首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Babingtonite, Ca2Fe2+Fe3+[Si5O14(OH)] (Z?=?2, space group $ P\overline{1} $ ) from Yakuki mine (Japan), Grönsjöberget (Sweden), Kandivali Quarry (India), Baveno Quarry (Italy), Bråstad Mine (Norway), and Kouragahana (Japan), and manganbabingtonite, Ca2(Mn2+, Fe2+)Fe3+[Si5O14(OH)], from Iron Cap mine (USA) were studied using electron-microprobe analysis (EMPA), 57Fe Mössbauer analysis and single-crystal X-ray diffraction methods to determine the cation distribution at M1 and M2 and to analyze its effect on the crystal structure of babingtonite. Although all studied babingtonite crystals are relatively homogeneous, chemical zonation due to mainly Fe ? Mn substitution is observed in manganbabingtonite. Mössbauer spectra consist of two doublets with isomer shift (I.S.)?=?1.16–1.22 mm/s and quadrupole splitting (Q.S.)?=?2.33–2.50 mm/s and with I.S.?=?0.38–0.42 mm/s and Q.S.?=?0.82–0.90 mm/s, assigned to Fe2+ and Fe3+ at the M1 and M2 octahedral sites, respectively. The determined ratio of Fe2+/total Fe in manganbabingtonite (0.26) was smaller than that in the others (0.35–0.44) because of high Mn2+ content instead of Fe2+. The unit-cell parameters of babingtonite are a?=?7.466–7.478, b?=?11.624–11.642, c?=?6.681–6.690 Å, α?=?91.53–91.59, β?=?93.86–93.94, γ?=?104.20–104.34º, and V?=?560.2–562.3 Å3, and those of manganbabingtonite are a?=?7.4967(3), b?=?11.6632(4), c?=?6.7014(2) Å, α?=?91.602(2), β?=?93.989(2), γ?=?104.574(3)º, and V =565.09(5) Å3. Structural refinements converged to R 1 values of 1.64–3.16 %. The <M1-O> distance was lengthened due to the substitution of large octahedral cations such as Mn2+ for Fe2+. The increase of the M1-O8, M1-O8’ and M1-O13 lengths with mean ionic radii is slightly more pronounced than of the other M1-Oi lengths. The lengthened M1-O13 distance leads the positive correlation between Si5-O15-Si1 angle and M1-O13 distance. The increase of Si2-O3-Si1 and Si5-O12-Si4 angles due to the increase of mean ionic radius of M2 is also observed.  相似文献   

2.
The electrical conductivity of monocrystalline triphylite, Li(Fe2+,Mn2+)PO4, with the orthorhombic olivine-type structure was measured parallel (∥) to the [010] direction and ∥ [001] (space group Pnma), between ~400 and ~700 K. Electrical measurements on triphylite are of technological interest because LiFePO4 is a promising electrode material for rechargeable Li batteries. Triphylite was examined by electron microprobe, ICP atomic emission spectroscopy, X-ray diffraction, Mössbauer spectroscopy and microscopic analysis. The DC conductivity σDC was determined from AC impedance data (20 Hz–1 MHz) extrapolating to zero frequency. Triphylite shows σDC with activated behavior measured ∥ [010] between ~500 and ~700 K during the first heating up, with activation energy of E A = 1.52 eV; on cooling E A = 0.61 eV was found down to ~400 K and extrapolated σDC (295 K) ~10?9 Ω?1cm?1; ∥ [001] E A = 0.65 eV and extrapolated σDC(295 K) ~10?9 to 10?10 Ω?1cm?1, measured during the second heating cycle. The enhanced AC conductivity relative to σDC at lower temperatures indicates a hopping-type charge transport between localized levels. Conduction during the first heating up is ascribed to ionic Li+ hopping. DC polarization experiments showed conduction after the first heating up to be electronic related to lowered activation energy. Electronic conduction appears to be coupled with the presence of Li+ vacancies and Fe3+, formed by triphylite alteration. For comparison, σDC was measured on the synthetic compound LiMgPO4 with olivine-type structure, where also an activated behavior of σDC with E A ~1.45 eV was observed during heating and cooling due to ionic Li+ conduction; here no oxidation can occur associated with formation of trivalent cations.  相似文献   

3.
The Fe-rich Li-bearing magnesionigerite-6N6S occurs in the Xianghualing tin-polymetallic ore field, Linwu County, Hunan Province, Peoples Republic of China. It was found near the outer contact zone of the Laizhiling granite body and in the Middle-Upper Devonian carbonate rocks of Qiziqiao Formation. The mineral formed during the skarn stage. Its empirical formula is Sn1.81Li0.67(Fe1.43Zn1.19 Mn0.41)Σ3.03(Al14.89Mg1.46 Ti0.11Si0.01)Σ16.47O30(OH)2. The structure for magnesionigerite-6N6S was solved and refined in space group R-3?m, with a?=?5.7144(8), c?=?55.446(11) Å, V?=?1568.0(4) Å3, to R1?=?0.0528. Based on the structural refinement of single crystal diffraction data the formula of magnesionigerite-6N6S is Sn1.80Li0.97(Fe1.89Zn0.91) Σ2.80 (Al14.60Mg1.63 Ti0.20)Σ16.43O30(OH)2 with Z?=?3. Fe-rich Li-bearing magnesionigerite-6N6S contains 0.74 wt.% Li2O. The idealized charge-balanced composition of magnesionigerite-6N6S may be expressed by bivalent and trivalent cations: (Mg2+)4(Al3+)18O30(OH)2. The simplified general formula for the 6N6S polysomes in the nigerite and högbomite groups can be given as A x B18-x O30(OH)2, x?=?~4, where A?=?Mg2+, Fe2+, Zn2+; B?=?Al3+, Sn4+, Ti4+, Li+, □.  相似文献   

4.
Lithian ferrian enstatite with Li2O = 1.39 wt% and Fe2O3 7.54 wt% was synthesised in the (MgO–Li2O–FeO–SiO2–H2O) system at P = 0.3 GPa, T = 1,000°C, fO2 = +2 Pbca, and a = 18.2113(7), b = 8.8172(3), c = 5.2050(2) Å, V = 835.79(9) Å3. The composition of the orthopyroxene was determined combining EMP, LA-ICP-MS and single-crystal XRD analysis, yielding the unit formula M2(Mg0.59Fe 0.21 2+ Li0.20) M1(Mg0.74Fe 0.20 3+ Fe 0.06 2+ ) Si2O6. Structure refinements done on crystals obtained from synthesis runs with variable Mg-content show that the orthopyroxene is virtually constant in composition and hence in structure, whereas coexisting clinopyroxenes occurring both as individual grains or thin rims around the orthopyroxene crystals have variable amounts of Li, Fe3+ and Mg contents. Structure refinement shows that Li is ordered at the M2 site and Fe3+ is ordered at the M1 site of the orthopyroxene, whereas Mg (and Fe2+) distributes over both octahedral sites. The main geometrical variations observed for Li-rich samples are actually due to the presence of Fe3+, which affects significantly the geometry of the M1 site; changes in the geometry of the M2 site due to the lower coordination of Li are likely to affect both the degree and the kinetics of the non-convergent Fe2+-Mg ordering process in octahedral sites.  相似文献   

5.
Using single-crystal X-ray diffraction at 293, 200 and 100 K, and neutron diffraction at 50 K, we have refined the positions of all atoms, including hydrogen atoms (previously undetermined), in the structure of coquimbite ( $ P {\bar 3}1c $ , a?=?10.924(2)/10.882(2) Å, c?=?17.086(3) / 17.154(3) Å, V?=?1765.8(3)/1759.2(5) Å3, at 293 / 50 K, respectively). The use of neutron diffraction allowed us to determine precise and accurate hydrogen positions. The O–H distances in coquimbite at 50 K vary between 0.98 and 1.01 Å. In addition to H2O molecules coordinated to the Al3+ and Fe3+ ions, there are rings of six “free” H2O molecules in the coquimbite structure. These rings can be visualized as flattened octahedra with the distance between oxygen and the geometric center of the polyhedron of 2.46 Å. The hydrogen-bonding scheme undergoes no changes with decreasing temperature and the unit cell shrinks linearly from 293 to 100 K. A review of the available data on coquimbite and its “dimorph” paracoquimbite indicates that paracoquimbite may form in phases closer to the nominal composition of Fe2(SO4)3·9H2O. Coquimbite, on the other hand, has a composition approximating Fe1.5Al0.5(SO4)3·9H2O. Hence, even a “simple” sulfate Fe2-x Al x (SO4)3·9H2O may be structurally rather complex.  相似文献   

6.
Pale-blue to pale-green tourmalines from the contact zone of Permian pegmatites to mica schists and marbles from different localities of the Austroalpine basement units (Rappold Complex) in Styria, Austria, are characterized. All these Mg-rich tourmalines have small but significant Li contents, up to 0.29 wt% Li2O, and can be characterized as dravite, with FeO contents of ?~?0.9–2.7 wt%. Their chemical composition varies from X (Na0.67Ca0.19?K0.02?0.12) Y (Mg1.26Al0.97Fe2+ 0.36Li0.19Ti4+ 0.06Zn0.01?0.15) Z (Al5.31?Mg0.69) (BO3)3 Si6O18 V (OH)3? W [F0.66(OH)0.34], with a?=?15.9220(3), c?=?7.1732(2) Å to X (Na0.67Ca0.24?K0.02?0.07) Y (Mg1.83Al0.88Fe2+ 0.20Li0.08Zn0.01Ti4+ 0.01?0.09) Z (Al5.25?Mg0.75) (BO3)3 Si6O18 V (OH)3? W [F0.87(OH)0.13], with a?=?15.9354(4), c?=?7.1934(4) Å, and they show a significant Al-Mg disorder between the Y and the Z sites (R1?=?0.013–0.015). There is a positive correlation between the Ca content and?<?Y-O?>?distance for all investigated tourmalines (r?≈?1.00), which may reflect short-range order configurations including Ca and Fe2+, Mg, and Li. The tourmalines have XMg (XMg?=?Mg/Mg?+?Fetotal) values in the range 0.84–0.95. The REE patterns show more or less pronounced negative Eu and positive Yb anomalies. In comparison to tourmalines from highly-evolved pegmatites, the tourmaline samples from the border zone of the pegmatites of the Rappold Complex contain relatively low amounts of total REE (~8–36 ppm) and Th (0.1–1.8 ppm) and have low LaN/YbN ratios. There is a positive correlation (r?≈?0.91) between MgO of the tourmalines and the MgO contents of the surrounding mica schists. We conclude that the pegmatites formed by anatectic melting of mica schists and paragneisses in Permian time. The tourmalines crystallized from the pegmatitic melt, influenced by the metacarbonate and metapelitic host rocks.  相似文献   

7.
The single-crystal of humboldtine [Fe2+(C2O4) · 2H2O] was first synthesized and the crystal structure has been refined. Single-crystal X-ray diffraction data were collected using an imaging-plate diffractometer system and graphite-monochromatized MoKα radiation. The crystal structure of humboldtine was refined to an agreement index (R1) of 3.22% calculated for 595 unique observed reflections. The mineral crystallizes in the monoclinic system, space group C2/c, with unit cell dimensions of a = 12.011 (11), b = 5.557 (5), c = 9.920 (9) Å, β = 128.53 (3)?, V = 518.0 (8) Å3, and Z = 4. In this crystal structure, the alternation of oxalate anions [(C2O4)2?] and Fe2+ ions forms one-dimensional chain structure parallel to [010]; water molecules (H2O)0 create hydrogen bonds to link the chains, where (H2O)0 is essentially part of the crystal structure. The water molecules with the two lone electron pairs (LEPs) on their oxygen atom are tied obliquely to the chains, because the one lone electron pair is considered to participate in the chemical bonds with Fe2+ ions. Humboldtine including hydrogen bonds is isotypic with lindbergite [Mn2+(C2O4) · 2H2O]. The donor–acceptor separations of the hydrogen bonds in humboldtine are slightly shorter than those in lindbergite, which suggests that the hydrogen bonds in the former are stronger than those in the latter. The infrared and Raman spectra of single-crystals of humboldtine and lindbergite confirmed the differences in hydrogen-bond geometry. In addition, Fe2+–O stretching band of humboldtine was split and broadened in the observed Raman spectrum, owing to the Jahn–Teller effect of Fe2+ ion. These interpretations were also discussed in terms of bond-valence theory.  相似文献   

8.
Auriacusite, ideally Fe3+Cu2+AsO4O, is a new arsenate mineral (IMA2009–037) and the Fe3+ analogue of olivenite, from the Black Pine mine, 14.5 km NW of Philipsburg, Granite Co., Montana, USA. It occurs lining quartz vughs and coating quartz crystals and is associated with segnitite, brochantite, malachite, tetrahedrite and pyrite. Auriacusite forms fibrous crystals up to about 5?µm in width and up to about 100?µm in length, which are intergrown to form fibrous mats. Individual crystals are a brownish golden yellow, whilst the fibrous mats are ochreous yellow. The crystals have a silky lustre and a brownish yellow streak. Mohs hardness is about 3 (estimated). The fracture is irregular and the tenacity is brittle. Auriacusite crystals are biaxial (+), with α?=?1.830(5), β?=?1.865(5) and γ?=?1.910(5), measured using white light, and with 2V meas.?=?83(3)º and 2V calc. = 84.6º. Orientation: X?=?a, Y?=?c, Z?=?b. Crystals are nonpleochroic or too weakly so to be observed. The empirical formula (based on 5 O atoms) is (Fe 1.33 3+ Cu0.85Zn0.03)Σ2.21(As0.51Sb0.27Si0.04?S0.02Te0.01)Σ0.85O5. Auriacusite is orthorhombic, space group Pnnm, a?=?8.6235(7), b?=?8.2757(7), c?=?5.9501(5) Å, V?=?424.63(6) Å3, Z?=?4. The five strongest lines in the powder X-ray diffraction pattern are [d obs in Å / (I) / hkl]: 4.884 / (100) / 101, 001; 2.991 / (92) / 220; 2.476 / (85) / 311; 2.416 / (83) / 022; 2.669 / (74) / 221. The crystal structure was solved from single-crystal X-ray diffraction data utilising synchrotron radiation and refined to R 1?=?0.1010 on the basis of 951 unique reflections with F o?>?4σF. Auriacusite is identified as a member of the olivenite group with Fe3+ replacing Zn2+ or Cu2+ in trigonal bipyramidal coordination. Evidence suggests that auriacusite is an intermediate member between olivenite and an as yet undescribed Fe3+Fe3+-dominant member. The name is derived from the Latin auri (golden yellow) and acus (needle), in reference to its colour and crystal morphology.  相似文献   

9.
Natural barbosalite Fe2+Fe3+ 2 (PO4)2(OH)2 from Bull Moose Mine, South Dakota, U.S.A., having ideal composition, was investigated with single crystal X-ray diffraction techniques, Mössbauer spectroscopy and SQUID magnetometry to redetermine crystal structure, valence state of iron and evolution of 57Fe Mössbauer parameter and to propose the magnetic structure at low temperatures. At 298?K the title compound is monoclinic, space group P21/n, a o ?= 7.3294(16)?Å, b o ?=?7.4921(17)?Å, c o ?=?7.4148 (18)?Å, β?=?118.43(3)°, Z?=?2. No crystallographic phase transition was observed between 298?K and 110?K. Slight discontinuities in the temperature dependence of lattice parameters and bond angles in the range between 150?K and 180?K are ascribed to the magnetic phase transition of the title compound. At 298?K the Mössbauer spectrum of the barbosalite shows two paramagnetic components, typical for Fe2+ and Fe3+ in octahedral coordination; the area ratio Fe3+/Fe2+ is exactly two, corresponding to the ideal value. Both the Fe2+ and the Fe3+ sublattice order magnetically below 173?K and exhibit a fully developed magnetic pattern at 160?K. The electric field gradient at the Fe2+ site is distorted from axial symmetry with the direction of the magnetic field nearly perpendicular to Vzz, the main component of the electric field gradient. The temperature dependent magnetic susceptibility exhibits strong antiferromagnetic ordering within the corner-sharing Fe3+-chains parallel to [101], whereas ferromagnetic coupling is assumed within the face-sharing [1?1?0] and [?1?1?0] Fe3+-Fe2+-Fe3+ trimer, connecting the Fe3+-chains to each other.  相似文献   

10.
A new coexisting amphibole pair was recently found in the Jianshan iron deposit, Loufan of Shanxi Province, China. Electron microprobe analysis shows that the coexisting pair is composed of grünerite K0.001 (Na0.027 Ca0.073 Mn0.031 Fe 1.801 2+ )1.932 (Fe 2.948 2+ Mg1.964 Ti0.002 Al0.087)5Si8.069 O22.10(OH)2 and ferropargasite (K0.135 Na0.461)0.596 (Na0.088 Ca1.853 Mn0.005 Fe 0.072 2+ )2(Mn0.005Fe 2.789 2+ Mg0.875Ti0.021Fe 0.499 3+ Al0.812)5(Si6.103Al1.897)8O22.00(OH)2. The two kinds of amphiboles occur in amphibole schist not only as separate phenocrysts, but also are combined to form “single-crystal” phenocrysts in the form of topotactic intergrowths with the common c- and b-axes. The boundary between topotactic grünerite and ferropargasite is optically and chemically sharp. In comparison with the coexisting ferromagnesian amphibole and calcic amphibole pair discovered by predecessors, the newly discovered pair has lower Mg/Fe ratios and wider miscibility gaps.  相似文献   

11.
Single crystals of the garnet Mn2+ 3Mn3+ 2[SiO4]3 and coesite were synthesised from MnO2-SiO2 oxide mixtures at 1000°C and 9 GPa in a multianvil press. The crystal structure of the garnet [space group Iad, a=11.801(2) Å] was refined at room temperature and 100 K from single-crystal X-ray data to R1=2.36% and R1=2.71%, respectively. In contrast to tetragonal Ca3Mn3+ 2[GeO4]3 (space group I41/a), the high-pressure garnet is cubic and does not display an ordered Jahn-Teller distortion of octahedral Mn3+. A disordered Jahn-Teller distortion either dynamic or static is evidenced by unusual high anisotropic displacement parameters. The room temperature structure is characterised by following bond lengths: Si-O=1.636(4) Å (tetrahedron), Mn3+-O=1.995 (4) Å (octahedron), Mn2+-O=2.280(5) and 2.409(4) Å (dodecahedron). The cubic structure was preserved upon cooling to 100 K [a=11.788(2) Å] and upon compressing up to 11.8 GPa in a diamond-anvil cell. Pressure variation of the unit cell parameter expressed by a third-order Birch-Murnaghan equation of state led to a bulk modulus K 0=151.6(8) GPa and its pressure derivatives K′=6.38(19). The peak positions of the Raman spectrum recorded for Mn2+ 3Mn3+ 2[SiO4]3 were assigned based on a calderite Mn2+ 3Fe3+ 2[SiO4]3 model extrapolated from andradite and grossular literature data.  相似文献   

12.
Sr2Fe2O5 is a typical oxygen-deficient perovskite and adopts brownmillerite phase (Ibm2, Z = 4) at ambient conditions. Its high-pressure structural behavior has been investigated by both synchrotron radiation X-ray diffraction with diamond anvil cell technique and first principles calculations. Experimental results clearly show that the brownmillerite Sr2Fe2O5 transforms into a tetragonal perovskite-type phase at 12.0 GPa and room temperature, and then into a Sr2Mn2O5-type phase (Pbam, Z = 2) at 23.3 GPa after high-temperature annealing. The Sr2Mn2O5-type phase is stable up to at least 60 GPa and it further undergoes a reversible transition to a lower symmetry phase at 79.1 GPa and ~2,000 K. The results from theoretical calculation not only confirm that the tetragonal phase of Sr2Fe2O5 is isostructural with the high-temperature structure of Ba2In2O5 (I4/mcm, Z = 4), but also predict a series of phase transitions from brownmillerite phase to Ba2In2O5-type phase at 6.9 GPa, and then to Sr2Mn2O5-type phase at 19.7 GPa, which coincides with present experiment results. Isothermal pressure–volume relationship of the Sr2Mn2O5-type phase can be well described by the Birch–Murnaghan Equation of State with V 0 = 111.6(10) Å3, B 0 = 122(9) GPa, B 0  = 4(fixed) experimentally and V 0 = 115.8(3) Å3, B 0 = 92(4) GPa, B 0  = 4(fixed) theoretically. The transition mechanism from brownmillerite to Ba2In2O5-type phase is the displacement of four-coordinated Fe3+ ions to higher coordinated positions upon compression. In addition, a semiconductor-to-metal crossover is predicted from brownmillerite to Ba2In2O5-type or Sr2Mn2O5-type phase.  相似文献   

13.
The optical anomalies, and surface and lamellar textures of a birefringent grossular garnet crystal from the Eden Mills, Belvidere Mountain, Vermont, USA, have been investigated by optical polarizing microscope, electron-probe micro-analyzer, back-scattered electron imaging, infrared spectroscopy, and single-crystal X-ray diffractometer from the standpoint of crystal growth. This grossular shows one-to-one correlation between natural surface features and its internal textures under crossed polarizers. Electron-probe micro-analyzer (EPMA) gave average chemical composition in (110) thin section, of bright lamella {Ca2.97Mn0.06}∑3.03 [Al1.59Fe0.37Ti0.01]∑1.97(Si3.00)∑3.00 (Gros79.5And18.9Sps1.6) and of dark host {Ca2.99Mn 0.06}∑3.05 [Al1.73Fe0.26 Ti0.01]∑2.00(Si2.97OH0.03)∑3.00 (Gros85.4And13Sps1.6). The correspondence of surface features and the internal textures with spiral or pyramidal growth mechanism suggest that the internal textures of the Eden Mills grossular are formed during growth process. The optical vibrational orientations and the growth steps inclination along [001] and \( \left[\overset{-}{1}10\right] \) directions predict monoclinic symmetry. With X-ray diffractometer (XRD) method, pseudocubic parameters are a = 11.839(2) Å, b = 11.855(1) Å, and c = 11.868(2) Å with interaxial angles α = 90.00(1)°, β = 89.99(1)°, and γ = 90.02(2)° that show orthorhombic symmetry of this crystal. Lamellar texture of Al3+-rich host with Fe3+-rich lamella infers cation ordering at octahedral site of the garnet structure. IR data favors the non-cubic orientation of [(OH) 4] at tetrahedral position in this grossular structure.  相似文献   

14.
The crystal structures of synthetic hexagonal and orthorhombic Fe-cordierite polymorphs with the space groups P6/mcc and Cccm were refined from single-crystal X-ray diffraction data to R 1, hex?=?3.14 % and R 1, ortho?=?4.48 %. The substitution of the larger Fe2+ for Mg leads to multiple structural changes and an increase of the unit cell volumes, with a, c (hex)?=?9.8801(16) Å, 9.2852(5) Å and a, b, c (ortho)?=?17.2306(2) Å, 9.8239(1) Å, 9.2892(1) Å in the end-members. Furthermore Fe incorporation results in an increase of the volumes of the octahedra, although the diameters of the octahedra in direction of the c-axis decrease in both polymorphs. X-ray powder diffraction analysis indicates a high degree of Al/Si ordering in the orthorhombic polymorph, the Miyashiro distortion index is ~0.24. Estimations of site occupancies based on the determined tetrahedral volumes result in the following values for hexagonal Fe-cordierite: ~73 % Al for T1 and ~28 % Al for T2. For the first time Raman spectroscopy was performed on the hexagonal Fe-cordierite polymorph. In the hexagonal Fe-cordierite polymorph most Raman peaks are shifted towards lower wavenumbers when compared with the Mg-end-member.  相似文献   

15.
Two samples of hydroxyl-clinohumite, sample SZ0407B with approximate composition Mg8.674(14)Fe0.374(4)(Si0.99(1)O4)4(OH)2 and sample SZ0411B with composition Mg9(SiO4)4(OH)2, were synthesized at 12 GPa and 1,250 °C coexisting with olivine. Unit-cell parameters determined by single-crystal X-ray diffraction are given as follows: a = 4.7525(4) Å, b = 10.2935(12) Å, c = 13.7077(10) Å, α = 100.645(9)°, V = 659.04(9) Å3 for SZ0407B, and a = 4.7518(6) Å, b = 10.2861(12) Å, c = 13.7008(9) Å, α = 100.638(9)°, V = 658.15(9) Å3 for SZ0411B. Single-crystal X-ray intensity data were collected for crystal structure refinements of both samples. Relative to the pure-Mg sample, Fe decreases M3–OH bond lengths by ~0.010(3) Å, consistent with some ferric iron ordering into M3. Raman spectroscopy shows two strong bands in the lattice-mode region at 650 and 690 cm?1 in the Fe-bearing sample, which are not observed in the pure-Mg sample. Spectra in the H2O region show at least five bands, which are deconvolved into seven distinct O–H-stretching modes. Thermal expansion measurements were carried out for both samples from 153 to 787 K by single-crystal X-ray diffraction. The average a-, b-, c-axial and volumetric thermal expansion coefficients (10?6 K?1) are 10.5(1), 12.3(2), 12.5(2) and 34.9(5) for SZ0407B, respectively, and 11.1(1), 12.6(3), 13.7(3), 36.8(6) for SZ0411B, respectively. After heating, the unit-cell parameters were refined again for each sample at ambient condition, and no significant changes were observed, indicating no significant oxidation or dehydration during the experiment. For the DHMS phases along the brucite–forsterite join, linear regression gives a systematic linear decrease in expansivity with increasing density. Further, substitution of ferrous iron into these structures decreases thermal expansivity, making the Fe-bearing varieties slightly stiffer.  相似文献   

16.
The new mineral species lavoisierite, ideally Mn2+ 8[Al10(Mn3+Mg)][Si11P]O44(OH)12, has been discovered in piemontite-bearing micaschists belonging to the Piedmontese Nappe from Punta Gensane, Viù Valley, Western Alps, Italy. It occurs as yellow-orange acicular to prismatic-tabular crystals up to a few millimeters in length, with white streak and vitreous luster, elongated along [010] and flattened on {001}. Lavoisierite is associated with quartz, “mica,” sursassite, piemontite, spessartine, braunite, and “tourmaline.” Calculated density is 3.576 g cm?3. In plane-polarized light, it is transparent, pleochroic, with pale yellow parallel to [010] and yellow-orange normal to this direction; extinction is parallel and elongation is positive. Birefringence is moderate; the calculated average refraction index n is 1.750. Lavoisierite is orthorhombic, space group Pnmm, with a 8.6891(10), b 5.7755(3), c 36.9504(20) Å, V 1854.3(2) Å3, Z = 2. Calculated main diffraction lines of the X-ray powder diffraction pattern are [d in Å, (I), (hkl); relative intensities are visually estimated]: 4.62 (m) (112), 2.931 (vs) (1110), 2.765 (s) (1111), 2.598 (s) (310), 2.448 (ms) (028). Chemical analyses by electron microprobe give (in wt%) P2O5 2.08, V2O5 0.37, SiO2 34.81, TiO2 0.13, Al2O3 22.92, Cr2O3 0.32, Fe2O3 0.86, Mn2O3 6.92, MnO 19.09, MgO 5.73, CaO 1.94, Na2O 0.01, H2O 5.44, sum 100.62 wt%. H2O content was calculated from structure refinement. The empirical formula, based on 56 anions, is (Mn 5.340 2+ Mg1.810Ca0.686Na0.006)Σ=7.852(Al8.921Mn 1.739 3+ Mg1.010Fe 0.214 3+ Cr0.084Ti0.032)Σ=12.000(Si11.496P0.582V0.081)Σ=12.159O43.995(OH)12.005. The crystal structure of lavoisierite was solved by direct methods and refined on the basis of 1743 observed reflections to R 1 = 4.6 %. The structure is characterized by columns of edge-sharing octahedra running along [010] and linked to each other by means of [SiO4], [Si2O7], and [Si3O10] groups. Lavoisierite, named after the French chemist and biologist Antoine-Laurent de Lavoisier (1743–1794), displays an unprecedented kind of structure, related to those of “ardennite” and sursassite.  相似文献   

17.
Microprobe analysis, single crystal X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, and X-ray absorption spectroscopy were applied on Fe-rich osumilite from the volcanic massif of Mt. Arci, Sardinia, Italy. Osumilite belongs to the space group P6/mcc with unit cell parameters a = 10.1550(6), c = 14.306(1) Å and chemical formula (K0.729)C (Na0.029)B (Si10.498 Al1.502)T1 (Al2.706 Fe 0.294 2+ )T2 (Mg0.735 Mn0.091 Fe 1.184 2+ )AO30. Structure refinement converged at R = 0.0201. Unit cell parameter a is related to octahedral edge length as well as to Fe2+ content, unlike the c parameter which does not seem to be affected by chemical composition. The determination of the amount of each element on the mineral surface, obtained through X-ray photoelectron spectroscopy high-resolution spectra in the region of the Si2p, Al2p, Mg1s and Fe2p core levels, suggests that Fe presents Fe2+ oxidation state and octahedral coordination. Two peaks at 103.1 and 100.6 eV can be related to Si4+ and Si1+ components, respectively, both in tetrahedral coordination. The binding energy of Al2p, at 74.5 eV, indicates that Al is mostly present in the distorted T2 site, whereas the Mg peak at 1,305.2 eV suggests that this cation is located at the octahedral site. X-ray absorption at the Fe L2,3-edges confirms that iron is present in the mineral structure, prevalently in the divalent state and at the A octahedral site.  相似文献   

18.
Four samples of synthetic chromium-bearing spinels of (Mg, Fe2+)(Cr, Fe3+)2O4 composition and four samples of natural spinels of predominantly (Mg, Fe2+)(Al, Cr)2O4 composition were studied at ambient conditions by means of optical absorption spectroscopy. Synthetic end-member MgCr2O4 spinel was also studied at pressures up to ca. 10 GPa. In both synthetic and natural samples, chromium is present predominantly as octahedral Cr3+ seen in the spectra as two broad intense absorption bands in the visible range caused by the electronic spin-allowed 4 A 2g  → 4 T 2g and 4 A 2g  → 4 T 1g transitions (U- and Y-band, respectively). A distinct doublet structure of the Y-band in both synthetic and natural spinels is related to trigonal distortion of the octahedral site in the spinel structure. A small, if any, splitting of the U-band can only be resolved at curve-fitting analysis. In all synthetic high-chromium spinels, a couple of relatively narrow and weak bands of the spin-allowed transitions 4 A 2g  → 2 E g and 4 A 2g  → 2 T 1g of Cr3+, intensified by exchange-coupled interaction between Cr3+ and Fe3+ at neighboring octahedral sites of the structure, appear at ~14,400 and ~15,100 cm?1. A vague broad band in the range from ca. 15,000 to 12,000 cm?1 in synthetic spinels is tentatively attributed to IVCr2+ + VICr3+ → IVCr3+ + VICr2+ intervalence charge-transfer transition. Iron, mainly as octahedral Fe3+, causes intense high-energy absorption edge in near UV-range (ligand–metal charge-transfer O2? → Fe3+, Fe2+ transitions). As tetrahedral Fe2+, it appears as a strong infrared absorption band at around 4,850 cm?1 caused by electronic spin-allowed 5 E → 5 T 2 transitions of IVFe2+. From the composition shift of the U-band in natural and synthetic MgCr2O4 spinels, the coefficient of local structural relaxation around Cr3+ in spinel MgAl2O4–MgCr2O4 system was evaluated as ~0.56(4), one of the lowest among (Al, Cr)O6 polyhedra known so far. The octahedral modulus of Cr3+ in MgCr2O4, derived from pressure-induced shift of the U-band of Cr3+, is ~313 (50) GPa, which is nearly the same as in natural low-chromium Mg, Al-spinel reported by Langer et al. (1997). Calculated from the results of the curve-fitting analysis, the Racah parameter B of Cr3+ in natural and synthetic MgCr2O4 spinels indicates that Cr–O-bonding in octahedral sites of MgCr2O4 has more covalent character than in the diluted natural samples. Within the uncertainty of determination in synthetic MgAl2O4 spinel, B does not much depend on pressure.  相似文献   

19.
Magnesium silicate perovskite is the predominant phase in the Earth’s lower mantle, and it is well known that incorporation of iron has a strong effect on its crystal structure and physical properties. To constrain the crystal chemistry of (Mg, Fe)SiO3 perovskite more accurately, we synthesized single crystals of Mg0.946(17)Fe0.056(12)Si0.997(16)O3 perovskite at 26 GPa and 2,073 K using a multianvil press and investigated its crystal structure, oxidation state and iron-site occupancy using single-crystal X-ray diffraction and energy-domain Synchrotron Mössbauer Source spectroscopy. Single-crystal refinements indicate that all iron (Fe2+ and Fe3+) substitutes on the A-site only, where \( {\text{Fe}}^{ 3+ } /\Upsigma {\text{Fe}}\sim 20\,\% \) based on Mössbauer spectroscopy. Charge balance likely occurs through a small number of cation vacancies on either the A- or the B-site. The octahedral tilt angle (Φ) calculated for our sample from the refined atomic coordinates is 20.3°, which is 2° higher than the value calculated from the unit-cell parameters (a = 4.7877 Å, b = 4.9480 Å, c = 6.915 Å) which assumes undistorted octahedra. A compilation of all available single-crystal data (atomic coordinates) for (Mg, Fe)(Si, Al)O3 perovskite from the literature shows a smooth increase of Φ with composition that is independent of the nature of cation substitution (e.g., \( {\text{Mg}}^{ 2+ } - {\text{Fe}}^{ 2+ } \) or \( {\text{Mg}}^{ 2+ } {\text{Si}}^{ 4+ } - {\text{Fe}}^{ 3+ } {\text{Al}}^{ 3+ } \) substitution mechanism), contrary to previous observations based on unit-cell parameter calculations.  相似文献   

20.
Meridianiite, MgSO4·11H2O, is the most highly hydrated phase in the binary MgSO4–H2O system. Lower hydrates in the MgSO4–H2O system have end-member analogues containing alternative divalent metal cations (Ni2+, Zn2+, Mn2+, Cu2+, Fe2+, and Co2+) and exhibit extensive solid solution with MgSO4 and with one another, but no other undecahydrate is known. We have prepared aqueous MgSO4 solutions doped with these other cations in proportions up to and including the pure end-members. These liquids have been solidified into fine-grained polycrystalline blocks of metal sulfate hydrate + ice by rapid quenching in liquid nitrogen. The solid products have been characterised by X-ray powder diffraction, and the onset of partial melting has been quantified using a thermal probe. We have established that of the seven end-member metal sulfates studied, only MgSO4 forms an undecahydrate; ZnSO4 forms an orthorhombic heptahydrate (synthetic goslarite), MnSO4, FeSO4, and CoSO4 form monoclinic heptahydrates (syn. mallardite, melanterite, bieberite, respectively), and CuSO4 crystallises as the well-known triclinic pentahydrate (syn. chalcanthite). NiSO4 forms a new hydrate which has been indexed with a triclinic unit cell of dimensions a = 6.1275(1) Å, b = 6.8628(1) Å, c = 12.6318(2) Å, α = 92.904(2)°, β = 97.678(2)°, and γ = 96.618(2)°. The unit-cell volume of this crystal, V = 521.74(1) Å3, is consistent with it being an octahydrate, NiSO4·8H2O. Further analysis of doped specimens has shown that synthetic meridianiite is able to accommodate significant quantities of foreign cations in its structure; of the order 50 mol. % Co2+ or Mn2+, 20–30 mol. % Ni2+ or Zn2+, but less than 10 mol. % of Cu2+ or Fe2+. In three of the systems we examined, an ‘intermediate’ phase occurred that differed in hydration state both from the Mg-bearing meridianiite end-member and the pure dopant end-member hydrate. In the case of CuSO4, we observed a melanterite-structured heptahydrate at Cu/(Cu + Mg) = 0.5, which we identify as synthetic alpersite [(Mg0.5Cu0.5)SO4·7H2O)]. In the NiSO4- and ZnSO4-doped systems we characterised an entirely new hydrate which could also be identified to a lesser degree in the CuSO4- and the FeSO4-doped systems. The Ni-doped substance has been indexed with a monoclinic unit-cell of dimensions a = 6.7488(2) Å, b = 11.9613(4) Å, c = 14.6321(5) Å, and β = 95.047(3)°, systematic absences being indicative of space-group P21/c with Z = 4. The unit-cell volume, V = 1,176.59(5) Å3, is consistent with it being an enneahydrate [i.e. (Mg0.5Ni0.5)SO4·9H2O)]. Similarly, the new Zn-bearing enneahydrate has refined unit cell dimensions of a = 6.7555(3) Å, b = 11.9834(5) Å, c = 14.6666(8) Å, β = 95.020(4)°, V = 1,182.77(7) Å3, and the new Fe-bearing enneahydrate has refined unit cell dimensions of a = 6.7726(3) Å, b = 12.0077(3) Å, c = 14.6920(5) Å, β = 95.037(3)°, and V = 1,190.20(6) Å3. The observation that synthetic meridianiite can form in the presence of, and accommodate significant quantities of other ions increases the likelihood that this mineral will occur naturally on Mars—and elsewhere in the outer solar system—in metalliferous brines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号