首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
A simple new model for sudden lithospheric thinning that considers the crust to be stretched and the lower layer of the lithosphere to be partially stretched and partially mechanically eroded is proposed. This model allows calculation of the thermal field of the lithosphere during the initial warming phase and the surface uplift.
Application of this model to the Tuscan Basin explains the high regional heat flux density values (>100 mW m−2 ), the tectonic subsidence (about 1 km) and the average uplift (>400 m) observed in this region well.  相似文献   

5.
Curie-temperature depth estimation using a self-similar magnetization model   总被引:4,自引:0,他引:4  
The Earth's crust is magnetized down to the Curie-temperature depth at about 10 to 50 km. This limited depth extent of the crustal magnetization is discernible in the power spectra of magnetic maps of South Africa and Central Asia. At short wavelengths, the power increases as rapidly towards longer wavelengths as expected for a self-similar magnetized crust with unlimited depth extent. Above wavelengths of about 100 km the power starts increasing less rapidly, indicating the absence of deep-seated sources. To quantify this effect we derive the theoretical power spectrum due to a slab carved out of a self-similar magnetization distribution. This model power spectrum matches the power spectra of South Africa and Central Asia for a self-similarity parameter of β = 4 and Curie temperature depths of 15 to 20 km.  相似文献   

6.
Magnetic susceptibility values for topsoils across England arc combined with data for soil type, geochemistry and concentrations of magnetotactic bacteria in order to evaluate different theories for explaining soil magnetism. Strongly magnetic soils in unpolluted areas are found over weakly magnetic substrates and are dominated by ultrafine superparamagnetic grains. Magnetotactic bacteria are present in insufficient concentrations to account for strongly magnetic soils, and crop burning is discounted as a major factor. A small number of samples show high values associated with either airborne magnetic particulates from pollution or residual primary ferrimagnetic minerals from igneous substrates. The results are used to construct a new mechanism for the formation of secondary ferrimagnetic minerals that links abiological weathering and biological fermentation processes. The fundamental driving force in the mechanism is Fe supply, which may be linked to climate. Observed causative associations between climate and the magnetic susceptibility of loess-palaeosol sequences are supported by the findings.  相似文献   

7.
Unmixing magnetic remanence curves without a priori knowledge   总被引:1,自引:0,他引:1  
Many of the natural materials studied in rock and environmental magnetism contain a mixed assemblage of mineral grains with a variety of different origins. Mathematical decomposition of the bulk magnetic mineral assemblage into populations with different properties can therefore be a source of useful environmental information. Previous investigations have shown that such unmixing into component parts can provide insights concerning source materials, transport processes, diagenetic alteration, authigenic mineral growth and a number of other processes. A new approach will be presented that performs a linear unmixing of remanence data into coercivity based end-members using only a minimal number of assumptions. A non-negative matrix factorization (NMF) algorithm for unmixing remanence data into constituent end-members is described with case studies to demonstrate the utility of the approach. The shape of the end-members and their abundances obtained by NMF is based solely on the variation in the measured data set and there is no requirement for mathematical functions or type curves to represent individual components. Therefore, in contrast to previous approaches that aimed to unmix curves into components corresponding to individual minerals and domain states, NMF produces a genetically more meaningful decomposition showing how a data set can be represented as a linear sum of invariant parts. It has been found that the NMF algorithm performs well for both absolute and normalized remanence curves, with the capacity to process thousands of measured data points rapidly.  相似文献   

8.
Here we report our recent magnetic fabric investigation of loess deposition in Shagou section, located at the northeastern Qilian Mountains, the northeastern rim of the Tibetan Plateau. On the basis of environmental magnetism data, we indicate that the variation of anisotropy of magnetic susceptibility (AMS) parameters, especially the foliation (F) and degree of anisotropy (P), might be more sensitive to the environmental change in the arid and semiarid regions than the magnetic susceptibility fluctuation. During the investigated interval, from 0.83 to 0.128 Ma, most of the middle to late Pleistocene significant climate change can be unraveled by the AMS parameters, such as the strengthening of cold/dry climate, the step drying event occurred nearly 250 ka, and the severe environmental change in MIS16. Our results also suggest that there is strong correlation between median diameter (Md) of grain size, F, and P. We propose that the AMS parameters can act as an important paleoenvironmental change indicator in the arid and semiarid regions.  相似文献   

9.
1 IntroductionM agnetic fabric is the basic character and the im portant trait for m agnetic m inerals insedim entary rocks.Ithas been w idely used in geologicaland environm entalinvestigations in thepastdecades (Ress,1965;Rolph,1989;Sagnotti,1998;Raposo,…  相似文献   

10.
11.
12.
13.
14.
A record of normal-reversed-polarity transition has been obtained from a 4 m thickness of loess exposed at a section near Lanzhou, China. Magnetostratigraphic studies suggest it may represent a reversal bounding the onset of a reversed-polarity zone within the Jaramillo Normal Subchron. The natural remanent magnetization consists of two components: a low-coercivity (≤20mT), low-unblocking-temperature (≤300°C) component of viscous origin and a high-coercivity (>20mT), high-unblocking-temperature (250–700 °C) component carrying the characteristic remanence. Mineral magnetic analyses confirmed the presence of magnetite, its low-temperature oxidation products and haematite, each contributing to the remanence properties. Grain size and concentration showed limited variations and there was little evidence for the presence of the ultrafine magnetic phase commonly associated with palaeosol formation. Pedogenic processes appeared negligible and their effects unimportant, with detrital processes dominating the mineralogy and most probably the acquisition of the characteristic remanence. The reversal record was characterized by the decay and recovery of the geocentric axial dipole term with large directional swings occurring during periods of reduced relative palaeofield intensity. The virtual geomagnetic poles traced a complex path exhibiting no particular geographical confinement. Relative palaeofield intensity determinations were insensitive to the choice of normalization parameter and showed a distinctive asymmetry. Striking similarities were observed with the Matuyama-Jaramillo reversal record, obtained from the same section (Rolph 1993), and the Steens Mountain reversal record (Prévot el al. 1985), lending further support for the existence of unusually high post-transitional field intensities  相似文献   

15.
16.
17.
18.
19.
20.
Remanence directions, measured at 2  cm intervals along a composite 88  m bore-core, enable mean palaeomagnetic poles to be defined at 13.6°S, 25.2°W and 13.6°N, 154.8°E. The directions of remanence vary very smoothly away from each palaeomagnetic pole, extending more than 90° from them. This raises doubts about the physical meaning of polarity definitions based on the distance between virtual and mean palaeomagnetic poles. For practical purposes, intermediate polarity is defined as directions whose virtual poles lie more than 25° from the mean pole, enabling at least five normal subchrons to be specified within the upper predominately reversed quarter of the core and 11 reversed subchrons within the lower predominantly normal three-quarters of the core. The stratigraphic thickness between these subchrons shows a very high linear correlation ( r >0.99) with the stratigraphic thickness of other terrestrial sequences and the distances between marine polarity sequences of comparable age. The analysed sequence contains wavelength spectra which, when transformed to the temporal realm, match periodicities determined for three marine magnetic anomaly profiles of similar age. These also match planetary orbital periodicities for the Cretaceous. These observations suggest that secular variations and polarity transitions are driven by common core processes whose surface expression is influenced by changes in the planetary orbits. Such detailed geomagnetic features enable far greater reliability in establishing magnetostratigraphic correlations and also enable them to be dated astronomically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号