首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
KUBO  K. 《Journal of Petrology》2002,43(3):423-448
Dunite formation processes in highly depleted peridotites arediscussed based upon a detailed study of the Iwanaidake peridotite,Hokkaido, Japan, which consists mainly of harzburgite with asmall amount of dunite. In the harzburgites, the Mg# [= 100x Mg/(Mg + Fe2+)] of olivine ranges from 91·5 to 92·5,and the Cr# [= 100 x Cr/(Cr + Al)] of spinel from 30 to 70;in the dunites, the Mg# of olivine ranges from 92·5 to94 and the Cr# of spinel from 60 to 85, respectively. The NiOwt % of olivine in harzburgites ranges from 0·38 to 0·44,and in dunites from 0·35 to 0·37. The Mg# andCr# are higher and NiO wt % is lower in the dunites than inthe harzburgites surrounding the dunites. The Mg# and Cr# exhibitnormal depletion trends expected from simple partial melting,whereas the NiO wt % shows an abnormal trend. On the basis ofmass balance calculations, dunites are considered to be derivedfrom the harzburgites by a process involving incongruent meltingof orthopyroxene (orthopyroxene olivine + Si-rich melt). Hydrousconditions were necessary to lower the solidus, and thus meltingof harzburgite was probably triggered by the introduction ofhydrous silicate melt. The dunite in this massif may have formedin the mantle wedge above a subduction zone. KEY WORDS: depleted peridotite; hydrous melt; incongruent melting; residual dunite; Iwanaidake peridotite  相似文献   

2.
Abstract: Ru–Os–Ir alloys have been found in two podiform chromitites located at the Chiroro and Bankei mines in the Sarugawa peridotite complex in the Kamuikotan zone, Hokkaido, Japan. This is the first report on the occurrence of PGM (= platinum-group minerals) from chromitites in Japan. The Ru–Os–Ir alloys most typically form polyhedra associated with other minerals (Ni–Fe alloys and heazlewoodite) in chromian spinel. The PGM are possibly pseudomorphs after some primary PGM such as laurite and are chemically highly inhomogeneous, indicating a low-temperature alteration origin. This is consistent with intense alteration (formation of serpentine, uvarovite and kämmererite) imposed on the Kamuikotan chromitites. High-temperature primary PGE (platinum–group elements)–bearing sulfides were possibly recrystallized at low temperatures into a new assemblage of PGM, Ni-Fe alloys and sulfides. Placer PGM around the peridotite complexes are chemically different from the PGM in dunite and chromitite possibly due to the, as yet, incomplete search for the rock-hosted PGM. The PGE content in chromitites is distinctly higher in those in the Kamuikotan zone than in those in the Sangun zone of Southwest Japan, consistent with the more refractory nature (Cr# of spinel, up to 0.8) of the former than the latter (Cr# of spinel, 0.5).  相似文献   

3.
The microstructure and magnetic properties of accessory Fe–Cr-spinels from the Kytlym massif of the Urals platinum-bearing belt were studied. Atypical Fe–Cr-spinels in the form of magnetic microareas in grains of primary nonmagnetic Fe–Cr-spinel have been revealed for the first time in the bed dunites of the Kytlym multiphase concentrically zoned massif, North Urals. These spinels are responsible for the magnetic properties of the dunites. It has been established that the microareas are separations in solid solution Fe2+(Cr2–xFex3+)O4, which are enriched in Fe3 + and are probably an intermediate product of the transformation of primary accessory Fe-Cr-spinel during the formation of the dunite massif. These are magnetic microphases with particular chemical composition, cation distribution, and corresponding reversed crystal lattice, which determine the main magnetic properties of the microarea: the magnitude and direction of magnetization vector and Curie temperature. The formation of this earlier unknown type of magnetic Fe–Cr-spinel is probably conjugate with the formation and concentration of PGE mineralization in the bed dunites of the Kytlym platinum-bearing massif. The presence of such magnetization carriers in rocks and ores must be taken into account in geophysical research at the Urals chromite and platinum–chromite deposits.  相似文献   

4.
The Luobusa ophiolite, Southern Tibet, lies in the Indus–YarlungZangbo suture zone that separates Eurasia to the north fromthe Indian continent to the south. The ophiolite contains awell-preserved mantle sequence consisting of harzburgite, clinopyroxene(cpx)-bearing harzburgite and dunite. The harzburgite containsabundant pods of chromitite, most of which have dunite envelopes,and the cpx-bearing harzburgites host numerous dunite dykes.Dunite also exists as a massive unit similar to those of themantle–crust transition zones in other ophiolites. Allof the dunites in the ophiolite have a similar mineralogy, comprisingmainly olivine with minor orthopyroxene and chromite and tracesof clinopyroxene. They also display similar chemical compositions,including U-shaped chondrite-normalized REE patterns. Mantle-normalizedPGE patterns show variable negative Pt anomalies. Detailed analysisof a chromite-bearing dunite dyke, which grades into the hostcpx-bearing harzburgite, indicates that LREE and Ir decrease,whereas HREE, Pd and Pt increase away from the dunite. Thesefeatures are consistent with formation of the dunite dykes byinteraction of MORB peridotites with boninitic melts from whichthe chromitites were formed. Because the transition-zone dunitesare mineralogically and chemically identical to those formedby such melt–rock reaction, we infer that they are ofsimilar origin. The Luobusa ultramafic rocks originally formedas MORB-source upper mantle, which was subsequently trappedas part of a mantle wedge above a subduction zone. Hydrous meltsgenerated under the influence of the subducted slab at depthmigrated upward and reacted with the cpx-bearing harzburgitesto form the dunite dykes. The modified melts ponded in smallpockets higher in the section, where they produced podiformchromitites with dunite envelopes. At the top of the mantlesection, pervasive reaction between melts and harzburgite producedthe transition-zone dunites. KEY WORDS: melt–rock interaction; REE; PGE; hydrous melt; mantle; ophiolite; Tibet  相似文献   

5.
This experimental study simulates the interaction of hotter, deeper hydrous mantle melts with shallower, cooler depleted mantle, a process that is expected to occur in the upper part of the mantle wedge. Hydrous reaction experiments (~6 wt% H2O in the melt) were conducted on three different ratios of a 1.6 GPa mantle melt and an overlying 1.2 GPa harzburgite from 1060 to 1260 °C. Reaction coefficients were calculated for each experiment to determine the effect of temperature and starting bulk composition on final melt compositions and crystallizing assemblages. The experiments used to construct the melt–wall rock model closely approached equilibrium and experienced <5% Fe loss or gain. Experiments that experienced higher extents of Fe loss were used to critically evaluate the practice of “correcting” for Fe loss by adding iron. At low ratios of melt/mantle (20:80 and 5:95), the crystallizing assemblages are dunites, harzburgites, and lherzolites (as a function of temperature). When the ratio of deeper melt to overlying mantle is 70:30, the crystallizing assemblage is a wehrlite. This shows that wehrlites, which are observed in ophiolites and mantle xenoliths, can be formed by large amounts of deeper melt fluxing though the mantle wedge during ascent. In all cases, orthopyroxene dissolves in the melt, and olivine crystallizes along with pyroxenes and spinel. The amount of reaction between deeper melts and overlying mantle, simulated here by the three starting compositions, imposes a strong influence on final melt compositions, particularly in terms of depletion. At the lowest melt/mantle ratios, the resulting melt is an extremely depleted Al-poor, high-Si andesite. As the fraction of melt to mantle increases, final melts resemble primitive basaltic andesites found in arcs globally. An important element ratio in mantle lherzolite composition, the Ca/Al ratio, can be significantly elevated through shallow mantle melt–wall rock reaction. Wall rock temperature is a key variable; over a span of <80 °C, reaction with deeper melt creates the entire range of mantle lithologies from a depleted dunite to a harzburgite to a refertilized lherzolite. Together, the experimental phase equilibria, melt compositions, and reaction coefficients provide a framework for understanding how melt–wall rock reaction occurs in the natural system during melt ascent in the mantle wedge.  相似文献   

6.
We found fine-grained Fe-rich orthopyroxene-rich xenoliths (mainly orthopyroxenite) containing partially digested dunite fragments of Group I from Takashima, Southwest Japan. Orthopyroxenite veinlets, some of which contain plagioclase at the center, also replace olivine in dunite and wehrlite xenoliths of Group I. This shows high reactivity with respect to olivine of the melt involved in orthopyroxenite formation, indicating its high SiO2 activity. The secondary orthopyroxene of this type is characterized by low Mg# [= Mg/(Mg + total Fe) atomic ratio] (down to 0.73) and high Al2O3 contents (5–6 wt%). It is different in chemistry from other secondary orthopyroxenes found in peridotite xenoliths derived from the mantle wedge. Clinopyroxenes in the Fe-rich orthopyroxenite show a convex-upward REE pattern with a crest around Sm. This pattern is strikingly similar to that of clinopyroxenes of Group II pyroxenite xenoliths and of phenocrystal and xenocrystal clinopyroxenes, indicating involvement of similar alkali basaltic melts. The Fe-rich orthopyroxenite xenoliths from Takashima formed by reaction between evolved alkali basalt melt and mantle olivine; alkali basalt initially slightly undersaturated in silica might have evolved to silica-oversaturated compositions by fractional crystallization at high-pressure conditions. The Fe-rich orthopyroxenites occur as dikes within the uppermost mantle composed of dunite and wehrlite overlying pockets of Group II pyroxenites. The orthopyroxene-rich pyroxenites of this type are possibly common in the uppermost mantle beneath continental rift zones where alkali basalt magmas have been prevalent.  相似文献   

7.
西藏罗布莎蛇绿岩中不同产出的纯橄岩及成因探讨   总被引:2,自引:2,他引:0  
罗布莎蛇绿岩中的纯橄岩有三种产出情况,除了与豆荚状铬铁矿伴生的薄壳状纯橄岩外,还有产在方辉橄榄岩底部被认为是堆晶岩的厚层状纯橄岩和方辉橄榄岩中的透镜状纯橄岩。厚层状纯橄岩约700~1000m厚,以橄榄石富镁(Fo93~95),单斜辉石低铝富镁(Al2O30.47%~0.85%,Mg#95~97),铬尖晶石高铬低镁(Cr#值平均77,Mg#平均51)为特征。该纯橄岩中的浸染状铬铁矿也是高铬低镁型,但Mg#值(平均59)高于厚层状纯橄岩的副矿物铬尖晶石。薄壳状纯橄岩与厚层状纯橄岩成分相近,其橄榄石Fo92~94,单斜辉石Al2O3<1%和Mg#95~97;铬尖晶石的Cr#值平均71,Mg#值平均52。与薄壳状纯橄岩伴生的块状铬铁矿为高镁高铬型,但Mg#值(平均68)相对更高些,Cr#值平均79。透镜状纯橄岩的特征是橄榄石Fo(91~92)和铬尖晶石Cr#(60左右)均低于前两类纯橄岩,但单斜辉石的Al2O3(1.41%~1.71%)则高于前两者。透镜状纯橄岩的矿物成分与方辉橄榄岩重叠,两者为渐变过渡关系。研究对比表明,罗布莎厚层状纯橄岩不同于经典的蛇绿岩的超镁铁质堆晶岩,认为将其成因解释为拉斑玄武质熔体与地幔橄榄岩的反应较为合理。透镜状纯橄岩与方辉橄榄岩存在成生联系,可能是地幔橄榄岩高度部分熔融的产物,或熔体和方辉橄榄岩在原位发生反应的产物;薄壳状纯橄岩成因与厚层状纯橄岩相同,但与其相伴的块状铬铁矿是否由拉斑玄武质熔体与方辉橄榄岩反应形成,值得商榷。  相似文献   

8.
阿尔巴尼亚布尔其泽纯橄岩壳非常新鲜,主要由橄榄石、尖晶石和单斜辉石等矿物组成.其中橄榄石存在单斜辉石和铬尖晶石(磁铁矿)共生包裹体现象,包裹体矿物粒度在1~10 μm,有些甚至为纳米级200~500 nm.纯橄岩橄榄石的Fo值为94.7~96.0,铬尖晶石的Cr#为76.5~82.4,远高于蛇绿岩地幔橄榄岩中常见纯橄岩的铬值(Cr#>60).基于前人研究结果,提出这种现象是由于亏损方辉橄榄岩与含钛、铬、铁熔体发生交代作用,从而形成橄榄石的固溶体并存在Ti4+、Al3+、Ca2+、Fe3+,而部分Cr3+进入铬尖晶石结晶.后期由于岩体在抬升过程中降温,橄榄石中混溶的组分析出包裹体形成磁铁矿和铬尖晶石.并且依据铬尖晶石-橄榄石的矿物化学成分,识别出岩体内方辉橄榄岩相对较低的部分熔融程度约为30%~40%,纯橄岩部分熔融程度约为40%,表明不同岩相间其形成背景存在明显差异.因此,认为布尔奇泽蛇绿岩具有多阶段的过程,首先是在洋中脊环境下经历部分熔融作用形成了方辉橄榄岩,后受到俯冲环境(SSZ)的岩石-熔体反应生成更富Mg、Si和Cr等的熔体,致使地幔橄榄岩高度部分熔融,形成此类纯橄岩.   相似文献   

9.
The new data for the geology and mineralogy of the platinum group element (PGE) mineralization related to the chromite–platinum ore zones within the dunite of the Svetly Bor and Veresovy Bor massifs in the Middle Urals are discussed. The geological setting of the chromite–platinum ore zones, their platinum content, compositional and morphological features of the platinum group minerals (PGM) are compared to those within the Nizhny Tagil massif, the world standard of the zonal complexes in the Platinum Ural belt. The chromite–platinum orebodies are spatially related to the contacts between differently granular dunites. Majority of PGM are formed by Pt–Fe alloys that are close in terms of stoichiometry to isoferroplatinum (Pt3Fe), and associated with Os–Ir alloys, Ru–Os and Ir–Rh sulfides, and Ir–Rh thiospinels of the cuproiridsite–cuprorhodsite–ferrorhodsite solid solution. The tetraferroplatinum (PtFe)–tulameenite (PtFe0.5Cu0.5) solid solution and Pt–Cu alloys belong to the later PGM assemblage. The established features of the chromite–platinum ore zones testify to the highly probable identification of the PGE mineralization within the dunite of the Svetly Bor and Vesesovy Bor massifs and could be used in prospecting and exploration for platinum.  相似文献   

10.
In a metamorphosed gabbro from Hokkaido, Japan, augite containing exsolved orthohypersthene and minor pigeonite has been altered to a variety of biopyriboles. High resolution transmission electron microscopy of slightly altered augite shows only narrow (010) lamellae of clinoamphibole which always contain even numbers of double chains. In more highly altered regions, all three pyroxenes are changed to double-, triple- and more highly polymerized multiple-chain biopyriboles, with chlorite d 001 14.5 Å) found only in orthopyroxene. Several (010) lamellae containing only one double chain have been observed, and their textural relationship to the surrounding single-chain host may explain how the rotated domains of biopyribole initially attain their orientation in the host pyroxene.A structural model is proposed for the polymerization of single chains in the tetrahedral layers of pyroxene which involves small movements of oxygens and tetrahedral atoms (Si, Al) with a minimum of bond breaking and re-forming, concommitant with hydroxylization of certain oxygens and the diffusion of Mg, Fe and/or Ca along the rift in the octahedral layer.  相似文献   

11.
The exsolutious of diopside and magnetite occur as intergrowth and orient within olivine from the mantle dunite, Luobusa ophiolite, Tibet. The dunite is very fresh with a mineral assemblage of olivine (〉95%) + chromite (1%-4%) + diopside (〈1%). Two types of olivine are found in thin sections: one (Fo = 94) is coarse-grained, elongated with development of kink bands, wavy extinction and irregular margins; and the other (Fo = 96) is fine-grained and poly-angied. Some of the olivine grains contain minor Ca, Cr and Ni. Besides the exsolutions in olivine, three micron-size inclusions are also discovered. Analyzed through energy dispersive system (EDS) with unitary analytical method, the average compositions of the inclusions are: Na20, 3.12%-3.84%; MgO, 19.51%-23.79%; Al2O3, 9.33%-11.31%; SiO2, 44.89%-46.29%; CaO, 11.46%-12.90%; Cr2O3, 0.74%-2.29%; FeO, 4.26%- 5.27%, which is quite similar to those of amphibole. Diopside is anhedral f'dling between olivines, or as micro-inclusions oriented in olivines. Chromite appears euhedral distributed between olivines, sometimes with apparent compositional zone. From core to rim of the chromite, Fe content increases and Cr decreases; and A! and Mg drop greatly on the rim. There is always incomplete magnetite zone around the chromite. Compared with the nodular chromite in the same section, the euhedral chromite has higher Fe3O4 and lower MgCr2O4 and MgAI2O4 end member contents, which means it formed under higher oxygen fugacity environment. With a geothermometer estimation, the equilibrium crystalline temperature is 820℃-960℃ for olivine and nodular chromite, 630℃-770℃ for olivine and euhedral chromite, and 350℃-550℃ for olivine and exsoluted magnetite, showing that the exsolutions occurred late at low temperature. Thus we propose that previously depleted mantle harzburgite reacted with the melt containing Na, Al and Ca, and produced an olivine solid solution added with Na^+, Al^3+, Ca^2+, Fe^3+, Cr^3+. With temperature d  相似文献   

12.
This paper reports the results of a mineralogical study of 14 mantle peridotite samples dredged in 2009 from the eastern slope of the northwestern segment of the Stalemate Ridge in the northwestern Pacific during cruise SO201-KALMAR Leg 1b of the R/V Sonne. The sample collection included four serpentinized and silicified dunites and ten variably serpentinized lherzolites. The compositions of primary minerals (clinopyroxene, orthopyroxene, and spinel) change systematically from the lherzolites to dunites. Spinel from the lherzolites shows higher Mg# and lower Cr# values (0.65–0.68 and 0.26–0.33, respectively) compared with spinel from the dunites (Mg# = 0.56–0.64 and Cr# = 0.38–0.43). Clinopyroxene from the lherzolites is less magnesian (Mg# = 91.7–92.4) than clinopyroxene from dunite sample DR37-3 (Mg# = 93.7). Based on the obtained data, it was concluded that the lherzolites of the Stalemate Fracture Zone were derived by 10–12% near-fractional melting of a DMM-type depleted mantle reservoir beneath the Kula-Pacific spreading center. The dunites were produced by interaction of residual lherzolites with sodium- and titaniumrich melt and are probably fragments of a network of dunite channels in the shallow mantle. The moderately depleted composition of minerals clearly distinguishes the lherzolites from the strongly depleted peridotites of the East Pacific Rise and indicates the existence of slow-spreading mid-ocean ridges in the Pacific Ocean during the Cretaceous-Paleogene.  相似文献   

13.
This work presents the results of the first comprehensive study of PGE mineralization from massive chromitites of the Iov dunite body (Northern Urals). The chromitites are composed of chromespinelides with a higher content of Cr2O3 with respect to those from other zonal clinopyroxenite–dunite massifs of the Urals. However, the composition of chromespinelides fits the trend that is characteristic of the dunite–clinopyroxenite–gabbro formation. PGE minerals, in particular Pt–Fe solid solutions, were identified in chromitites and in chromespinelides in the form of crystals and aggregates of a complex non-crystallographic habit and less often of an idiomorphic cubic habit. In terms of stoichiometry, Pt–Fe minerals correspond to ferroplatinum (Pt2Fe) and isoferroplatinum (Pt3Fe). The minerals of the isomorphic tetraferroplatinum–tulameenite–nickelferroplatinum series are widely distributed. Thus, the PGE mineralization of the Iov dunite body has features that are characteristic of clinopyroxenite–dunite massifs of the Urals.  相似文献   

14.
This paper presents results of isotopic (Cameca IMS1270 NORDSIM and SHRIMP-II ion microprobes) and geochemical (LA-ICP MS) study of zircons in three dunite samples of the Uralian-Alaskan-type massifs of the Urals: Kosva, Sakharin, and Eastern Khabarny. The zircons in the dunites share common features. Each sample contains the following genetic and age groups of zircons: (1) xenogenic zircons of the Archean and Proterozoic age; (2) zircons of magmatic appearance, which in age and geochemistry are close to the zircons from associated gabbroids; (3) postmagmatic zircons that presumably crystallized from hydrothermal solutions. The xenogenic zircons of the Archean age in each of three samples comprise transparent fragments, which are depleted in U and other trace elements and presumably have mantle origin. Xenogenic zircons of the Proterozoic age (1500–2000 Ma) occur as oval grains with surface abrasion, the traces of their redeposition. The geochemical features of the xenogenic zircons unequivocally demonstrate their affiliation to the continental crust—the basement of the Uralian orogen. The zircons of magmatic habit in all the dunite samples are close in age to the associated gabbroids: 435–432 Ma in the Kosva Massif, 378–374 in the Sakharin Massif, and 407–402 Ma in the Eastern Khabarny Massif, and mark the age of dunite formation. In addition, the magmatic zircons from dunites and associated gabbroids share similar geochemical features. These data could serve as additional argument in support of cumulate origin of dunites in the Uralian-Alaskan-type complexes. The postmagmatic zircons are most enriched in trace elements and were presumably formed from a fluid phase, which was responsible for the recrystallization of dunites and redistribution of Cr-spinel and PGE mineralization.  相似文献   

15.
《Applied Geochemistry》2006,21(9):1522-1538
Factors controlling the chemical composition of water interacting with finely-crushed kimberlite have been investigated by sampling pore waters from processed kimberlite fines stored in a containment facility. Discharge water from the diamond recovery plant and surface water from the containment facility, which acts as plant intake water, were also sampled. All waters sampled are pH-neutral, enriched in SO4, Mg, Ca, and K, and low in Fe. Pore-water samples, representing the most concentrated waters, are characterized by the highest SO4 (up to 4080 mg l−1), Mg (up to 870 mg l−1), and Ca (up to 473 mg l−1). The water discharged from the processing plant has higher concentrations of all major dissolved constituents than the intake water. The dominant minerals present in the processed fines and the kimberlite ore are serpentine and olivine, with small amounts of Ca sulphate and Fe sulphide restricted to mud xenoclasts. Reaction and inverse modeling suggest that much of the water-rock interaction takes place within the plant and involves the dissolution of chrysotile and Ca sulphate, and precipitation of silica and Mg carbonate. Evapoconcentration also appears to be a significant process affecting pore water composition in the containment facility. The reaction proposed to be occurring during ore processing involves the dissolution of CO2(g) and may represent an opportunity to sequester atmospheric CO2 through mineral carbonation.  相似文献   

16.
Eastern and western portions of the Jinchuan ultramafic intrusion have previously been interpreted as dismembered segments of a single elongate intrusion by late faults. However, the different stratigraphic sequences of the two portions indicate that they are originally two separate intrusions, referred to as Eastern and Western intrusions in this study. The Eastern intrusion is characterized by a concentric distribution of rock types with a core of sulfide dunite enveloped by lherzolite, whereas the Western intrusion is composed of the Upper and Lower units, interpreted as magmatic mega cycles with regular variations in lithology and chemistry. In the Western intrusion, the Upper unit consists of fine-grained dunite, lherzolite, and pyroxenite from its base to its top. The MgO contents decrease upward from the dunites (42–45 wt.%) to the lherzolites (36–41 wt.%), while Al2O3 and incompatible elements increase upward. In contrast, the Lower unit consists of coarse-grained dunites and lherzolites containing 37–40 and 28–35 wt.% MgO, respectively. Sharp contacts between the Upper and Lower units and fine-grained dunite xenoliths at the top of the Lower unit indicate that the Lower unit intruded along the base of the Upper unit. Disseminated and net-textured sulfides primarily occur in the Lower unit and comprise the no. 24 ore body. Very low S contents (<100 ppm) of the wall rocks at Jinchuan indicate that they were not the source of S causing sulfide immiscibility. Sulfide segregation more likely occurred in deep-seated magma chambers, and sulfides were deposited in the Western intrusion when sulfide-bearing magmas passed through the intrusion. In contrast, the Eastern intrusion was formed by injections of sulfide-free and sulfide-bearing olivine-crystal mushes, respectively, from another deep-seated staging magma chamber. The Eastern and Western intrusions and the deep-seated magma chambers comprise a complicated magma plumbing system at Jinchuan. Normal faults played a significant role in the formation of the magma plumbing system and provided pathways for the magmas.  相似文献   

17.
Fe-rich dunite xenoliths within the Kimberley kimberlites compriseolivine neoblasts with minor elongated, parallel-oriented ilmenite,and rarely olivine porphyroclasts and spinel. Compared withtypical mantle peridotites, olivines in the Fe-rich duniteshave lower forsterite (Fo87–89) and NiO contents (1300–2800ppm), which precludes a restitic origin for the dunites. Chrome-richspinels are remnants of a metasomatic reaction that producedilmenite and phlogopite. Trace element compositions differ betweenporphyroclastic and neoblastic olivine, the latter having higherTi, V, Cr and Ni and lower Zn, Zr and Nb contents, documentingtheir different origins. The dunites have high 187Os/ 188Osratios (0·11–0·15) that result in youngmodel ages for most samples, whereas three samples show isotopicmixtures between Phanerozoic neoblasts and ancient porphyroclasticmaterial. Most Fe-rich dunite xenoliths are interpreted to berecrystallized cumulates related to fractional crystallizationof Jurassic Karoo flood basalt magmatism, whereas the porphyroclastsare interpreted to be remnants from a much earlier (probablyArchaean Ventersdorp) magmatic episode. The calculated parentalmagma for the most primitive olivine neoblasts in the Fe-richdunites is similar to low-Ti Karoo basalts. Modelling the crystalfractionation of the inferred parental magma with pMELTS yieldselement fractionation trends that mirror the element variationof primitive low-Ti Karoo basalts. KEY WORDS: dunite xenoliths; fractional crystallization; Karoo; large igneous province; pMELTS; Re–Os; trace elements  相似文献   

18.
The Red Hills peridotite in the Dun Mountain ophiolite of SouthIsland, New Zealand, is assumed to have been produced in a paleo-mid-oceanridge tectonic setting. The peridotite is composed mostly ofharzburgite and dunite, which represent residual mantle andthe Moho transition zone (MTZ), respectively. Dunite channelswithin harzburgite blocks of various scales represent the MTZcomponent. Plagioclase- and clinopyroxene-bearing dunites occursporadically within common dunites. These dunites representproducts of melt–wall-rock interaction. Chondrite-normalizedrare earth element (REE) patterns of MTZ clinopyroxenes showa wide compositional range. Clinopyroxenes in plagioclase dunitesare extremely depleted in light REE (LREE) ([Lu/La]N >100),and are comparable with clinopyroxenes in abyssal peridotitesfrom normal mid-ocean ridges. Interstitial clinopyroxenes inthe common dunite have flatter patterns ([Lu/La]N 2) comparablewith those for dunite in the Oman ophiolite. Clinopyroxenesin the lower part of the residual mantle harzburgites are evenmore strongly depleted in LREE ([Lu/La]N = 100–1000) thanare mid-ocean ridge peridotites, and rival the most depletedabyssal clinopyroxenes reported from the Bouvet hotspot. Incontrast, those in the uppermost residual mantle harzburgiteand harzburgite blocks in the MTZ are less LREE depleted ([Lu/La]N= 10–100), and are similar to those in plagioclase dunite.Clinopyroxenes in the clinopyroxene dunite in the MTZ are similarto those reported from mid-ocean ridge basalt (MORB) cumulates,and clinopyroxenes in the gabbroic rocks have compositions similarto those reported from MORB. Strong LREE and middle REE (MREE)depletion in clinopyroxenes in the harzburgite suggests thatthe harzburgites are residues of two-stage fractional melting,which operated initially in the garnet field, and subsequentlycontinued in the spinel lherzolite field. The early stage meltingproduced the depleted harzburgite. The later stage melting wasresponsible for the gabbroic rocks and dunite. Strongly LREE–MREE-depletedclinopyroxene in the lower harzburgite and HREE-enriched clinopyroxenein the upper harzburgite and plagioclase dunite were formedby later reactive melt migration occurring in the harzburgite. KEY WORDS: clinopyroxene REE geochemistry; Dun Mountain ophiolite; Moho transition zone; orogenic peridotite; Red Hills  相似文献   

19.
Bulk diffusion of iron in synthetic dunites containing 1–6 vol.% fluid or melt at 10 kbar (1 GPa) and 900°–1300° C was examined by encapsulating the samples in platinum, which served as a sink for iron. The rate of iron loss from the dunite was found to depend strongly upon the identity of the fluid, which was varied from CO2 and H2O to melts of basaltic and sodium carbonate composition. Carbon dioxide in amounts up to 4 vol.% has no effect upon bulk iron diffusion because it exists in the dunite are isolated pores. The interconnected nature of H2O, basaltic melt, and carbonate melt, on the other hand, results in marked enhancement of bulk-rock Fe diffusion that is correlated with the diffusivity and solubility of olivine components in the fluid. At 1300° C, 4–5 vol.% of either water or basaltic melt increases the effective bulk diffusivity from the fluidabsent value of 10-10 cm2/s to 10-8 cm2/s. A single experiment involving a similar volume fraction of carbonate melt yielded a minimum bulk diffusivity of 10-7–10-6 cm2/s. This remarkably high value is attributable to the concurrent high diffusivity and high solubility of olivine components in molten carbonate H2O has a high diffusivity, estimated at 10-4 cm2/s in this study, and basaltic melt can dissolve large amounts of olivine, but neither possesses these two qualities in combination. Bulk transport of Fe in dunite containing <2 vol.% of pure H2O is independent of olivine grain size for samples having an average grain diameter of <10 m to 60 m. This is probably because bulk diffusion specifically in these H2O-bearing samples is ratelimited by the flux (which is proportional to concentration) of olivine components in the fluid. Given a constant fluid volume fraction, the effect of reducing the grain size is to increase the number of fluid-filled channels, but at the same time to decrease their average aperture, thus keeping constant the cross-sectional area through which the diffusional flux occurs. (Independence of bulk diffusivity from grain size is not anticipated for rocks containing melt, in which the silicate components are much more soluble.) In numerical (finite difference) simulations of selected laboratory experiments, the bulk Fe transport process was modeled as diffusion in fluid-filled tubules of triangular cross-section that are supplied by volume diffusion from contacting olivine grains with which they are in surface equilibrium. Applying a tortuosity factor of 1.7 brings the numerically computed diffusional loss profiles for experiments containing basaltic melt into near-coincidence with the experimentally-determined curves. This success in reproducing the experimental results lends credence to the interpretation of the bulk diffusional loss profiles as composites of gradients due to volume, grain-boundary and fluid-phase diffusion.  相似文献   

20.
Ultramafic xenoliths from Koolau Volcano on the island of Oahu,Hawaii, are divided into spinel lherzolite, pyroxenite, anddunite suites. On the basis of a study of the petrography andmineral compositions of 43 spinel lherzolites, 12 pyroxenites,and 20 dunites, the following characteristics of the dunitesin relation to the other nodule types and to Hawaiian lavasemerge. (1) The forstente content of olivines in the Koolaudunites (Fo82.6-Fo89 7 ) overlap those of Hawaiian tholeiiticand alkalic lavas and are generally lower than those in abyssallherzolites and dunites and in Koolau spinel lherzolites. (2)Most of the dunites contain no orthopyroxene, all except twocontain chrome spinel, and a few contain interstitial plagioclaseand clinopyroxene. (3) Chrome spinels from the Koolau dunitesare distinctly higher in Cr/(Cr+Al), lower in Mg/(Mg+ Fe2+)and higher in TiO2 than those from abyssal basalts and peridotites.Chrome spinels in the dunites correspond closely in compositionto chrome spinels in Hawaiian tholeiitic and alkalic lavas.(4) The abundance of dunite relative to other nodule types decreasesoutward from the central part of the volcano. The dunites areinterpreted not as residues of partial fusion of the mantlebut as crystal accumulations stored at shallow depths beneaththe central part of Koolau Volcano and derived from picriticmagmas parental to the shield-building tholeiitic lavas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号