首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of astrometric observations of Saturn’s satellites (S1–S8) obtained using a 26-inch refractor and a normal astrograph at Pulkovo Observatory in 2004–2007 are given. High-accuracy equatorial coordinates of Saturn’s satellites in the system of the UCAC2 reference catalog and the relative “satellite-satellite” positions suitable for specifying their motion theories are obtained. The observations are compared with the DE405 + TASS1.7 and INPOP06 + TASS1.7 theories of motion. The root-mean-square errors of the obtained satellite positions lie within the range of 10–50 mas, as far as the intrinsic convergence is concerned, and 20–70 mas, as far as the extrinsic one is concerned. The observation results are included into the astrometrical database of the Pulkovo Observatory (www.puldb.ru).  相似文献   

2.
The image-processing techniques used by Peng et al. are further improved to measure precisely the positions of Saturn and its satellites. 495 CCD images taken with the 1-m telescope at the Yunnan Observatory during the years 2002–2004 are processed with these techniques. These measured pixel positions are compared to their theoretical positions computed with the ephemerides of TASS1.7 for the satellites and JPL DE405 for Saturn itself. Analysis of the data for the intersatellite positions among four bright Saturnian satellites (S3–S6) and for Saturn–satellite (i.e. Saturn–Titan) positions shows that these measured positions have the same dispersions, i.e. about 0.05 and 0.06 arcsec in right ascension and declination, respectively. However, for the fainter satellites, Enceladus and Mimas, poorer residuals up to 0.1 and 0.2 arcsec, respectively, in both directions are found mainly due to their small separations from the primary planet and short exposure time in order to obtain useful images of Saturn.  相似文献   

3.
The results of the reduction, investigation, and comparison of the photographic observations of the major Saturnian satellites and CCD observations with an ST6 CCD camera obtained at the 264nch Pulkovo refractor in 1995–2007 are presented. A comparison of the observational results with the TASS 1.7 theory of motion of the Saturnian satellites has served as the basis for investigating and comparing the series of observations. The period-averaged (O-C) residuals and observational errors have been calculated. A comparison of the series of CCD and photographic observations has shown the same external accuracy of the observations at a higher internal accuracy of the CCD observations than that of the photographic ones. A comparison of the Pulkovo results with those of other authors has shown them to be close in accuracy. The accuracy of the theory has been estimated by comparing simultaneous (on the same night) CCD and photographic observations. The errors of the observations and the theory have been found from this comparison to be the following: 0.081“ and 0.067” for the observations and 0.077“ and 0.115” for the theory (inxandy, respectively). An analysis of the dependence of (O-C)x,y for three satellites (the sixth, seventh, and eighth) on the satellite positions in Saturn-centered orbits has revealed systemat ic deviations for the seventh satellite in both coordinates. The positions of Saturn have been determined from satellite observations without measuring its images on photographic plates with accuracies of 0.121“ and 0.105” in right ascension and declination, respectively.  相似文献   

4.
The paper shows the possibility of increasing the accuracy of the results of photographic observations of Saturn and its moons made in the 1970s and reduced using the old reference star catalogues and semiautomatic measurements. New celestial coordinates of the moons (from the third to the eighth), “satellite minus satellite” relative moon coordinates, and Saturn coordinates by positions of satellites are obtained without measuring its images. The results are stored in the Pulkovo Observatory database on the Solar System bodies and are available online at www.puldb.ru. The efficiency of the reduction method based on digitizing of astronegatives using 21 Mpx Canon digital camera and IZMCCD software is shown. The comparison of new results of old observations with the latest theories of moon motion has revealed a significant increase in satellite positioning accuracy. The investigation of the differences (O–C) of celestial coordinates from satellite positions in their apparent Saturn-centric orbits has revealed a noticeable motion of the differences (O–C) in right ascension depending on their distances from Saturn for all moons.  相似文献   

5.
A catalog of 1385 astrometric positions of Saturn’s moons S2–S9 has been compiled with Tycho-2 as a reference frame from photographic observations obtained at the Main Astronomical Observatory, National Academy of Sciences of Ukraine, in 1961–1990. Astronegatives have been digitized with an Epson Expression 10000XL commercial scanner in 16-bit grayscale with a resolution of 1200 dpi. Reduction has been performed in the LINUX-MIDAS-ROMAFOT software supplemented with additional modules. The internal positional accuracy of the reduction is 0.09…0.23′′ for both coordinates and 0.27…0.37m for the photographic magnitudes of the Tycho-2 catalog. The calculated topocentric positions of the moons are compared online with the IMCCE ephemeris data (DE405 + TASS1,7). Moon-minus-moon differential coordinates are found for most of the moons and compared with theoretical data (http://lnfm1.sai.msu.ru/neb/nss/nssephmr.htm).  相似文献   

6.
Astrometric and photometric observations of major planets, their satellites and asteroids have been made with the 26-in. refractor of the Pulkovo observatory during the period from 1995 to 2006. The CCD (ST6) and photographic observations were carried out. Accurate relative position of satellites of Jupiter and Saturn have been derived. The positions of Saturn have been calculated using the theoretically predicted coordinates of satellites relative to the planet without measurements of the photographic images of the planet. Also the observations of Hale-Bopp comet and Mercury transit have been made. The 26-in. refractor has been included into the international campaign PHEMU-2003: photometric CCD observations of mutual occultations and eclipses of Galilean satellites. The light curves of the events have been obtained and parameters of the events have been determined.  相似文献   

7.
The sets of photographic observations of the Galilean satellites of Jupiter taken at the Abastumani Astrophysical Observatory of the Academy of Sciences of Georgia are analyzed here. Positional observations of the system of Jupiter were made in the period from 1985 to 1994 with the use of the double Zeiss astrograph in order to determine the exact coordinates of Jupiter and its satellites. The accurate positions of the satellites and Jupiter itself, as well as their stellar (equatorial) coordinates relative to the stars of the currently available catalogs and the relative ??satellite ?? satellite?? coordinates were obtained from the observations. From the comparison of the observation results with the modern theories of motion of satellites, the accuracy in determining the positions of the satellites and Jupiter was analyzed. The results of observations are presented in the Pulkovo database of observations of Solar System bodies that is accessible to users at http://www.puldb.ru.  相似文献   

8.
Observational results are presented for Jupiter and its Galilean moons from the Normal Astrograph at Pulkovo Observatory in 2013–2015. The following data are obtained: 154 positions of the Galilean satellites and 47 calculated positions of Jupiter in the system of the UCAC4 (ICRS, J2000.0) catalogue; the differential coordinates of the satellites relative to one another are determined. The mean errors of the satellites’ normal places in right ascension and declination over the entire observational period are, respectively: εα = 0.0065″ and εδ = 0.0068″, and their standard deviations are σα = 0.0804″ and σδ = 0.0845″. The equatorial coordinates are compared with planetary and satellite motion theories. The average (O–C) residuals in the two coordinates relative to the motion theories are 0.05″ or less. The best agreement with the observations is achieved by a combination of the EPM2011m and V. Lainey-V.2.0|V1.1 motion theories; the average (O–C) residuals are 0.03″ or less. The (O–C) residuals for the features of the positions of Io and Ganymede are comparable with measurement errors. Jupiter’s positions calculated from the observations of the satellites and their theoretical jovicentric coordinates are in good agreement with the motion theories. The (О–С) residuals for Jupiter’s coordinates are, on average, 0.027″ and–0.025″ in the two coordinates.  相似文献   

9.
The results of astrometric observations of the main Uranian satellites taken with the Faulkes Telescope North are presented. A median filter algorithm was applied to subtract a scattered-light halo caused by Uranus. The Two-Micron All-Sky Survey (2MASS) and USNO-B1.0 were used as reference catalogues. The mean value of the differences between the equatorial coordinates of the satellites determined with 2MASS and USNO-B1.0 is close to 200 mas. A comparison of the observed equatorial coordinates of the satellites and their relative positions with ephemerides based on different combinations of theories of motion of Uranus and its satellites (DE405+GUST86, DE405+GUST06, INPOP+GUST86, INPOP+GUST06) was performed. The satellites' positions obtained with respect to 2MASS are in better agreement with theories. The values of (O−C) of the equatorial coordinates determined with the 2MASS are mainly less than 100 mas. The majority of (O−C) of relative positions are within ±50 mas. The mean values of the standard errors of (O−C) are within 20 to 60 mas.  相似文献   

10.
We present and discuss the results of the astrometry project during which we observed the satellites of Mars, Jupiter, Saturn, Uranus, and Neptune at the Abastumani Astrophysical Observatory (Georgia) between 1983 and 1994. Observations at the Abastumani Observatory were performed with the double Zeiss astrograph (DZA: D/F = 400/3024 mm) and AZT-11 telescope (F = 16 m). We processed a large array of observations and determined exact coordinates of the planets and their satellites in a system of reference stars of modern catalogues as well as relative coordinates of the satellites. The results were compared with modern ephemerides using the MULTI-SAT software. The comparison enabled us to estimate the accuracy of observations (their random and systematic uncertainties) and the accuracy of modern theories of the motion of planets and their satellites. Random uncertainties of observations are estimated to be 0.10??C0.40?? for various objects and observational conditions. Observational results obtained for Uranus, Neptune and the satellites Titania and Oberon were shown to deviate appreciably and systematically from theories of their motion. The results of observations are presented in the Pulkovo database for Solar System bodies that is available at the website http://www.puldb.ru.  相似文献   

11.
Most of the positions of faint satellite images obtained during the 1966 Saturn ring plane crossing fit the period of the coorbital satellites 1980 S1 and 1980 S3. In 1966 the satellites were separated by 137° in orbital longitude. Until the mutual interaction of the satellites is understood and applied to derive the precise orbital motion, the 1966 and 1980 observations cannot be linked.  相似文献   

12.
A numerical theory of the motion of Jupiter’s Galilean satellites was constructed using 3767 absolute observations of the satellites. The theory was based on the numerical integration of the equations of motion of the satellites. The integration was carried out by Everhart’s method using the ERA software package developed at the Institute of Applied Astronomy (IAA). Perturbations due to the oblateness of the central planet, perturbations from Saturn and the Sun, and the mutual attraction of the satellites were taken into account in the integration. As a result, the coefficients of the Chebyshev series expansion for coordinates and velocities were found for the period from 1962 to 2010. The initial coordinates and velocities of the satellites, as well as their masses, the mass of Jupiter, and the harmonic coefficient J 2 of the potential of Jupiter, were adjusted. The resulting ephemerides were compared to those of Lieske and Lainey.  相似文献   

13.
A regular natural satellite observing program has been in operation at McDonald Observatory since late 1972. The observation type has been direct astrometric photography from which the positions of the satellites may be measured with respect to the background star field. Effort has been devoted to the satellite systems of Saturn, Uranus and Neptune as well as the faint outer satellites of Jupiter. To obtain a suitable reference frame, use is being made of the National Geographic-Palomar Sky Survey glass copies as field plates. Through the courtesy of the NASA Skylab SO19 experimenters, the high speed PDS microdensitometer system at the University of Texas at Austin has been made available for our plate measures. The absolute positions of the satellites are determined by the accuracy of the reference frame adopted since catalog star positions are far less accurate than the measures which are obtained. Using SAO catalog positions, for example, we can obtain uncertainties for absolute positions of about 0".3–0".6. Eliminating the dependence on the reference frame by considering only relative satellite measures improves the quoted uncertainties substantially.  相似文献   

14.
We have used Pollack et al.'s 1976 calculations of the quasi-equilibrium contraction of Saturn to study the influence of the planet's early high luminosity on the formation of its satellites and rings. Assuming that the condensation of ices ceased at the same time within Jupiter's and Saturn's primordial nebulae, and using limits for the time of cessation derived for Jupiter's system by Pollack and Reynolds (1974) and Cameron and Pollack (1975), we arrive at the following tentative conclusions. Titan is the innermost satellite at whose position a methane-containing ice could condense, a result consistent with the presence of methane in this satellite's atmosphere. Water ice may have been able to condense at the position of all the satellites, a result consistent with the occurrence of low-density satellites close to Saturn. The systematic decrease in the mass of Saturn's regular satellites with decreasing distance from Saturn may have been caused partially by the larger time intervals for the closer satellites between the start of contraction and the first condensation of ices at their positions and between the start of contraction and the time at which Saturn's radius became less than a satellite's orbital radius. Ammonia ices, principally NH4SH, were able to condense at the positions of all but the innermost satellites.Water ice may bave been able to condense in the region of the rings close to the end of the condensation period. We speculate that the rings are unique to Saturn because on the one hand, temperatures within Jupiter's Roche limit never became cool enough for ice particles to form before the end of the condensation period and on the other hand, ice particles formed only very early within Uranus' and Neptune's Roche limits, and were eliminated by gas drag effects that caused them to spiral into the planet before the gas of these planets' nebula was eliminated. Gas drag would also have eliminated any rocky particles initially present inside the Roche limit.We also derive an independent estimate of several million years for the time between the start of the quasi-equilibrium contraction of Saturn and the cessation of condensation. This estimate is based on the density and mass characteristics of Saturn's satellites. Using this value rather than the one found for Jupiter's satellites, we find that the above conclusions about the rings and the condensation of methane-and ammonia-containing ices remain valid.  相似文献   

15.
B.J. Buratti  M.D. Hicks  A. Davies 《Icarus》2005,175(2):490-495
We have obtained broadband spectrophotometric observations of four of the recently discovered small satellites of Saturn (Gladman et al., 2001, Nature 412, 163-166). The new data enable an understanding of the provenance, composition, and interrelationships among these satellites and the other satellites of Saturn, particularly Iapetus, Phoebe, and Hyperion. Temporal coverage of one satellite (S21 Tarvos) was sufficient to determine a partial rotational lightcurve. Our major findings include: (1) the satellites are red and similar in color, comparable to D-type asteroids, some KBOs, Iapetus, and Hyperion; (2) none of the satellites, including those from the “Phoebe Group” has any spectrophotometric relationship to Phoebe; and (3) S21 Tarvos exhibits a rotational lightcurve, although the data are not well-constrained and more observations are required to fit a definitive period. Dust created by meteoritic impacts and ejected from these satellites and additional undiscovered ones may be the source of the exogenous material deposited on the low-albedo side of Iapetus. Recent work which states that the small irregular satellites of Saturn have impacted Phoebe at least 6-7 times in the age of the Solar System (Nesvorny et al., 2003, Astron. J. 126, 398-429), suggests that such collisions may have propelled additional material from both Phoebe and the small irregular satellites toward Iapetus. The accretion of material from outer retrograde satellites may be a process that also occurs on Callisto and the uranian satellites.  相似文献   

16.
暗弱天然卫星与主带小行星相比,具有亮度低、速度变化快的特点.在观测这类天体时,不能简单地延长曝光时间来提高其信噪比.尝试观测多幅短曝光的CCD (chargecoupled device)图像,采用移位堆叠(shift-and-add)方法,希望提高目标成像的信噪比,获得暗弱天然卫星的精确测量结果.使用2018年4月9—12日夜间,中国科学院云南天文台1 m望远镜(1 m望远镜)拍摄的木星5颗暗卫星的229幅CCD图像,实施了移位堆叠试验.为了验证结果的正确性,与相近日期中国科学院云南天文台2.4 m望远镜(2.4 m望远镜)观测的相同木卫图像的测量结果进行了比较和分析.位置归算采用了JPL (Jet Propulsion Laboratory)历表.结果表明,对CCD图像使用移位堆叠方法,通过叠加约10幅曝光时间100 s的图像, 1 m望远镜能观测暗至19等星的不规则天然卫星,而且测量的准确度与2.4 m望远镜的测量结果有良好的一致性.  相似文献   

17.
Since 1998, 97 new remote satellites of Jupiter, Saturn, Uranus, and Neptune have been discovered. Since their brightness is rather weak, it is difficult to perform their photometry and determine their physical parameters. For 27 satellites from this group, different authors carried out special photometric investigations. For the other 70 satellites, the magnitudes accompanying the results of astrometric observations published in Minor Planet Circulars (MPC) are the only photometric data. In the present study, the photometric model parameters for all of the 97 remote satellites have been determined. From the hypothetic values of albedo and material density of the satellites, their sizes and gravitation parameters have been estimated. The whole volume of the obtained results is available in the database of the natural planetary satellites (NSDB) (Arlot and Emelyanov, 2009) published on the Internet ().  相似文献   

18.
The results of astrometric observations of three Uranian satellites, performed at the Ka-Dar observatory from August to October 2005, are presented. In total, 20 satellite positions in the equatorial frame and 14 “satellite minus satellite” relative positions were obtained.  相似文献   

19.
In this paper, we apply the ideas presented by one of us (Prentice, 1978a, b) for the development of the proto-solar cloud into a system of Laplacian rings to the development of the protoplanetary clouds which ultimately led to Jupiter, Saturn and Uranus. We show that if one accepts this scenario — especially the idea of supersonic turbulence in the proto-planetary clouds — one can satisfactorily explain, on the basis of fixing a single adjustable parameter, both the geometric precession of the orbital radii of the regular satellite systems of these three planets and the chemical composition and mass distribution of these satellites. We suggest that thermal stirring in the proto-planetary cloud in the vicinity of the surface of the planet may be responsible for the smaller masses of some of the inner satellites as well as for the formation of the rocky rings of Uranus. The icy rings of Saturn are suggested to be the product of condensation processes in a continuous gaseous disc within the Roche limit of the planet.  相似文献   

20.
S. Koutchmy  Ph.L. Lamy 《Icarus》1975,25(3):459-465
Good photographs of Saturn and its five inner satellites were obtained on January 2, 1974 with the 105 cm telescope at Pic du Midi Observatory with exposure times of 45 sec. The spread function is constant over the field, and isotropic. The true photometric profiles of the satellites are obtained after deriving a model for the stray light coming from the rings. The magnitudes, computed by integration, are in good agreement with published values except for Mimas, which is nearly one magnitude fainter then previously believed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号