首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is strong evidence that the period–luminosity (PL) relation for the Large Magellanic Cloud (LMC) Cepheids shows a break at a period around 10 d. Because the LMC PL relation is extensively used in distance scale studies, the non-linearity of the LMC PL relation may affect the results based on this LMC calibrated relation. In this paper we show that this problem can be remedied by using the Wesenheit function in obtaining Cepheid distances. This is because the Wesenheit function is linear, although recent data suggest that the PL and the period–colour (PC) relations that make up the Wesenheit function are not. We test the linearity of the Wesenheit function and find strong evidence that the LMC Wesenheit function is indeed linear. This is because the non-linearity of the PL and PC relations cancel out when the Wesenheit function is constructed. We discuss this result in the context of distance scale applications. We also compare the distance moduli obtained from  μ0 V − R (μ V −μ I )  (equivalent to Wesenheit functions) constructed with the linear and the broken LMC PL relations, and we find that the typical difference in distance moduli is  ∼ ±0.03 mag  . Hence, the broken LMC PL relation does not seriously affect current distance scale applications. We also discuss the random error calculated with equation  μ0 V − R (μ V −μ I )  , and show that there is a correlation term that exists from the calculation of the random error. The calculated random error will be larger if this correlation term is ignored.  相似文献   

2.
Based on currently available observations of 28 maser sources in 25 star-forming regions with measured trigonometric parallaxes, proper motions, and radial velocities, we have constructed the rotation curve of the Galaxy. Taking different distances to the Galactic center R 0, we have estimated the peculiar velocity of the Sun, the angular velocity of Galactic rotation, and its three derivatives. For R 0 = 8 kpc, we have found the circular velocity of the Sun to be V 0 = 243 ± 16 km s−1, which corresponds to a revolution period of 202 ± 10 Myr. We have obtained the Oort constants A = 16.9 ± 1.2 km s−1 kpc−1 and B = −13.5 ± 1.4 km s−1 kpc−1. Our simulation of the influence of a spiral density wave has shown that the peculiar velocity of the Sun with respect to the local standard of rest and the component (V )LSR depend significantly on the Sun’s phase in the spiral wave.  相似文献   

3.
The cosmological distance ladder crucially depends on classical Cepheids (with P=3–80 days), which are primary distance indicators up to 33 Mpc. Within this volume, very few SNe Ia have been calibrated through classical Cepheids, with uncertainty related to the non-linearity and the metallicity dependence of their period–luminosity (PL) relation. Although a general consensus on these effects is still not achieved, classical Cepheids remain the most used primary distance indicators. A possible extension of these standard candles to further distances would be important. In this context, a very promising new tool is represented by the ultra-long period (ULP) Cepheids (P≳80 days), recently identified in star-forming galaxies. Only a small number of ULP Cepheids have been discovered so far. Here we present and analyse the properties of an updated sample of 37 ULP Cepheids observed in galaxies within a very large metallicity range of 12+log(O/H) from ∼7.2 to 9.2 dex. We find that their location in the colour-magnitude (VI,V) diagram as well as their Wesenheit (VI) index-period (WP) relation suggests that they are the counterparts at high luminosity of the shorter-period (P≲80 days) classical Cepheids. However, a complete pulsation and evolutionary theoretical scenario is needed to properly interpret the true nature of these objects. We do not confirm the flattening in the studied WP relation suggested by Bird et al. (Astrophys. J. 695:874, 2009). Using the whole sample, we find that ULP Cepheids lie around a WP relation similar to that of the LMC, although with a large spread (∼ 0.4 mag).  相似文献   

4.
Combining Hipparcos proper motions and the radial velocity data, we have studied the Cepheid kinematics on the basis of the three-dimensional Ogorodnikov-Milne model. The results seem to show a slight contracting motion of the Galaxy in the solar neighbourhood, ∂ V θ / ∂θ / R = −2.60 ± 1.07 km s-1 kpc-1, which is along the solar circle. Under the hypothesis of a circular stream model, we have determined the galactic rotation V θ = −240.5 ± 10.2 km s-1 for the classical Cepheids. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
We have discovered a giant radio halo in the massive merging cluster MACSJ0417.5-1154. This cluster, at a redshift of 0.443, is one of the most X-ray luminous galaxy cluster in the MAssive Cluster Survey (MACS) with an X-ray luminosity in the 0.1–2.4 keV band of 2.9×1045 erg s − 1. Recent observations from GMRT at 230 and 610 MHz have revealed a radio halo of ∼ 1.2 × 0.3 Mpc2 in extent. This halo is elongated along the North-West, similar to the morphology of the X-ray emission from Chandra. The 1400 MHz radio luminosity (L r) of the halo is ∼2 × 1025 W Hz − 1, in good agreement with the value expected from the L x − L r correlation for cluster halos.  相似文献   

6.
The superb phase resolution and quality of the Optical Gravitational Lensing Experiment (OGLE) data on the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) Cepheids, together with existing data on Galactic Cepheids, are combined to study the period–colour (PC) and amplitude–colour (AC) relations as a function of pulsation phase. Our results confirm earlier work that the LMC PC relation (at mean light) is more consistent with two lines of differing slopes, separated at a period of 10 d. However, our multiphase PC relations reveal much new structure which can potentially increase our understanding of Cepheid variables. These multiphase PC relations provide insight into why the Galactic PC relation is linear but the LMC PC relation is non-linear. This is because the LMC PC relation is shallower for short  (log  P < 1)  and steeper for long  (log  P > 1)  period Cepheids than the corresponding Galactic PC relation. Both of the short- and long-period Cepheids in all three galaxies exhibit the steepest and shallowest slopes at phases around 0.75–0.85, respectively. A consequence is that the PC relation at phase ∼ 0.8 is highly non-linear. Further, the Galactic and LMC Cepheids with  log  P > 1  display a flat slope in the PC plane at phases close to the maximum light. When the LMC period–luminosity (PL) relation is studied as a function of phase, we confirm that it changes with the PC relation. The LMC PL relation in V and I band near the phase of 0.8 provides compelling evidence that this relation is also consistent with two lines of differing slopes joined at a period close to 10 d.  相似文献   

7.
The space velocities of 200 long-period (P>5 days) classical Cepheids with known proper motions and line-of-sight velocities whose distances were estimated from the period-luminosity relation have been analyzed. The linear Ogorodnikov-Milne model has been applied, with the Galactic rotation having been excluded from the observed velocities in advance. Two significant gradients have been found in the Cepheid velocities, ?W/?Y = ?2.1 ± 0.7 km s?1 kpc?1 and ?V/?Z = 27 ± 10 km s?1 kpc?1. In such a case, the angular velocity of solid-body rotation around the Galactic X axis directed to the Galactic center is ?15 ± 5 km s?1 kpc?1.  相似文献   

8.
The surface brightness fluctuations (SBF) method measures the variance in a galaxy’s light distribution arising from fluctuations in the numbers and luminosities of individual stars per resolution element. Once calibrated for stellar population effects, SBF measurements with HST provide distances to early-type galaxies with unrivaled precision. Optical SBF data from HST for the Virgo and Fornax clusters give the relative distances of these nearby fiducial clusters with 2% precision and constrain their internal structures. Observations in hand will allow us to tie the Coma cluster, the standard of comparison for distant cluster studies, into the same precise relative distance scale. The SBF method can be calibrated in an absolute sense either empirically from Cepheids or theoretically from stellar population models. The agreement between the model and empirical zero points has improved dramatically, providing an independent confirmation of the Cepheid distance scale. SBF is still brighter in the near-IR, and an ongoing program to calibrate the method for the F110W and F160W passbands of the Wide Field Camera 3 IR channel will enable accurate distance derivation whenever a large early-type galaxy or bulge is observed in these passbands at distances reaching well out into the Hubble flow.  相似文献   

9.
JHK s magnitudes corrected to mean intensity are estimated for Large Magellanic Cloud (LMC) type II Cepheids in the OGLE-III survey the third phase of the Optical Gravitational Lensing Experiment (OGLE). Period–luminosity (PL) relations are derived in JHK s as well as in a reddening-free VI parameter. Within the uncertainties, the BL Her stars  ( P < 4 d)  and the W Vir stars (   P = 4  to 20 d) are colinear in these PL relations. The slopes of the infrared relations agree with those found previously for type II Cepheids in globular clusters within the uncertainties. Using the pulsation parallaxes of V553 Cen and SW Tau, the data lead to an LMC modulus uncorrected for any metallicity effects of  18.46 ± 0.10  mag. The type II Cepheids in the second-parameter globular cluster, NGC 6441, show a PL( VI ) relation of the same slope as that in the LMC, and this leads to a cluster distance modulus of  15.46 ± 0.11  mag, confirming the hypothesis that the RR Lyrae variables in this cluster are overluminous for their metallicity. It is suggested that the Galactic variable κ Pavonis is a member of the peculiar W Vir class found by the OGLE-III group in the LMC. Low-resolution spectra of OGLE-III type II Cepheids with   P > 20  d (RV Tau stars) show that a high proportion have TiO bands; only one has been found showing C2. The LMC RV Tau stars, as a group, are not colinear with the shorter period type II Cepheids in the infrared PL relations in marked contrast to such stars in globular clusters. Other differences between LMC, globular cluster and Galactic field type II Cepheids are noted in period distribution and infrared colours.  相似文献   

10.
We analyze the three-dimensional kinematics of about 82 000 Tycho-2 stars belonging to the red giant clump (RGC). First, based on all of the currently available data, we have determined new, most probable components of the residual rotation vector of the optical realization of the ICRS/HIPPARCOS system relative to an inertial frame of reference, (ω x , ω y , ω z ) = (−0.11, 0.24, −0.52) ± (0.14, 0.10, 0.16) mas yr−1. The stellar proper motions in the form μα cos δ have then be corrected by applying the correction ω z = −0.52 mas yr−1. We show that, apart from their involvement in the general Galactic rotation described by the Oort constants A = 15.82 ± 0.21 km s−1 kpc−1 and B = −10.87 ± 0.15 km s−1 kpc−1, the RGC stars have kinematic peculiarities in the Galactic yz plane related to the kinematics of the warped stellar-gaseous Galactic disk. We show that the parameters of the linear Ogorodnikov-Milne model that describe the kinematics of RGC stars in the zx plane do not differ significantly from zero. The situation in the yz plane is different. For example, the component of the solid-body rotation vector of the local solar neighborhood around the Galactic x axis is M 32 = −2.6 ± 0.2 km s−1 kpc−1. Two parameters of the deformation tensor in this plane, namely M 23+ = 1.0 ± 0.2 km s−1 kpc−1 and M 33M 22 = −1.3 ± 0.4 km s−1 kpc−1, also differ significantly from zero. On the whole, the kinematics of the warped stellar-gaseous Galactic disk in the local solar neighborhood can be described as a rotation around the Galactic x axis (close to the line of nodes of this structure) with an angular velocity −3.1 ± 0.5 km s−1 kpc−1 ≤ ΩW ≤ −4.4 ± 0.5 km s−1 kpc−1.  相似文献   

11.
This paper is devoted to spectroscopic studies of three bright Cepheids (BG Cru, R Cru, and T Cru) and continues the series of our works aimed at determining the atmospheric parameters and chemical composition of southern-hemisphere Cepheids. We have studied 12 high-resolution spectra taken with the 1.9-m telescope of the South African Astronomical Observatory and the 8-m VLT telescope of the European Southern Observatory in Chile. The atmospheric parameters and chemical composition have been determined for these stars. The averaged atmospheric parameters are: T eff = 6253 ± 30 K, log g = 2.15, V t = 4.30 km s?1 for BG Cru; T eff = 5812 ± 22 K, log g = 1.65, V t = 3.80 km s?1 for R Cru; and T eff = 5588 ± 21 K, log g = 1.70, V t = 4.30 km s?1 for T Cru. All these Cepheids exhibit a nearly solar metallicity ([Fe/H] = +0.04 dex for BG Cru, +0.06 dex for R Cru, and +0.08 dex for T Cru); the carbon, oxygen, sodium, magnesium, and aluminum abundances suggest that the objects have already passed the first dredge-up. The abundances of other elements are nearly solar. An anomalous behavior of the absorption lines of metals (neutral atoms and ions) in the atmosphere of the small-amplitude Cepheid BG Cru is pointed out. The main components in these lines split up into additional blue and red analogs that are smaller in depth and equivalent width and vary with pulsation phase. Such splitting of the absorption lines of metals (with the hydrogen lines being invariable) is known for the classical Cepheid X Sgr. The calculated nonlinear pulsation model of BG Cru with the parameters L = 2000 L , T eff = 6180 K, and M = 4.3M shows that this small-amplitude Cepheid pulsates in the first overtone and is close to the blue boundary of the Cepheid instability strip. According to the model, the extent of the Cepheid’s atmosphere is relatively small. Therefore, no spectroscopic manifestations of shock waves through variability are possible in this Cepheid and the observed blue and red components in metal absorption lines can be explained solely by the presence of an extended circumstellar envelope around BG Cru.  相似文献   

12.
The value of Hubble parameter (H0) is determined using the morphologically type dependent Ks-band Tully-Fisher Relation (K-TFR). The slope and zero point are determined using 36 calibrator galaxies with ScI morphology. Calibration distances are adopted from direct Cepheid distances, and group or companion distances derived with the Surface Brightness Fluctuation Method or Type Ia Supernova. It is found that a small morphological type effect is present in the K-TFR such that ScI galaxies are more luminous at a given rotational velocity than Sa/Sb galaxies and Sbc/Sc galaxies of later luminosity classes. Distances are determined to 16 galaxy clusters and 218 ScI galaxies with minimum distances of 40.0 Mpc. From the 16 galaxy clusters a weighted mean Hubble parameter of H0 = 84.2 ± 6 km s−1 Mpc−1 is found. From the 218 ScI galaxies a Hubble parameter of H0 = 83.4 ± 8 km s−1 Mpc−1 is found. When the zero point of K-TFR is corrected to account for recent results that find a Large Magellanic Cloud distance modulus of 18.39±0.05, a Hubble parameter of 88.0 ± 6 km s−1 Mpc−1 is found. Effects from Malmquist bias are shown to be negligible in this sample as galaxies are restricted to a minimum rotational velocity of 150 km s−1. It is also shown that the results of this study are negligibly affected by the adopted slope for the K-TFR, inclination binning, and distance binning. A comparison with the results of the Hubble Key Project (Freedman et al. 2001) is made. Discrepancies between the K-TFR distances and the HKP I-TFR distances are discussed. Implications for Λ-CDM cosmology are considered with H0 = 84 km s−1 Mpc−1. It is concluded that it is very difficult to reconcile the value of H0 found in this study with ages of the oldest globular clusters and matter density of the universe derived from galaxy clusters in the context of Λ-CDM cosmology.  相似文献   

13.
A globular cluster distance scale based on Hipparcos parallaxes of subdwarfs has been used to derive estimates of M K for cluster Miras, including one in the Small Magellanic Cloud (SMC) globular cluster NGC 121. These lead to a zero-point of the Mira infrared period–luminosity (PL) relation, PL( K ), in good agreement with that derived from Hipparcos parallaxes of nearby field Miras. The mean of these two estimates together with data on LMC Miras yields a Large Magellanic Cloud (LMC) distance modulus of     in evident agreement with a metallicity-corrected Cepheid modulus     .
The use of luminous asymptotic giant branch (AGB) stars as extragalactic population indicators is also discussed.  相似文献   

14.
Using an apparent-magnitude limited Main galaxy sample of the Sloan Digital Sky Survey Data Release 7(SDSS DR7), we investigate the correlation between morphologies and luminosity for the Main galaxy sample. Our Main galaxy sample is divided into two classes: Main galaxies only with TARGET_GALAXY flag (bestPrimtarget = 64), and ones also with other flags. It is found that for the second class Main galaxies, the early-type proportion monotonously increases with increasing luminosity nearly in the whole luminosity region. But for the first class Main galaxies, the early-type proportion increases with increasing luminosity only within a certain luminosity region (−22.2 < M r  < −19.8). In the high luminosity region (M r  < −22.2), the early-type proportion of the first class Main galaxies even decreases dramatically with increasing luminosity. We also analyze the correlation between morphologies and luminosity of galaxies around the peak of the redshift distribution ( 0.07 ≤ z ≤ 0.08 ). In such a narrow redshift region, we still observe strong correlation between morphologies and luminosity, which shows that this correlation is fundamental.  相似文献   

15.
Any calibration of the present value of the Hubble constant (H 0) requires recession velocities and distances of galaxies. While the conversion of observed velocities into true recession velocities has only a small effect on the result, the derivation of unbiased distances which rest on a solid zero point and cover a useful range of about 4–30 Mpc is crucial. A list of 279 such galaxy distances within v < 2,000 km s−1 is given which are derived from the tip of the red-giant branch (TRGB), from Cepheids, and/or from supernovae of type Ia (SNe Ia). Their random errors are not more than 0.15 mag as shown by intercomparison. They trace a linear expansion field within narrow margins, supported also by external evidence, from v = 250 to at least 2,000 km s−1. Additional 62 distant SNe Ia confirm the linearity to at least 20,000 km s−1. The dispersion about the Hubble line is dominated by random peculiar velocities, amounting locally to <100 km s−1 but increasing outwards. Due to the linearity of the expansion field the Hubble constant H 0 can be found at any distance >4.5 Mpc. RR Lyr star-calibrated TRGB distances of 78 galaxies above this limit give H 0 = 63.0 ± 1.6 at an effective distance of 6 Mpc. They compensate the effect of peculiar motions by their large number. Support for this result comes from 28 independently calibrated Cepheids that give H 0 = 63.4 ± 1.7 at 15 Mpc. This agrees also with the large-scale value of H 0 = 61.2 ± 0.5 from the distant, Cepheid-calibrated SNe Ia. A mean value of H 0 = 62.3 ± 1.3 is adopted. Because the value depends on two independent zero points of the distance scale its systematic error is estimated to be 6%. Other determinations of H 0 are discussed. They either conform with the quoted value (e.g. line width data of spirals or the D n σ method of E galaxies) or are judged to be inconclusive. Typical errors of H 0 come from the use of a universal, yet unjustified P–L relation of Cepheids, the neglect of selection bias in magnitude-limited samples, or they are inherent to the adopted models.  相似文献   

16.
Use is made of 93,106 parallaxes from the Hipparcos catalog, with a mixture of spectrum-luminosity classes, to derive the position of the Galactic plane. The reduction technique, mixed total least squares-least squares, takes into account the errors in the parallaxes, and the condition that the direction cosines of the Galactic pole have unit Euclidean norm is rigorously enforced. To obtain an acceptable solution it is necessary to eliminate the stars of classes O and B that belong to the Gould belt. The Sun is found to lie 34.56±0.56 pc above the plane. The coordinates of the Galactic pole, l g , b g, are found to be: l g =0.°004±0.°039; b g =89.°427±0.°035.This agrees well with what radio observations find and demonstrates that the IAU's recommendation in 1960 to use only radio observations to determine the Galactic pole, although correct at the time because of the paucity of optical observations, can no longer be justified given the plethora of observations contained in the Hipparcos catalog and an adequate reduction technique, unavailable in 1960. The reduction technique is also demonstrably superior to others because it involves fewer assumptions and calculates smaller mean errors. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
New and existing photometry for the G0 Ia supergiant HD 18391 is analyzed in order to confirm the nature of the variability previously detected in the star, which lies off the hot edge of the Cepheid instability strip. Small‐amplitude variability at a level of δV = 0.016 ± 0.002 is indicated, with a period of P = 123d.04 ± 0d.06. A weaker second signal may be present at P = 177d.84 ± 0d.18 with δV = 0.007 ± 0.002, likely corresponding to fundamental mode pulsation if the primary signal represents overtone pulsation (123.04/177.84 = 0.69). The star, with a spectroscopic reddening of EB–V = 1.02 ± 0.003, is associated with heavily‐reddened B‐type stars in its immediate vicinity that appear to be outlying members of an anonymous young cluster centered ∼10′ to the west and 1661 ± 73 pc distant. The cluster has nuclear and coronal radii of rn = 3.5′ and Rc = 14′, respectively, while the parameters for HD 18391 derived from membership in the cluster with its outlying B stars are consistent with those implied by its Cepheid‐like pulsation, provided that it follows the semi‐period‐luminosity relation expected of such objects. Its inferred luminosity as a cluster member is MV = –7.76 ± 0.10, its age (9 ± 1) × 106 years, and its evolutionary mass ∼19 M. HD 18391 is not a classical Cepheid, yet it follows the Cepheid period‐luminosity relation closely, much like another Cepheid impostor, V810 Cen (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We analyze the properties of galaxy clusters in the region of the Leo supercluster using observational data from the SDSS and 2MASS catalogs. We have selected 14 galaxy clusters with a total dynamical mass of 1.77 × 1015 M in the supercluster region 130 by 60 Mpc in the plane of the sky (z ≃ 0.037). The composite luminosity function of the supercluster is described by a Schechter function with parameters that, within the error limits, correspond to field galaxies and does not differ from the luminosity function of the richer Ursa Major (UMa) supercluster for the same luminosity range (the bright end). The luminosity functions of early-type and late-type galaxies in Leo at the faint end are characterized by a sharp decrease (α = −0.60±0.08) and a steep increase (α = −1.44± 0.10) in the number of galaxies, respectively. In the virialized cluster regions, the fraction of early-type galaxies selected by the u-r color, bulge contribution, and concentration index among the galaxies brighter than M K * + 1 is, on average, 62%. This fraction is smaller than that in the UMa supercluster at a 2–3σ level. The near-infrared luminosities of galaxy clusters down to a fixed absolute magnitude correlate with their masses almost in the same way as for other samples of galaxy clusters (L 200,K M 2000.63±0.11)).  相似文献   

19.
We have applied the near-infrared surface-brightness method to 111 Cepheids in the Milky Way and in the Large and the Small Magellanic Clouds determining distances and luminosities for the individual stars. We find that the K-band Period-Luminosity (PL-)relations for Milky Way and Large Magellanic Cloud Cepheids are almost identical, whereas the zero point of the Wesenheit relation depends significantly on metallicity, metal poor Cepheids being fainter.  相似文献   

20.
In an effort to examine the relationship between flare flux and corresponding CME mass, we temporally and spatially correlate all X-ray flares and CMEs in the LASCO and GOES archives from 1996 to 2006. We cross-reference 6733 CMEs having well-measured masses against 12 050 X-ray flares having position information as determined from their optical counterparts. For a given flare, we search in time for CMEs which occur 10 – 80 minutes afterward, and we further require the flare and CME to occur within ± 45° in position angle on the solar disk. There are 826 CME/flare pairs which fit these criteria. Comparing the flare fluxes with CME masses of these paired events, we find CME mass increases with flare flux, following an approximately log-linear, broken relationship: in the limit of lower flare fluxes, log (CME mass)∝0.68×log (flare flux), and in the limit of higher flare fluxes, log (CME mass)∝0.33×log (flare flux). We show that this broken power-law, and in particular the flatter slope at higher flare fluxes, may be due to an observational bias against CMEs associated with the most energetic flares: halo CMEs. Correcting for this bias yields a single power-law relationship of the form log (CME mass)∝0.70×log (flare flux). This function describes the relationship between CME mass and flare flux over at least 3 dex in flare flux, from ≈ 10−7 – 10−4 W m−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号