首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The common-ray approximation eliminates problems with ray tracing through S-wave singularities and also considerably simplifies the numerical algorithm of the coupling ray theory for S waves, but may introduce errors in travel times due to the perturbation from the common reference ray. These travel-time errors can deteriorate the coupling-ray-theory solution at high frequencies. It is thus of principal importance for numerical applications to estimate the errors due to the common-ray approximation applied. The anisotropic-common-ray approximation of the coupling ray theory is more accurate than the isotropic-common-ray approximation. We derive the equations for estimating the travel-time errors due to the anisotropic-common-ray (and also isotropic-common-ray) approximation of the coupling ray theory. The errors of the common-ray approximations are calculated along the anisotropic common rays in smooth velocity models without interfaces. The derivation is based on the general equations for the second-order perturbations of travel time.  相似文献   

2.
The common ray approximation considerably simplifies the numerical algorithm of the coupling ray theory for S waves, but may introduce errors in travel times due to the perturbation from the common reference ray. These travel-time errors can deteriorate the coupling-ray-theory solution at high frequencies. It is thus of principal importance for numerical applications to estimate the errors due to the common ray approximation.We derive the equations for estimating the travel-time errors due to the isotropic and anisotropic common ray approximations of the coupling ray theory. These equations represent the main result of the paper. The derivation is based on the general equations for the second-order perturbations of travel time. The accuracy of the anisotropic common ray approximation can be studied along the isotropic common rays, without tracing the anisotropic common rays.The derived equations are numerically tested in three 1-D models of differing degree of anisotropy. The first-order and second-order perturbation expansions of travel time from the isotropic common rays to anisotropic-ray-theory rays are compared with the anisotropic-ray-theory travel times. The errors due to the isotropic common ray approximation and due to the anisotropic common ray approximation are estimated. In the numerical example, the errors of the anisotropic common ray approximation are considerably smaller than the errors of the isotropic common ray approximation.The effect of the isotropic common ray approximation on the coupling-ray-theory synthetic seismograms is demonstrated graphically. For comparison, the effects of the quasi-isotropic projection of the Green tensor, of the quasi-isotropic approximation of the Christoffel matrix, and of the quasi-isotropic perturbation of travel times on the coupling-ray-theory synthetic seismograms are also shown. The projection of the travel-time errors on the relative errors of the time-harmonic Green tensor is briefly presented.  相似文献   

3.
The coupling ray theory is usually applied to anisotropic common reference rays, but it is more accurate if it is applied to reference rays which are closer to the actual wave paths. If we know that a medium is close to uniaxial (transversely isotropic), it may be advantageous to trace reference rays which resemble the SH–wave and SV–wave rays. This paper is devoted to defining and tracing these SH and SV reference rays of elastic S waves in a heterogeneous generally anisotropic medium which is approximately uniaxial (approximately transversely isotropic), and to the corresponding equations of geodesic deviation (dynamic ray tracing). All presented equations are simultaneously applicable to ordinary and extraordinary reference rays of electromagnetic waves in a generally bianisotropic medium which is approximately uniaxially anisotropic. The improvement of the coupling–ray–theory seismograms calculated along the proposed SH and SV reference rays, compared to the coupling–ray–theory seismograms calculated along the anisotropic common reference rays, has already been numerically demonstrated by the authors in four approximately uniaxial velocity models.  相似文献   

4.
The standard ray theory (RT) for inhomogeneous anisotropic media does not work properly or even fails when applied to S-wave propagation in inhomogeneous weakly anisotropic media or in the vicinity of shear-wave singularities. In both cases, the two shear waves propagate with similar phase velocities. The coupling ray theory was proposed to avoid this problem. In it, amplitudes of the two S waves are computed by solving two coupled, frequency-dependent differential equations along a common S-wave ray. In this paper, we test the recently developed approximation of coupling ray theory (CRT) based on the common S-wave rays obtained by first-order ray tracing (FORT). As a reference, we use the Fourier pseudospectral method (FM), which does not suffer from the limitations of the ray method and yields very accurate results. We study the behaviour of shear waves in weakly anisotropic media as well as in the vicinity of intersection, kiss or conical singularities. By comparing CRT and RT results with results of the FM, we demonstrate the clear superiority of CRT over RT in the mentioned regions as well as the dangers of using RT there.  相似文献   

5.
Algorithm for determination of all two-point rays of a given elementary wave by means of the shooting method is presented. The algorithm is designed for general 3-D models composed of inhomogeneous geological blocks separated by curved interfaces. It is independent of the initial conditions for rays and of the initial-value ray tracer. The algorithm described has been coded in Fortran 77, using subroutine packages MODEL and CRT for model specification and for initial-value ray tracing.  相似文献   

6.
We describe the behaviour of the anisotropic–ray–theory S–wave rays in a velocity model with a split intersection singularity. The anisotropic–ray–theory S–wave rays crossing the split intersection singularity are smoothly but very sharply bent. While the initial–value rays can be safely traced by solving Hamilton’s equations of rays, it is often impossible to determine the coefficients of the equations of geodesic deviation (paraxial ray equations, dynamic ray tracing equations) and to solve them numerically. As a result, we often know neither the matrix of geometrical spreading, nor the phase shift due to caustics. We demonstrate the abrupt changes of the geometrical spreading and wavefront curvature of the fast anisotropic–ray–theory S wave. We also demonstrate the formation of caustics and wavefront triplication of the slow anisotropic–ray–theory S wave.Since the actual S waves propagate approximately along the SH and SV reference rays in this velocity model, we compare the anisotropic–ray–theory S–wave rays with the SH and SV reference rays. Since the coupling ray theory is usually calculated along the anisotropic common S–wave rays, we also compare the anisotropic common S–wave rays with the SH and SV reference rays.  相似文献   

7.
Point-to-curve ray tracing is an attempt at dealing with multiplicity of solutions to a generic boundary-value problem of ray tracing. In a point-to-curve tracing (P2C) the input parameters of the boundary-value problem (BVP), such as the ends of the ray, are allowed to vary along a curve. The solutions of the BVP automatically wander from one solution branch to another generating a nearly complete multi-valued solution of the BVPs.A procedure for transforming an arbitrary iterative algorithm, solving a ray tracing BVP to a corresponding P2C algorithm, is presented. Bifurcations of the solution curve of the P2C problem at caustics are studied and an algorithm for obtaining the bifurcating branches is developed. In particular, transition from real rays to complex rays in a caustic shadow offers an additional link between otherwise disconnected solution curves of the P2C problem. The topological structure of a generic solution curve and its implications for the algorithm are studied.  相似文献   

8.
IndirectapproachmethodforspecifiedendpointsseismicraytracinginthredimensionalinhomogeneousmediaCHAOFANXU(徐朝繁)XIANKANGZH...  相似文献   

9.
耗散大气中的声波射线追踪   总被引:1,自引:1,他引:0       下载免费PDF全文
基于分层大气中声波的局地色散关系方程,建立一种计入真实大气衰减效应的有耗大气声波射线追踪模型.在色散方程的虚部中导出声波在运动大气中的耗散系数和竖直方向上的增长因子,并利用真实大气中的衰减理论对所得到的耗散系数进行修正.利用Hamilton方程组解出大气声波在考虑耗散效应下的射线微分方程组.该有耗射线追踪模型的数值模拟...  相似文献   

10.
在许多地震反演和偏移成像方法中,都要涉及到射线路径和旅行时的计算.本文将波前面三角形网格剖分和三维波前重建法射线追踪技术结合使用,实现了射线路径和旅行时的准确快速计算.三维波前重建法射线追踪过程中可以保证稳定合理的射线密度,克服了常规射线追踪方法存在阴影区的问题.波前面三角形网格剖分在描述和拆分波前面时更加准确有效,而且不需太多的网格数目,从而提高了射线追踪的精度和效率.该方法在三维复杂构造成像方面有独特的优势,目前在实际的Kirchhoff 偏移中的已经有相关应用.  相似文献   

11.
The exact analytical solution for the plane S-wave, propagating along the axis of spirality in the simple 1-D anisotropic simplified twisted crystal model, is compared with four different approximate ray-theory solutions. The four different ray methods are (a) the coupling ray theory, (b) the coupling ray theory with the quasi-isotropic perturbation of travel times, (c) the anisotropic ray theory, (d) the isotropic ray theory. The comparison is carried out numerically, by evaluating both the exact analytical solution and the analytical solutions of the equations of the four ray methods. The comparison simultaneously demonstrates the limits of applicability of the isotropic and anisotropic ray theories, and the superior accuracy of the coupling ray theory over a broad frequency range. The comparison also shows the possible inaccuracy due to the quasi-isotropic perturbation of travel times in the equations of the coupling ray theory. The coupling ray theory thus should definitely be preferred to the isotropic and anisotropic ray theories, but the quasi-isotropic perturbation of travel times should be avoided. Although the simplified twisted crystal model is designed for testing purposes and has no direct relation to geological structures, the wave-propagation phenomena important in the comparison are similar to those in the models of the geological structures.In additional numerical tests, the exact analytical solution is numerically compared with the finite-difference numerical results, and the analytical solutions of the equations of different ray methods are compared with the corresponding numerical results of 3-D ray-tracing programs developed by the authors of the paper.  相似文献   

12.
Whereas the ray-centred coordinates for isotropic media by Popov and Pšenčík are uniquely defined by the selection of the basis vectors at one point along the ray, there is considerable freedom in selecting the ray-centred coordinates for anisotropic media. We describe the properties common to all ray-centred coordinate systems for anisotropic media and general conditions, which may be imposed on the basis vectors. We then discuss six different particular choices of ray-centred coordinates in an anisotropic medium. This overview may be useful in choosing the ray-centred coordinates best suited for a particular application. The equations are derived for a general homogeneous Hamiltonian of an arbitrary degree and are thus applicable both to the anisotropic-ray-theory rays and anisotropic common S-wave rays.  相似文献   

13.
为更好地适应复杂构造的地震偏移成像,本文提出了一套快速射线追踪算法和一种高精度的走时外插计算方法.采用线性多步法的预测-校正公式求解射线追踪方程组,与传统的四阶Runge-Kutta法相比,提高了计算效率.在网格节点上的走时计算中,应用一种基于圆台的外插方法,该方法以射线的方向为轴确定圆台,将轴上的走时外插到圆台内的网格节点上.与传统的矩形体外插方法相比,圆台走时外插方法提高了计算精度,且具有更好的稳定性.另外,该方法利用稀疏分布的射线即可获得高精度的走时表,节省计算量,对复杂构造的偏移成像非常有利,尤其是三维偏移.最后通过逆散射偏移成像算例,验证了算法的有效性和适用性.  相似文献   

14.
Dynamic ray tracing plays an important role in paraxial ray methods. In this paper, dynamic ray tracing systems for inhomogeneous anisotropic media, consisting of four linear ordinary differential equations of the first order along the reference ray, are studied. The main attention is devoted to systems expressed in a particularly simple choice of ray-centered coordinates, here referred to as the standard ray-centered coordinates, and in wavefront orthonormal coordinates. These two systems, known from the literature, were derived independently and were given in different forms. In this paper it is proved that both systems are fully equivalent. Consequently, the dynamic ray tracing system, consisting of four equations in wavefront orthonormal coordinates, can also be used if we work in ray-centered coordinates, and vice versa. vcerveny@seis.karlov.mff.cuni.cz  相似文献   

15.
一种最短路径射线追踪的快速算法   总被引:30,自引:8,他引:22       下载免费PDF全文
为提高最短路径射线追踪的精度,需要增加模型的剖分网格和离散节点,并增加子波传播方向,或者采用其他方法改善计算结果,这些处理会带来大量的额外计算.本文的快速算法改进了波前点的管理和子波传播的计算这两项耗时的工作,较大幅度地提高了传统算法的效率.在波前点的管理上,采用按时间步划分区间的方法,实现了波前点的桶排序管理,其效率高于传统方法中常用的堆排序算法. 在子波传播的计算上,利用斯奈尔定律,同时参考来自邻近节点的波的走时,来限定当前子波传播的有效区域,排除大量不需要计算的子波传播方向. 模型实算表明,本文快速算法的计算速度是传统方法的几倍至十多倍.  相似文献   

16.
使用震源轨迹确定震源位置不仅稳健而且直观,但当介质复杂时震源轨迹难以给出解析解.基于最小走时树射线追踪技术计算震源轨迹的方法(以轨迹所在的残差场中残差最小的点(初始点)至残差较小的点(震源轨迹代表点)的射线路径表示震源轨迹)适用于复杂速度模型,但尚不能正确计算由多段组成的震源轨迹,同时兼顾计算轨迹的完整性和精细性较为困难,计算参数设置烦琐不适于大批量数据的自动处理.针对该方法存在的问题,本文对其进行了改进:(1)采用一种"削皮"算法选取震源轨迹所经过的模型单元的节点作为轨迹代表点;(2)将残差较小的区域作为震源轨迹计算区域(该区域依轨迹分布自适应地划分为若干个连通区域),从未计算的轨迹代表点中选取残差最小者作为射线路径初始点,利用最小走时树算法依次计算所有连通区域内的震源轨迹;(3)通过去掉较短的不再分叉的射线路径使震源轨迹更为精细.虚拟和真实事件的算例表明,改进方法有效克服了原方法的不足,可便捷地计算复杂速度模型中事件的震源轨迹,计算的轨迹精细且较完整.  相似文献   

17.
Ray tracing of seismic surface waves is applied to tsunami propagation to examine bathymetric effect along its propagation path. Computations are made for trans-Pacific tsunamis and for near-field tsunamis in the Japan Sea. For tsunamis across the Pacific Ocean, the comparison to a uniform ocean shows that focusing and defocusing, due to bathymetry, are significant for some combinations of source and receiver. For example, the refraction of rays is predominant at the East Pacific Rise for the tsunami from Chile. The tsunamis in the Japan Sea are strongly affected by the shallow Yamato Rise. The predicted arrival time and amplitude distribution generally agree with the observations from an actual tsunami. Since the computation can be made very quickly, the method is useful for preliminary analysis of tsunami propagation, such as in an operational warning system or in the determination of computational area for finite-difference computation.  相似文献   

18.
The coupling–ray–theory tensor Green function for electromagnetic waves or elastic S waves is frequency dependent, and is usually calculated for many frequencies. This frequency dependence represents no problem in calculating the Green function, but may pose a significant challenge in storing the Green function at the nodes of dense grids, typical for applications such as the Born approximation or non–linear source determination. Storing the Green function at the nodes of dense grids for too many frequencies may be impractical or even unrealistic. We have already proposed the approximation of the coupling–ray–theory tensor Green function, in the vicinity of a given prevailing frequency, by two coupling–ray–theory dyadic Green functions described by their coupling–ray–theory travel times and their coupling–ray–theory amplitudes. The above mentioned prevailing–frequency approximation of the coupling ray theory enables us to interpolate the coupling–ray–theory dyadic Green functions within ray cells, and to calculate them at the nodes of dense grids. For the interpolation within ray cells, we need to separate the pairs of prevailing–frequency coupling–ray–theory dyadic Green functions so that both the first Green function and the second Green function are continuous along rays and within ray cells. We describe the current progress in this field and outline the basic algorithms. The proposed method is equally applicable to both electromagnetic waves and elastic S waves. We demonstrate the preliminary numerical results using the coupling–ray–theory travel times of elastic S waves.  相似文献   

19.
The objective is to provide, in one single paper, a complete collection of equations governing kinematic and dynamic ray tracing related to a symmetry plane of an anisotropic medium. Well known systems for kinematic ray tracing and in-plane dynamic ray tracing are reformulated for the purpose of clarity, by taking advantage of a vector representation of the Christoffel matrix elements and related quantities. A generalized formula is derived for the integrand in out-of-plane dynamic ray tracing, pertaining to a monoclinic medium. Integrands corresponding to non-tilted orthorhombic and transversely isotropic media are obtained as special cases.  相似文献   

20.
We present the problem of tracing rays in 2D and 3D heterogeneous isotropic media as a set of optimization problems. Each optimization problem is obtained by applying Fermat's principle to an approximation of the travel time equation from a fixed source to a fixed receiver. We assume a piecewise linear ray path that simplifies the computations of the problem, in the same way Mao and Stuart suggested in a very recent paper. Here, instead, the reflector geometry and the velocity function are computed by using nonuniformly biharmonic splines. On the other hand, to solve the optimization problem we use the Global Spectral Gradient method. This recent developed optimization scheme is a low storage optimization technique that requires very few floating point operations. It only requires the gradient of the travel time function, and it is global because it converges independently of the initial guess, that is, it does not require a close initial ray path. These three properties of the optimization method and the assumption of piecewise linear rays make this ray tracing scheme a very fast, global and effective method when estimating velocities via tomography. Moreover, in a homogeneous stratified or dipped media, any solution of the optimization problem is the best solution, i.e., it is the global minimum, no matter what numerical approach is used. We present some numerical results that show the computational advantages and the performance of this ray tracing in homogeneous and heterogeneous media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号