scenario. Both relations are found to evolve with redshift. In the case of the MZR, the estimated evolution is weaker than that deduced from observational works by approximately 0.10 dex. We also determine a characteristic stellar mass, M c≈ 3 × 1010 M, which segregates the simulated galaxy population into two distinctive groups and which remains unchanged since z ∼ 3, with a very weak evolution of its metallicity content. The value and role played by M c is consistent with the characteristic mass estimated from the SDSS galaxy survey by Kauffmann et al. Our findings suggest that systems with stellar masses smaller than M c are responsible for the evolution of this relation at least from z ≈ 3. Larger systems are stellar dominated and have formed more than 50 per cent of their stars at   z ≥ 2  , showing very weak evolution since this epoch. We also found bimodal metallicity and age distributions from z ∼ 3, which reflects the existence of two different galaxy populations. Although SN feedback may affect the properties of galaxies and help to shape the MZR, it is unlikely that it will significantly modify M c since, from   z = 3  this stellar mass is found in systems with circular velocities larger than 100 km s−1.  相似文献   

14.
We present an examination of the kinematics and stellar populations of a sample of three brightest group galaxies (BGGs) and three brightest cluster galaxies (BCGs) in X-ray groups and clusters. We have obtained high signal-to-noise ratio Gemini/Gemini South Multi-Object Spectrograph (GMOS) long-slit spectra of these galaxies and use Lick indices to determine ages, metallicities and α-element abundance ratios out to at least their effective radii. We find that the BGGs and BCGs have very uniform masses, central ages and central metallicities. Examining the radial dependence of their stellar populations, we find no significant velocity dispersion, age, or α-enhancement gradients. However, we find a wide range of metallicity gradients, suggesting a variety of formation mechanisms. The range of metallicity gradients observed is surprising, given the homogeneous environment these galaxies probe and their uniform central stellar populations. However, our results are inconsistent with any single model of galaxy formation and emphasize the need for more theoretical understanding of both the origins of metallicity gradients and galaxy formation itself. We postulate two possible physical causes for the different formation mechanisms.  相似文献   

15.
The stellar mass-to-light ratio(M_*/L) of galaxies in a given wave band shows tight correlations with optical colors, which have been widely applied as cheap estimators of galaxy stellar masses. These estimators are usually calibrated using either broadband spectral energy distributions(SEDs) or spectroscopy at galactic centers. However, it is unclear whether the same estimators provide unbiased M_*/L for different regions within a galaxy. In this work we employ integral field spectroscopy from the Mapping Nearby Galaxies at Apache Point Observatory(Ma NGA) survey. We also examine the correlations of spatially resolved M_*/L obtained from full spectral fitting, with different color indices, as well as galaxy morphology types, distances to the galactic center, and stellar population parameters such as stellar age and metallicity.We find that the(g-r) color is better than any other color indices, and it provides almost unbiased M_*/L for all the SDSS five bands and for all types of galaxies or regions, with only slight biases depending on stellar age and metallicity. Our analysis indicates that combining multiple colors and/or including other properties to reduce the systematics and scatters of the estimator does not work better than a single color index defined by two bands. Therefore, we have obtained a best estimator with the(g-r) color and applied it to the Ma NGA galaxies. Both the two-dimensional map and radial profile of M_*/L are reproduced well in most cases. Our estimator may be applied to obtain surface mass density maps for large samples of galaxies from imaging surveys at both low and high redshifts.  相似文献   

16.
The gas fraction is important for understanding the formation and evolution of galaxies. It is found that there are linear correlations between the atomic-gas-to-stellar mass ratio (G/S) and stellar population properties (age, metallicity and stellar mass) of galaxies. However, only a nearby galaxy sample was used. This work investigates how the correlations change with the redshift limit of galaxies, using three volume limited galaxy samples selected from Sloan Digital Sky Survey (SDSS). It shows that there are linear correlations between the G/S and logarithmic values of stellar age, metallicity and mass, for all galaxy samples. It also shows that the linear correlation between G/S and stellar age is much better than others and possibly can be used in future studies. In addition, the scatters of the fitted correlations are found to increase with upper redshift limit of sample galaxies.  相似文献   

17.
Using multi-band photometric images of M51 and its companion NGC 5195 from ultraviolet to optical and infrared,we investigate spatially resolved stellar population properties of this interacting system with stellar population synthesis models.The observed infrared excess(IRX)is used to constrain dust extinction.Stellar mass is also inferred from the model fitting.By fitting observed spectral energy distributions(SEDs)with synthetical ones,we derive two-dimensional distributions of stellar age,metallicity,dust extinction and stellar mass.In M51,two grand-designed spiral arms extending from the bulge show young age,rich metallicity and abundant dust.The inter-arm regions are filled with older,metalpoorer and less dusty stellar populations.Except for the spiral arm extending from M51 into NGC 5195,the stellar population properties of NGC 5195 are quite featureless.NGC 5195 is much older than M51,and its core is very dusty with AV up to 1.67 mag and dense in stellar mass surface density.The close encounters might drive the dust in the spiral arm of M51 into the center of NGC 5195.  相似文献   

18.
We present the results of a narrow band imaging project of dwarf and giant ellipticals in the Fornax (z = 0.01), Coma (z = 0.02), A2218 (z= 0.17) and A2125 (z = 0.24) cluster. Differing from spectral line projects, we determine the mean age and metallicity of the underlying stellar populations in galaxies by measurement of the position of the RGB and MS turnoff through continuum colors (3500 Å, 4100 Å, 4675 Å and5500 Å in rest system, i.e. modified Strømgren colors). Our sample includes 120 galaxies between M = –16 and –23 in Fornax and Coma plus over 300 galaxies in distant clusters. We find the color-magnitude relation to be linear for only the brightest galaxies with an increasing amount of scatter for low luminosity ellipticals. Bright ellipticals are found to have a metallicity between –0.5 and +0.5, but low luminosity ellipticals have values that range from –2 to solar. Our age index finds a weak correlation between luminosity and mean stellar age in ellipticals such that bright ellipticals are 2 to 3 Gyrs younger than low luminosity ellipticals.  相似文献   

19.
Stellar mass is an indispensable parameter in the studies of stellar physics and stellar dynamics. On the one hand, the most reliable way to determine the stellar dynamical mass is via orbital determinations of binaries. On the other hand, however, most stellar masses have to be estimated by using the mass luminosity relation (MLR). Therefore, it is important to obtain the empirical MLR through fitting the data of stellar dynamical mass and luminosity. The effect of metallicity can make this relation disperse in the V-band, but studies show that this is mainly limited to the case when the stellar mass is less than 0.6M Recently, many relevant data have been accumulated for main sequence stars with larger masses, which make it possible to significantly improve the corresponding MLR. Using a fitting method which can reasonably assign weights to the observational data including two quantities with different dimensions, we obtain a V-band MLR based on the dynamical masses and luminosities of 203 main sequence stars. In comparison with the previous work, the improved MLR is statistically significant, and the relative error of mass estimation reaches about 5%. Therefore, our MLR is useful not only in the studies of statistical nature, but also in the studies of concrete stellar systems, such as the long-term dynamical study and the short-term positioning study of a specific multiple star system.  相似文献   

20.
The formation of a disk galaxy within a slowly growing dark halo is simulated with a new chemo-dynamical model. The model describes the evolution of the stellar populations, the multi-phase ISM and all important interaction. I find, that the galaxy forms radially from inside-out and vertically from top-to-bottom. The derived stellar age distributions show that the inner halo is the oldest component, followed by the outer halo, the triaxial bulge, the halo-disk transition region and the disk. Despite the still idealized model, the final galaxy resembles present-day disk galaxies in many aspects. In particular, the stellar metallicity distribution in the halo of the model resembles the one of M31. The bulge in the model shows, at least two stellar subpopulations, an early collapse population and a population that formed later out of accreted disk mass. In the stellar metallicity distribution of the disk, I find a pronounced ‘G-dwarf problem’ which is the result of a pre-enrichment of the disk ISM with metal-rich gas from the bulge. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号