首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We are addressing the issue of whether there exists an evolutionaryconnection between starburst and AGN in luminous infrared galaxies. We are combining theoretical modelling with optical, radio and infrared data from IRAS for a large sample of 285 infrared galaxies with a range ofluminosities. In this paper, we present a comparison between the optical spectroscopic data with the incidence of compact radio cores for a subsample of these galaxies. We find 90% of AGN type galaxies contain compact radio cores, while 37% of starburst galaxies contain compact radio cores. The compact radio cores in the starburst galaxies have a minimum brightness temperature of 3 × 105 K, higher than those of standard extended HII regions and may be obscured AGN or complexes of extremely luminous supernovae such as that seen in Arp 220.  相似文献   

2.
We analyze the statistical properties of normal galaxies to be detected in the all-sky survey by the eROSITA X-ray telescope of the Spectrum-X-Gamma observatory. With the current configuration and parameters of the eROSITA telescope, the sensitivity of a 4-year-long all-sky survey will be ≈10?14 erg s?1 in the 0.5–2 keV band. This will allow ~(1.5–2) × 104 normal galaxies with approximately the same contribution of star-forming and elliptical galaxies to be detected. All galaxies of the X-ray survey are expected to enter into the existing far-infrared (IRAS) or near-infrared (2MASS) catalogs; the sample of star-forming galaxies will be approximately equivalent in sensitivity to the sample of star-forming galaxies in the IRAS catalog of infrared sources. Thus, a large homogeneous sample of normal galaxies with measured X-ray, near-infrared, and far-infrared fluxes will be formed. About 90% of the galaxies in the survey are located within ~200–400 Mpc. A typical (most probable) galaxy will have a luminosity log L X ~ 40.5–41.0, will be located at a distance of ~70–90 Mpc, and will be either a star-forming galaxy with a star formation rate of ~20M yr?1 whose X-ray emission is produced by ultraluminous X-ray sources (ULXs) or an elliptical galaxy with amass log M * ~ 11.3 emitting through to a hot interstellar gas. The galaxies within 35 Mpc will collectively contain ~102 ULXs with luminosities log L X > 40, ~80% of whichwill be the only luminous source in the galaxy. Thus, although the angular resolution of the eROSITA telescope is too low for the luminosity function of compact sources in galaxies to be studied in detail, the survey data will allow one to investigate its bright end and, possibly, to impose constraints on the maximum luminosity of ULXs.  相似文献   

3.
We present a statistical analysis of the largest X-ray survey of nearby spiral galaxies in which diffuse emission has been separated from discrete source contributions. Regression and rank-order correlation analyses are used to compare X-ray properties, such as total, source and diffuse luminosities and diffuse emission temperature, with a variety of physical and multiwavelength properties, such as galaxy mass, type and activity, and optical and infrared luminosity.
The results are discussed in terms of the way in which hot gas and discrete X-ray sources scale with the mass and activity of galaxies, and with the star formation rate. We find that the X-ray properties of starburst galaxies are dependent primarily on their star-forming activity, whilst for more quiescent galaxies, galaxy mass is the more important parameter. One of the most intriguing results is the tight linear scaling between far-infrared and diffuse X-ray luminosity across the sample, even though the hot gas changes from a hydrostatic corona to a free wind across the activity range sampled here.  相似文献   

4.
Molecular line emission is a useful tool for probing the highly obscured inner kpc of starburst galaxies and buried AGNs. Molecular line ratios serve as diagnostic tools of the physical conditions of the gas—but also of its chemical properties. Both provide important clues to the type and evolutionary stage of the nuclear activity. While CO emission remains the main tracer for molecular distribution and dynamics, molecules such as HCN, HNC, HCO+, CN and HC3N are useful for probing the properties of the denser (n≳104 cm−3), star-forming gas. Here I discuss current views on how line emission from these species can be interpreted in luminous galaxies. HNC, HCO+ and CN are all species that can be associated both with photon dominated regions (PDRs) in starbursts—as well as X-ray dominated regions (XDRs) associated with AGN activity. HC3N line emission may identify galaxies where the starburst is in the early stage of its evolution.  相似文献   

5.
Radio continuum emission at cm wavelengths is relatively little affectedby extinction. When combined with far-infrared (FIR) surveys thisprovides for a convenient and unbiased method to select (radio-loud)AGN and starbursts deeply embedded in gas and dust–rich galaxies. Suchradio-selected FIR samples are useful for detailed investigations ofthe complex relationships between (radio) galaxy and starburst activity, and to determine whether ULIRGs are powered by hidden quasars (monsters) or young stars (babies).We present the results of a large program to obtain identifications andspectra of radio-selected, optically faint IRAS/FSC objects using theFIRST/VLA 20 cm survey (Becker, White and Helfand 1995). These objects are all radio-`quiet' in the sense that their radiopower / FIR luminosities follow the well-known radio/FIR relationshipfor star forming galaxies.We compare these results to a previous study by our group of a sampleof radio-`loud' IRAS/FSC ULIRGs selected from the Texas 365 MHzsurvey (Douglas etal. 1996). Many of these objects alsoshow evidence for dominant, A-type stellar populations, as well as highionization lines usually associated with AGN. These radio-loud ULIRGshave properties intermediate between those of starbursts and quasars,suggesting a possible evolutionary connection.Deep Keck spectroscopic observations of three ULIRGs from these samplesare presented, including high signal-to-noise spectropolarimetry.The polarimetry observations failed to show evidence of a hidden quasar inpolarized (scattered) light in the two systems in which the stellar lightwas dominated by A-type stars. Although observations of a larger samplewould be needed to allow a general conclusion, our current data suggestthat a large fraction of ULIRGs may be powered by luminous starbursts,not by hidden, luminous AGN (quasars).  相似文献   

6.
We study the nature of faint blue compact galaxies (BCGs) at redshifts z ∼ 0.2 - 1.3 using Keck and HST. Despite being very luminous (LB ∼ L*), most distant BCGs have masses M ∼ 1010M, i.e., they are dwarf stellar systems. The majority of these galaxies have colors, sizes, surface brightnesses, luminosities, velocity widths, excitations, star formation rates (SFR), and mass-to-light ratios characteristic of the most luminous nearby HII galaxies. The more massive BCGs form a more heterogeneous class of evolved starburst, similar to local disk starburst galaxies. Without additional star formation, HII-like BCGs will most likely fade to resemble today's spheroidal galaxies such as NGC 205. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The dust‐to‐gas ratios in three different samples of luminous, ultraluminous, and hyperluminous infrared galaxies are calculated by modelling their radio to soft X‐ray spectral energy distributions (SED) using composite models which account for the photoionizing radiation from H II regions, starbursts, or AGNs, and for shocks. The models are limited to a set which broadly reproduces the mid‐IR fine structure line ratios of local, IR bright, starburst galaxies. The results show that two types of clouds contribute to the IR emission. Those characterized by low shock velocities and low preshock densities explain the far‐IR dust emission, while those with higher velocities and densities contribute to the mid‐IR dust emission. Clouds with shock velocities of 500 km s–1 prevail in hyperluminous infrared galaxies. An AGN is found in nearly all of the ultraluminous infrared galaxies and in half of the luminous infrared galaxies of the sample. High IR luminosities depend on dust‐to‐gas ratios as high as ∼0.1 by mass, however most hyperluminous IR galaxies show dustto‐gas ratios much lower than those calculated for the luminous and ultraluminous IR galaxies. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
A sample of 230 galaxies has been compiled based on their IRAS FSC fluxes to study their multiwavelength properties and carry out comparative analyses with other similar samples. To understand the nature of these galaxies, a comparison with a sample of bright ULIRGs having fluxes at 60 μm  > 1 Jy and 14 optically faint IRAS FSC galaxies is presented. This comparison shows that galaxies found by IRAS are not always strong infrared sources and that the objects from the sample of ULIRGs represent a sample of extreme galaxies, which are very powerful infrared sources. We have confirmed the consistency between Star Formation Rates (SFRs) calibrated based on luminosities of the PAH feature at 7.7 μm and radio 1.4 GHz flux densities. We have estimated the extinction for our 230 objects using SFRs calibrated from the PAH feature compared to ultraviolet flux, which shows that only 1% of the ultraviolet continuum typically escapes extinction by dust within a starburst.  相似文献   

9.
We present new near-infrared J and K imaging data for 67 galaxies from the Universidad Complutense de Madrid (UCM) survey used in the determination of the SFR density of the local Universe by Gallego et al. This is a sample of local star-forming galaxies with redshift lower than 0.045, and they constitute a representative subsample of the galaxies in the complete UCM survey. From the new data, complemented with our own Gunn- r images and long-slit optical spectroscopy, we have measured integrated K -band luminosities, r − J and J − K colours, and H α luminosities and equivalent widths. Using a maximum likelihood estimator and a complete set of evolutionary synthesis models, these observations allow us to estimate the strength of the current (or most recent) burst of star formation, its age, the star formation rate and the total stellar mass of the galaxies. An average galaxy in the sample has a stellar mass of 5×1010 M and is undergoing (or has recently completed) a burst of star formation involving about 2 per cent of its total stellar mass. We identify two separate classes of star-forming galaxies in the UCM sample: low-luminosity, high-excitation galaxies (H  ii like ) and relatively luminous spiral galaxies (starburst disc- like ). The former show higher specific star formation rates (SFRs per unit mass) and burst strengths, and lower stellar masses than the latter. With regard to their specific star formation rates, the UCM galaxies are intermediate objects between normal quiescent spirals and the most extreme H  ii galaxies.  相似文献   

10.
We present the results of a statistical study of the star formation rates (SFR) derived from the Galaxy Evolution Explorer (GALEX) observations in the ultraviolet continuum and in the Hα emission line for a sample of about 800 luminous compact galaxies (LCGs). Galaxies in this sample have a compact structure and include one or several regions of active star formation. Global galaxy characteristics (metallicity, luminosity, stellar mass) are intermediate between ones of the nearby blue compact dwarf (BCD) galaxies and Lyman-break galaxies (LBGs) at high redshifts z>2–3. SFRs were corrected for interstellar extinction which was derived from the optical Sloan Digital Sky Survey (SDSS) spectra. We find that SFRs derived from the galaxy luminosities in the far ultraviolet (FUV) and near ultraviolet (NUV) ranges vary in a wide range from 0.18 M ?yr?1 to 113 M ?yr?1 with median values of 3.8 M ?yr?1 and 5.2 M ?yr?1, respectively. Simple regression relations are found for luminosities L(Hα) and L(UV) as functions of the mass of the young stellar population, the starburst age, and the galaxy metallicity. We consider the evolution of L(Hα), L(FUV) and L(NUV) with a starburst age and introduce new characteristics of star formation, namely the initial Hα, FUV and NUV luminosities at zero starburst age.  相似文献   

11.
The characteristics of the starburst galaxies from the Pico dos Dias survey (PDS) are compared with those of the nearby ultraviolet (UV) bright Markarian starburst galaxies, having the same limit in redshift ( v h < 7500 km s−1) and absolute B magnitude ( MB < −18). An important difference is found: the Markarian galaxies are generally undetected at 12 and 25 μm in IRAS . This is consistent with the UV excess shown by these galaxies and suggests that the youngest star-forming regions dominating these galaxies are relatively free of dust.
The far-infrared selection criteria for the PDS are shown to introduce a strong bias towards massive (luminous) and large size late-type spiral galaxies. This is contrary to the Markarian galaxies, which are found to be remarkably rich in smaller size early-type galaxies. These results suggest that only late-type spirals with a large and massive disc are strong emitters at 12 and 25 μm in IRAS in the nearby Universe.
The Markarian and PDS starburst galaxies are shown to share the same environment. This rules out an explanation of the differences observed in terms of external parameters. These differences may be explained by assuming two different levels of evolution, the Markarian being less evolved than the PDS galaxies. This interpretation is fully consistent with the disc formation hypothesis proposed by Coziol et al. to explain the special properties of the Markarian SBNG.  相似文献   

12.
The evolution of the Star Formation Rate (SFR) density of the Universe as a function of look-back time is a fundamental parameter in order to understand the formation and evolution of galaxies. The current picture, only outlined in the last years, is that the global SFR density has dropped by about an order of magnitude from a redshift of z∼1.5 to the current value at z=0. Because these SFR density studies are now extended to the whole range in redshift, it becomes mandatory to combine data from different SFR tracers. At low redshifts, optical emission lines are the most widely used. Using Hα as current-SFR tracer, the Universidad Complutense de Madrid (UCM) Survey provided the first estimation of the global SFR density in the Local Universe. The Hα flux in emission is directly related to the number of ionizing photons and, modulo IMF, to the total mass of stars formed. Metallic lines like [OII]λ3727 and [OIII]λ5007 are affected by metallicity and excitation. Beyond redshifts z∼0.4, Hα is not observable in the optical and [OII]λ3727 or UV luminosities have to be used. The UCM galaxy sample has been used to obtain a calibration between [OII]λ3727 luminosity and SFR specially suitable for the different types of star-forming galaxies found by deep spectroscopic surveys in redshifts up to z∼1.5. These calibrations, when applied to recent deep redshift surveys confirm the drop of the SFR density of the Universe since z∼1 previously infered in the UV. However, the fundamental parameter that determines galactic evolution is mass, not luminosity. The mass function for local star-forming galaxies is critical for any future comparison with other galaxy populations of different evolutionary status. Hα velocity-widths for UCM galaxies indicate that besides a small fraction of 1010-1011 M starburst nuclei spirals, the majority have dynamical masses in the ∼109 M range. A comparison with published data for faint blue galaxies suggests that star-forming galaxies at z∼1 would have SFR per unit mass and burst strengths similar to those at z=0, but being intrinsically more massive. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Ultraluminous X-ray sources (ULXs) are the most luminous discrete X-ray sources (excluding AGNs) in the local Universe with observed luminosities above, and in many cases in excess of, 1039 erg?s?1. Their physical nature is still uncertain, and many models have been proposed to explain their unusual luminosities. Some of them favour the possible nature of these objects as extragalactic microquasars with strong beaming effects. Others, instead, rely on accretion onto intermediate-mass black holes. In any case, both interpretations offer perspectives for possible gamma-ray detections by future space missions. In order to help to constrain at present the ULX physical nature, we provide here an account of our search for radio counterparts to ULXs located in nearby galaxies, based on a systematic cross-identification of the most recent, available and extensive ULX catalogues and radio archival data. Although we ended up with 70 positional coincidences, most of them were located within the nuclear regions of these galaxies, and thus, they do not represent true ULXs. However, among these sources we identify 11 remarkable cases not previously reported of ULX and radio emission coincidence. Future follow up of these promising cases with a multi-wavelength approach could be useful to improve our understanding of the ULX phenomenon.  相似文献   

14.
We present the rest-frame optical and infrared colours of a complete sample of  1114 z < 0.3  galaxies from the Spitzer Wide-Area Infrared Extragalactic (SWIRE) Legacy Survey and the Sloan Digital Sky Survey (SDSS). We discuss the optical and infrared colours of our sample and analyse in detail the contribution of dusty star-forming galaxies and active galactic nuclei (AGN) to optically selected red sequence galaxies.
We propose that the optical  ( g − r )  colour and infrared  log( L 24/ L 3.6)  colour of galaxies in our sample are determined primarily by a bulge-to-disc ratio. The  ( g − r )  colour is found to be sensitive to the bulge-to-disc ratio for disc-dominated galaxies, whereas the  log( L 24/ L 3.6)  colour is more sensitive for bulge-dominated systems.
We identify ∼18 per cent (195 sources) of our sample as having red optical colours and infrared excess. Typically, the infrared luminosities of these galaxies are found to be at the high end of star-forming galaxies with blue optical colours. Using emission-line diagnostic diagrams, 78 are found to have an AGN contribution and 117 are identified as star-forming systems. The red  ( g − r )  colour of the star-forming galaxies could be explained by extinction. However, their high optical luminosities cannot. We conclude that they have a significant bulge component.
The number densities of optically red star-forming galaxies are found to correspond to ∼13 per cent of the total number density of our sample. In addition, these systems contribute ∼13 per cent of the total optical luminosity density, and 28 per cent of the total infrared luminosity density of our SWIRE/SDSS sample. These objects may reduce the need for 'dry mergers'.  相似文献   

15.
We have investigated the rest-frame optical and far-infrared properties of a sample of extremely bright candidate Lyman-break galaxies (LBGs) identified in the Sloan Digital Sky Survey. Their high ultraviolet luminosities and lack of strong ultraviolet emission lines are suggestive of massive starbursts, although it is possible that they are more typical luminosity LBGs which have been highly magnified by strong gravitational lensing. Alternatively, they may be an unusual class of weak-lined quasars. If the ultraviolet and submillimetre (submm) properties of these objects mirror those of less luminous, starburst LBGs, then they should have detectable rest-frame far-infrared emission. However, our submm photometry fails to detect such emission, indicating that these systems are not merely scaled-up (either intrinsically or as a result of lensing) examples of typical LBGs. In addition we have searched for the morphological signatures of strong lensing, using high-resolution, near-infrared imaging, but we find none. Instead, near-infrared spectroscopy reveals that these systems are, in fact, a rare class of broad absorption line quasars.  相似文献   

16.
A sample of 14708 extragalactic IRAS sources selected from the Point Source Catalog via statistical classification has been cross-correlated with the ROSAT All Sky Survey (Bolleret al., 1992). 244 galaxies emerge as being detected both by ROSAT and IRAS.The most interesting point is the discovery of a dozen of normal spirals whose X-ray luminosities reach nearly 1043 erg s–1 (0.1–2.4 keV), higher than previous detection limits of a few 1041 erg s–1 (Stockeet al. 1991; Green, Anderson and Ward, 1992). We obtained optical spectra for nine of them, showing Seyfert spectra for three of the objects (thus previous mis-classifications), spectra close to LINERs for two further objects and normal IRAS galaxy spectra for the last four.In the case of normal galaxies, the source of energy is not clear yet and could be related to the high rate of star formation likely to occur in the central regions or also to a low level active nucleus. The study of these objects is of interest to the nature of LINERs and, more generally, to possible relations between AGN and starbursts (Sanderset al., 1988).  相似文献   

17.
HST observations have shown that low-redshift 3CR radio galaxies often exhibit a point-like optical component positionally coincident with the GHz-frequency radio core. In this paper we discuss the correlation between the luminosities of the radio, optical and X-ray cores in these objects, and argue that all three components have a common origin at the base of the relativistic jets. In unified models, FR I radio galaxies should appear as dimmed, redshifted versions of BL Lac objects. We show that such models are consistent with the spectral energy distributions of the radio galaxies only if the nuclear X-ray emission in radio galaxies is inverse Compton in origin.  相似文献   

18.
We use long-slit spectroscopic optical data to derive the properties of the extended emitting gas and the nuclear luminosity of a sample of 18 Seyfert 2 galaxies. From the emission-line luminosities and ratios we derive the density, reddening and mass of the ionized gas as a function of distance up to 2–4 kpc from the nucleus. Taking into account the geometric dilution of the nuclear radiation, we derive the radial distribution of covering factors and the minimum rate of ionizing photons emitted by the nuclear source. This number is an order of magnitude larger than that obtained from the rate of ionizing photons 'intercepted' by the gas and measured from the Hα luminosity. A calibration is proposed to recover this number from the observed luminosity. The He  ii λ4686/Hβ line ratio was used to calculate the slope of the ionizing spectral energy distribution (SED), which in combination with the number of ionizing photons allows the calculation of the hard X-ray luminosities. These luminosities are consistent with those derived from X-ray spectra in the eight cases for which such data are available and recover the intrinsic X-ray emission in Compton-thick cases. Our method can thus provide reliable estimates of the X-ray fluxes in Seyfert 2 galaxies for the cases where it is not readily available. We also use the ionizing SED and luminosity to predict the infrared luminosity under the assumption that it is dominated by reprocessed radiation from a dusty torus, and find a good agreement with the observed IRAS luminosities.  相似文献   

19.
We present near-infrared observations of a sample of mainly interacting ultraluminous infrared galaxies, comprising H - and K -band spectra. Our main aims are to investigate the power source of these extremely luminous objects and the various excitation mechanisms of the strong molecular hydrogen emission often seen in such objects. Broadened emission lines were only detected in one object, IRAS 23498, consistent with the previous results for this galaxy. The [Si  vi ] emission line was detected in IRAS 17179 and 20210, both classified as Sy2s. Two of the samples were unclassified, IRAS 00150 and 23420, which exhibit neither [Si  vi ] emission nor broadened H  i emission. However this does not rule out the presence of an obscured AGN. Analysis of the molecular hydrogen emission showed that the major excitation mechanism for most objects was thermal. Modelling of the more luminous objects indicates that for IRAS 20210 10 per cent, and for both IRAS 23365 and IRAS 23420 30 per cent, of the 1–0 S(1) line emission has a non-thermal origin.  相似文献   

20.
We present results from an ongoing X-ray survey of Wolf–Rayet (WR) galaxies, a class of objects believed to be very young starbursts. This paper extends the first X-ray survey of WR galaxies by Stevens &38; Strickland by studying WR galaxies identified subsequent to the original WR galaxy catalogue of Conti.   Out of a sample of 40 new WR galaxies a total of 10 have been observed with the ROSAT PSPC, and of these seven have been detected (NGC 1365, NGC 1569, I Zw 18, NGC 3353, NGC 4449, NGC 5408 and a marginal detection of NGC 2366). Of these, all are dwarf starbursts except for NGC 1365, which is a barred spiral galaxy possibly with an active nucleus. We also report on observations of the related emission-line galaxy IRAS 0833+6517.   The X-ray properties of these galaxies are broadly in line with those found for the original sample; they are X-ray overluminous compared with their blue luminosity and have thermal spectra with typically kT  ∼ 0.4 − 1.0 keV. There are some oddities: NGC 5408 is very overluminous in X-rays, even compared with other WR galaxies; I Zw 18 has a harder X-ray spectrum; NGC 1365, although thought to contain an active nucleus, has X-ray properties that are broadly similar to other WR galaxies, and we suggest that the X-ray emission from NGC 1365 is due to starburst activity.   A good correlation between X-ray and blue luminosity is found for the WR galaxy sample as a whole. However, when just dwarf galaxies are considered there is little evidence of correlation. We discuss the implications of these results on our understanding of the X-ray emission from WR galaxies and suggest that the best explanation for the X-ray activity is starburst activity from a young starburst region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号