首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sediments of Lake Van, Turkey, preserve one of the most complete records of continental climate change in the Near East since the Middle Pleistocene. We used seismic reflection profiles to infer past changes in lake level and discuss potential causes related to changes in climate, volcanism, and regional tectonics since the formation of the lake ca. 600 ka ago. Lake Van’s water level ranged by as much as 600 m during the past ~600 ka. Five major lowstands occurred, at ~600, ~365–340, ~290–230, ~150–130 and ~30–14 ka. During Stage A, between about 600 and 230 ka, lake level changed dramatically, by hundreds of meters, but phases of low and high stands were separated by long time intervals. Changes in the lake level were more frequent during the past ~230 ka, but less dramatic, on the order of a few tens of meters. We identified period B1 as a time of stepwise transgressions between ~230 and 150 ka, followed by a short regression between ca. 150 and 130 ka. Lake level rose stepwise during period B2, until ~30 ka. During the past ~30 ka, a regression and a final transgression occurred, each lasting about 15 ka. The major lowstand periods in Lake Van occurred during glacial periods, suggesting climatic control on water level changes (i.e. greatly reduced precipitation led to lower lake levels). Although climate forcing was the dominant cause for dramatic water level changes in Lake Van, volcanic and tectonic forcing factors may have contributed as well. For instance, the number of distinct tephra layers, some several meters thick, increases dramatically in the uppermost ~100 m of the sediment record (i.e. the past ~230 ka), an interval that coincides largely with low-magnitude lake level fluctuations. Tectonic activity, highlighted by extensional and/or compressional faults across the basin margins, probably also affected the lake level of Lake Van in the past.  相似文献   

2.
A 911-m-long sediment core from Lake Biwa, Japan, provides a record of organic matter delivery and accumulation in this large lake during a succession of tectonic and climatic changes dating back to the latest Pliocene. Sediments deposited since 430 ky are profundal; older sediments vary in setting between shallow-water and fluviodeltaic conditions, with occasional deep-water intervals. C/N ratios identify algal production as the dominant source of organic matter throughout the core, although the proportion of land-derived contributions episodically increases in the fluviodeltaic and shallow-water sediments. Rates of organic matter delivery and burial in lake sediments change in response to glacial-interglacial climate changes over the past 430 ky. Sediments deposited during interglacial intervals have organic carbon mass accumulation rates up to 9 times greater than those from glacial intervals, reflecting interglacial climates that were wetter than glacial climates. Algal production of organic matter increased during interglacial times because of greater wash-in of soil nutrients, and organic matter preservation was enhanced because of faster sedimentation rates.  相似文献   

3.
Sedimentological parameters and stable O- and C-isotopic composition of marl and ostracode calcite selected from a 17.7-m-long core from the 8-m-deep center of Pickerel Lake, northeastern South Dakota, provide one of the longest (ca. 12ky) paleoenvironmental records from the northern Great Plains. The late Glacial to early Holocene climate in the northern Great Plains was characterized by changes from cold and wet to cold and dry, and back to cold and wet conditions. These climatic changes were controlled by fluctuations in the positions of the Laurentide ice sheet and the extent of glacial Lake Agassiz. We speculate that the cold and dry phase may correspond to the Younger Dryas event. A salinity maximum was reached between 10.3 and 9.5 ka, after which Pickerel Lake shifted from a system controlled by atmospheric changes to a system controlled by groundwater seepage that might have been initiated by the final withdrawal of Glacial Lake Agassiz. A prairie lake was established at approximately 8.7 ka, and lasted until about 2.2 ka. During this mid-Holocene prairie period, drier conditions than today prevailed, interrupted by periods of increased moisture at about 8, 4, and 2.2 ka. Prairie conditions were more likely dry and cool rather than dry and warm. The last 2.2 ka are characterized by higher climatic variability with 400-yr aridity cycles including the Medieval Warm Period and the Little Ice Age.Although the signal of changing atmospheric circulation is overprinted by fluctuations in the positions of the ice sheet and glacial Lake Agassiz during the late Glacial-Holocene transition, a combination of strong zonal circulation and strong monsoons induced by the presence of the ice sheet and high insolation may have provided mechanisms for increased precipitation. Zonal flow introducing dry Pacific air became more important during the prairie period but seems to have been interrupted by short periods of stronger meridional circulation with intrusions of moist air from the Gulf of Mexico. More frequent switching between periods of zonal and meridional circulation seem to be responsible for increased climatic variability during the last 2.2 ka.  相似文献   

4.
The biostratigraphy of fossil diatoms contributes important chronologic, paleolimnologic, and paleoclimatic information from Lake Baikal in southeastern Siberia. Diatoms are the dominant and best preserved microfossils in the sediments, and distinctive assemblages and species provide inter-core correlations throughout the basin at millennial to centennial scales, in both high and low sedimentation-rate environments. Distributions of unique species, once dated by radiocarbon, allow diatoms to be used as dating tools for the Holocene history of the lake. Diatom, pollen, and organic geochemical records from site 305, at the foot of the Selenga Delta, provide a history of paleolimnologic and paleoclimatic changes from the late glacial (15 ka) through the Holocene. Before 14 ka diatoms were very rare, probably because excessive turbidity from glacial meltwater entering the lake impeded productivity. Between 14 and 12 ka, lake productivity increased, perhaps as strong winds promoted deep mixing and nutrient regeneration. Pollen evidence suggests a cold shrub — steppe landscape dominated the central Baikal depression at this time. As summer insolation increased, conifers replaced steppe taxa, but diatom productivity declined between 11 and 9 ka perhaps as a result of increased summer turbidity resulting from violent storm runoff entering the lake via short, steep drainages. After 8 ka, drier, but more continental climates prevailed, and the modern diatom flora of Lake Baikal came to prominence. On Academician Ridge, a site of slow sedimentation rates, Holocene diatom assemblages at the top of 10-m cores reappear at deeper levels suggesting that such cores record at least two previous interglacial (or interstadial?) periods. Nevertheless, distinctive species that developed prior to the last glacial period indicate that the dynamics of nutrient cycling in Baikal and the responsible regional climatic environments were not entirely analogous to Holocene conditions. During glacial periods, the deep basin sediments of Lake Baikal are dominated by rapidly deposited clastics entering from large rivers with possibly glaciated headwaters. On the sublacustrine Academician Ridge (depth = 300 m), however, detailed analysis of the diatom biostratigraphy indicates that diastems (hiatuses of minor duration) and (or) highly variable rates of accumulation complicate paleolimnologic and paleoclimatic reconstructions from these records.  相似文献   

5.
Lake Ohrid is considered to be of Pliocene origin and is the oldest extant lake in Europe. A 1,075-cm-long sediment core was recovered from the southeastern part of the lake, from a water depth of 105 m. The core was investigated using geophysical, granulometric, biogeochemical, diatom, ostracod, and pollen analyses. Tephrochronology and AMS radiocarbon dating of plant macrofossils reveals that the sediment sequence spans the past ca. 39,500 years and features a hiatus between ca. 14,600 and 9,400 cal. year BP. The Pleistocene sequence indicates relatively stable and cold conditions, with steppe vegetation in the catchment, at least partial winter ice-cover of the lake, and oxygenated bottom waters at the coring site. The Holocene sequence indicates that the catchment vegetation had changed to forest dominated by pine and summer-green oak. Several of the proxies suggest the impact of abrupt climate oscillations such as the 8.2 or 4.0 ka event. The observed changes, however, cannot be related clearly to a change in temperature or humidity. Human impact started about 5,000 cal. year BP and increased significantly during the past 2,400 years. Water column mixing conditions, inflow from subaquatic springs, and human impact are the most important parameters influencing internal lake processes, notably affecting the composition and characteristics of the sediments.  相似文献   

6.
Pollen and sediment from Grass Lake, California provide a history of vegetation and climate in the southern Cascade Range from 36 to 19 cal ka, revealing climate changes that led to the glacial advances recorded at Upper Klamath Lake (Rosenbaum and Reynolds 2004a – this issue). Variations in the percentages of conifer and Artemisia (sagebrush) pollen at Grass Lake recorded shifts in vegetation that reflect changes in precipitation. Between 36 and 34 cal ka, a progression from steppe to open pine forest to dense pine forest indicates that precipitation increased. After 32 cal ka, the forest became more open and by 30 cal ka sagebrush steppe surrounded the lake, implying that precipitation decreased. The area was arid for most of the interval between 30 and 19 cal ka. Increases in conifer pollen recorded increases in precipitation from 21 through 19 cal ka, when open pine forest colonized the lake area. Throughout the period from 36 to 19 cal ka, centennial- to millennial-scale intervals with increased conifer pollen imply that the arid interval was interrupted by periods of increased precipitation. Pollen data also provide evidence that the major fluctuations in sand concentration in the Grass Lake core reflect temperature shifts. Changes in sediment particle size are closely related to variations in pollen concentration and accumulation rate, which in turn reflect changes in plant cover, implying that sand was deposited in the lake due to deflation of clay- and silt-sized particles from sparsely-vegetated alpine areas of the watershed. Sand deposition increased as climatic cooling led to reductions in the elevation of upper treeline and alpine conditions affected a larger part of the watershed. There is no evidence of glaciation in the basin, but pollen data show the area was above upper treeline during Cold Period III (34–32 cal ka), one of several very cold intervals. Vegetation decreased at about 28 cal ka and remained sparse for at least 9000 years, implying that the climate became cooler and remained cool until after 19 cal ka. Cold Period II developed at about 25 cal ka and terminated by 23 cal ka. The Grass Lake watershed was again above upper treeline with the onset of Cold Period I, soon after 19 cal ka. Comparison of the Grass Lake record with those from Upper Klamath Lake, Oregon and Tulelake, California suggests a persistent pattern of environmental changes in this time interval throughout the Modoc Plateau region.  相似文献   

7.
榆林剖面的热释光测年及其对这一地区干旱事件的讨论   总被引:2,自引:2,他引:2  
用热释光测年方法对陕西榆林地区蔡家沟和石峁剖面的风成砂-黄土-古土壤序列进行了系统的测年,结果表明末次冰期的风成沉积中夹有三层古风成砂,由此反映了末次冰期中有三次沙漠扩大的气候干旱时期。根据年代测定结果最末一次干旱事件出现在12~<27kaB.P.之间,基本上与末次冰期极盛期相当,可以与深海氧同位素阶段2对应。第二次干旱期出现在48kaB.P.左右,大致与氧同位素阶段3的中期相当。最早的干旱期出现在55~<75kaB.P.之间,与阶段4对应。令人感兴趣的是虽然与阶段2、阶段4对应的干旱期在世界上其它地区同样有记录,但是大致相当于阶段3中期的这期干旱事件却以榆林剖面反映最好,表现为末次冰期的间冰段期间,毛乌素沙漠也曾经大规模扩大,这从一个侧面说明了中国的沙漠-黄土边界带对气候变化的敏感性。此外,热释光测年结果还表明了末次冰期的沉积由风成砂与黄土迭覆而成,而末次间冰期则由古土壤与黄土迭覆而成,因此,无论是冰期还是间冰期,气候条件都不是以持续的干冷或温暖为特点,而是叠加了更次一级的气候变化。毛乌素沙漠在第四纪时期并非持续存在,而是在气候的调节下经历了沙漠出现与固定的多次转变  相似文献   

8.
We use high-resolution reflection seismic data and detailed grain-size analysis of a drill core (KDP-01) from Lake Khubsugul (northern Mongolia) to provide an improved reconstruction of the glacial history of the area for the last 450 ka. Grain-size analysis of suspended sediment load in modern rivers draining into the lake and of moraine material from the northern part of the catchment shows that the silt fraction is transported to the central part of the lake mainly by river suspension, whereas the clay fraction is mainly transported by glacial meltwater during deglaciation. The changes in of the clay/silt ratio in Lake Khubsugul sediments correlates well with the standard global paleoclimate records: low clay/silt ratios indicate warm climates, while a high clay/silt ratio reflects glacial erosion and cold climates. Pulses of clay input into the lake occur at the final stages of glacial periods (i.e., glacial maxima and subsequent onsets of deglaciation). The periodicity in glacial clay input in Lake Khubsugul is in tune with global periods of deglaciation, but there are differences in the intensity of the deglacial events for MIS-12 and MIS-2. These differences are attributed to specific conditions in regional distribution of moisture during glaciation, glacial ice volumes, and solar insolation intensity at the onset of deglaciation. Deglaciation of the Khubsugul glaciers occurred in response to an increase in summer solar insolation above a threshold value of 490 W/m2. Two types of deglaciation can be distinguished: (1) slow melting during several tens of 1,000 years during weak increases in summer insolation, and (2) short and fast melting during several thousands of years in response to strong increases in summer insolation. The maximum ice volume in the area of Lake Khubsugul during the past 450 ka occurred during the period of 373–350 ka BP (MIS 11a-10) and was caused by high levels of moisture in the region, whereas the MIS-2 and MIS-12 glacial periods were characterized by minima in ice volume, due to the strong aridity in the region.  相似文献   

9.
Geochemistry of a sediment core from Lake Hovsgol, northwest Mongolia provides a continuous, 27-kyr history of the response of the lake and the surrounding catchment to climate change. Principle component (PC) analysis of 19 major and trace elements, total inorganic carbon (TIC), and total organic carbon (TOC) in the bulk sediment samples revealed that the 21 chemical components can be grouped into four assemblages—group-1: Na, Mg, Ca, Sr, and TIC, hosted in carbonate minerals (calcite, dolomite, and magnesian calcite); group-2: Ni, Cu, and Zn, recognized as biophilic trace metals, and TOC; group-3: Al, K, Ti, V, Fe, Rb, Cs, Ba, and Pb, composed of rock-forming minerals; and group-4: Cr, Mn, and As, sensitive to the redox condition of the sediment. The four element assemblages originated from three relevant processes. Group-1 and group-2 components are authigenic products and comprise the end member on the PC-1 score, whose variation reflects changes in the water volume, i.e. the balance between precipitation and evaporation (P/E). Group-3 components from detrital materials of the catchment contribute to the PC-2 score, whose variability indicates erosion/weathering intensity in the drainage basin, which might be controlled by the amount of vegetation cover associated with moisture change. The group-4 components of redox-sensitive elements contribute to the PC-3 score and are not an end member because of their small amount. The first two PC scores suggest a sequential record of paleo-moisture evolution in central Asia. The P/E balance in the Lake Hovsgol region, inferred from the PC-1 score, gradually increased during the glacial/interglacial transition. This resembles climate change of the North Atlantic region on the glacial–interglacial scale, but does not reflect the abrupt climate shifts such as the warm Bølling-Allerød and the cold Younger Dryas of the North Atlantic on the millennial scale. A periodic variation of ~8.7 kyr was observed in the PC-2 score profile of detrital input to Lake Hovsgol over the last glacial and Holocene. The decrease in detrital input coincided with the copious supply of moisture from the Asian monsoon regime and the North Atlantic westerly winds to the Baikal drainage basin, which includes Lake Hovsgol. Our geochemical records from Lake Hovsgol demonstrate that the climate system of interior continental Asia was strongly influenced by change on both Milankovitch and sub-Milankovitch scales.  相似文献   

10.
Well-dated surface and subsurface deposits in semiarid Fish Lake Valley, Nevada and California, demonstrate that alluvial-fan deposition is strongly associated with the warm dry climate of the last two interglacial intervals, and that fans were stable and (or) incised during the last glaciation. Fan deposition was probably triggered by a change from relatively moist to arid conditions causing a decrease in vegetation cover and increases in flash floods and sediment yield. We think that this scenario applies to most of the other valleys in the southern Basin and Range. Radiocarbon, tephra, and a few thermoluminescence and cosmogenic ages from outcrops throughout Fish Lake Valley and from cores on the Leidy Creek fan yield ages of >100–50 ka and 11–0 ka for the last two periods of alluvial-fan deposition. Mapping, coring and shallow seismic profiling indicate that these periods were synchronous throughout the valley and on the proximal and distal parts of the fans. From 50 to 11 ka, fan deposition ceased, a soil formed on the older alluvium and the axial drainage became active as runoff and stream competence increased. Slow deposition due to sheet flow or aeolian processes locally continued during this interval, producing cumulic soil profiles. The soil was buried by debris-flow sediment beginning at about 11 ka, coincident with the onset of relatively dry and warm conditions in the region. However, ground-water discharge maintained a large freshwater marsh on the valley floor throughout the Holocene. Pulses of deposition during the Holocene are recorded in the marsh and fan deposits; some pulses coincided with periods of or transitions to warm, dry climate indicated by proxy climate records, whereas others may reflect local disturbances associated with volcanism and fires. Within the marsh deposits, much of the clastic material is probably desert loess. In addition, the deposition of coppice dunes within the fan deposits coincides with two dry periods during the late Holocene.  相似文献   

11.
Inorganic minerals form a major component of lacustrine sediments and have the potential to reveal detailed information on previous climatic and hydrological conditions. The ability to extract such information however, has been restricted by a limited understanding of the relationships between minerals and the environment. In an attempt to fill in this gap in our knowledge, 146 surface sediment samples have been investigated from 146 lakes on the Tibetan Plateau. The mineral compositions derived from these samples by X-Ray Diffraction (XRD) were used to examine the relationships between mineral compositions and the environmental variables determined for each site. Statistical techniques including Multivariate regression trees (MRT) and Redundancy Analysis (RDA), based on the mineral spectra and environmental variables, reveal that the electrical conductivity (EC) and Mg/Ca ratios of lake water are the most important controls on the composition of endogenic minerals. No endogenic minerals precipitate under hyper-fresh water conditions (EC lower than 0.13 mS/cm), with calcite commonly forming in water with EC values above 0.13 mS/cm. Between EC values of 0.13 and 26 mS/cm the mineral composition of lake sediments can be explained in terms of variations in the Mg/Ca ratio: calcite dominates at Mg/Ca ratios of less than 33, whereas aragonite commonly forms when the ratio is greater than 33. Where EC values are between 26 and 39 mS/cm, monohydrocalcite precipitates together with calcite and aragonite; above 39 mS/cm, gypsum and halite commonly form. Information on the local geological strata indicates that allogenic (detrital) mineral compositions are primarily influenced by the bedrock compositions within the catchment area. By applying these relationships to the late glacial and Holocene mineral record from Chaka Salt Lake, five lake stages have been identified and their associated EC conditions inferred. The lake evolved from a freshwater lake during the late glacial (before 11.4 cal. ka BP) represented by the lowest EC values (<0.13 mS/cm), to a saline lake with EC values slightly higher than 39 mS/cm during the early and mid Holocene (ca. 11.4–5.3 cal. ka BP), and finally to a salt lake (after 5.3 cal. ka BP). These results illustrate the utility of our mineral-environmental model for the quantitative reconstruction of past environmental conditions from lake sediment records.  相似文献   

12.
Lake Ohrid, located on the Balkan Peninsula within the Dinaride–Albanide–Hellenide mountain belt, is a tectonically active graben within the South Balkan Extensional Regime (SBER). Interpretation of multichannel seismic cross sections and bathymetric data reveals that Lake Ohrid formed during two main phases of deformation: (1) a transtensional phase which opened a pull‐apart basin, and (2) an extensional phase which led to the present geometry of Lake Ohrid. After the initial opening, a symmetrical graben formed during the Late Miocene, bounded by major normal faults on each side in a pull‐apart type basin. The early‐stage geometry of the basin has a typical rhomboidal shape restricted by two sets of major normal faults. Thick undisturbed sediments are present today at the site where the acoustic basement is deepest, illustrating that Lake Ohrid is a potential target for drilling a long and continuous sediment core for studying environmental changes within the Mediterranean region. Neotectonic activity since the Pliocene takes place along the roughly N–S‐striking Eastern and Western Major Boundary Normal Faults that are partly exposed at the present lake floor. The tectono‐sedimentary structure of the basin is divided into three main seismic units overlying the acoustic basement associated with fluvial deposits and lacustrine sediments. A seismic facies analysis reveals a prominent cyclic pattern of high‐ and low‐amplitude reflectors. We correlate this facies cyclicity with vegetation changes within the surrounding area that are associated with glacial/interglacial cycles. A clear correlation is possible back to ca. 450 kyrs. Extrapolation of average sedimentation rates for the above mentioned period results in age estimate of ca. 2 Myrs for the oldest sediments in Lake Ohrid.  相似文献   

13.
A high-resolution paleolimnological study from Lake Brazi, a small mountain lake in the Southern Carpathian Mountains, Romania, shows distinct diatom responses to late glacial and early Holocene climate change between ca. 15,750 and 10,000?cal?year BP. Loss-on-ignition, titanium, sulphur, phosphorus, biogenic silica content, and diatom assemblage composition were used as proxies for past environmental changes. Total epilimnetic phosphorus (TP) concentrations and lakewater pH were reconstructed quantitatively using diatom-TP and pH transfer functions. The most remarkable changes in the aquatic ecosystem were found at ca. 12,870 and 10,400?cal?year BP. Whereas the onset of the Younger Dryas (YD) climatic reversal was conspicuous in our record, the beginning of the Holocene was not well marked. Two diatom assemblage zones characterize the YD in Lake Brazi, suggesting a bipartite division of this climatic oscillation. The diatom responses to the YD cooling were (1) a shift from Staurosira venter to Stauroforma exiguiformis dominance; (2) a decrease in overall diatom diversity; (3) a decrease in lake productivity, inferred from DI-TP, organic matter, and biogenic silica content; and (4) a lowering of the DI-pH. Compositional change of the diatom assemblages suggested a sudden shift towards more acidic lake conditions at 12,870?cal?year BP, which is interpreted as a response to prolonged ice cover and thus shorter growing seasons and/or enhanced outwash of humic acids from the catchment. Taking into account the chironomid-based inference of only moderate July mean temperature decrease (<1?°C), together with the pollen-inferred regional opening of the forest cover and expansion of steppe-tundra, our data suggest that ecosystem changes in the Southern Carpathians during the YD were likely determined by strong seasonal changes.  相似文献   

14.
Little Shingobee Lake and Fen are part of the extensive network of lakes and wetlands in the Shingobee River headwaters of northwestern Minnesota, designed to study the interactions between surface and ground waters. Prior to about 11.2 cal. ka, most of these lakes and wetlands were interconnected to form glacial Lake Willobee, which apparently formed when a debris flow dammed the Shingobee River. Between 11.2 and 8.5 cal. ka, the level of Lake Willobee fell as a result of breaching of the dam, transforming the deep lake into the existing lakes and wetlands. Analyses of a 9-m core from Little Shingobee Lake (LSL-B), and lacustrine sediments under 3.3 m of peat in a 17-m core from Little Shingobee Fen (LSF-10), show that the dominant components are allogenic clastic material, and endogenic CaCO3 and organic matter. In both cores almost all of the iron (Fe) and manganese (Mn) are incorporated in endogenic minerals, presumed to be X-ray amorphous oxyhydroxide minerals, that occur in significant quantities throughout the cores; almost no Fe and Mn are contributed from detrital aluminosilicate minerals. This suggests that, for most of the Holocene, the allogenic watershed contributions to lake chemistry were minor compared to the dissolved mineral load. In addition, prior to 3.5 cal. ka, pollen zone boundaries coincide with large changes in lake-sediment mineralogy, indicating that both landscape and climate processes were linked to early- and mid-Holocene lake chemistry. The pollen time series, with sequential domination by spruce, pine, sagebrush-oak, birch-oak and, finally, white pine is typical of the region and reflects the changing location of the prairie-forest transition zone over time. These changes in vegetation had some profound effects on the geochemistry of the lake waters.  相似文献   

15.
Sediment supply and climate change: implications for basin stratigraphy   总被引:8,自引:3,他引:5  
The rate of sediment supply from erosional catchment to depositional basin depends primarily upon climate, relief, catchment slope and lithology. It varies in both time and space. Spatial changes in erosion rates due to variations in lithology are illustrated by contrasting rates of drainage divide migration away from faults of known ages. Time variations in relative sediment supply are extremely complex and vary widely according to the direction and magnitude of climate change. In many parts of the Great Basin and south-western USA, glacial maximum climates were characterized by higher effective moisture and the altitudinal downward spread of woods and forests. Sparse data from alluvial fans indicate reduced sediment supply, despite the increased runoff evident from higher lake levels. The situation in Mediterranean areas is less clear, with rival climatic scenarios for vegetation ecotypes predicting contrasting runoff. In order to test these latter we run Cumulative Seasonal Erosion Potential [CSEP] experiments for present-day and a variety of full-glacial Mediterranean candidate climates. The results indicate the likelihood of enhanced sediment supply and runoff compared to the present day during full-glacial times for a cool wet winter climate and a reduction in sediment supply and runoff for a full-glacial cool dry winter climate. We then explore the consequences of such phase differences in sediment supply, and sea and lake levels for the stratigraphy of sedimentary basins. Highstands and lowstands of sea or lake may be accompanied by greater or lesser sediment and water supply, as determined by the regional climate and the direction of climatic change. Thus marine lowstands are not necessarily periods of great transfer of coarse clastic sediments to shelves and deep water basinal environments. Unsteady sediment supply has greatest implications for alluvial systems, in particular the effect that changing relative supplies of water and sediment have upon river and fan channel incision.  相似文献   

16.
The inorganic geochemistry of sediments from El’gygytgyn Lake shift in phase with interpreted paleoclimatic fluctuations seen in the record over the past 250 ka. Warm periods, when the lake was seasonally ice free and fully mixed, are characterized by increased concentrations of SiO2, CaO, Na2O, K2O, and Rb, by decreased contents of TiO2, Fe2O3, Al2O3, and MgO, and by a lower chemical index of alteration (CIA). Increased levels of SiO2 reflect increases in limnic productivity whereas many of the other elements and the CIA likely reflect increased hydrological activity coincident with an increase in coarser sand and silt content and a decrease in clay mineral content. For cold/cooler periods when perennial lake ice cover lead to a stratifed water column and anoxic bottom waters, the opposite is generally observed suggesting a decrease in hydrological activity and an increase in post-depositional chemical alteration. Peaks in P2O3 and MnO, coincident with an increased abundance of vivianite, suggest possible linkages to the paleoproductivity of local fish fauna regardless of climate change across the region surrounding Lake El’gygytgyn. Strontium is high in concentration during warmer intervals and may also be linked to paleoproductivity. Enrichment of the post-Eemian portion of the sediment record in niobium, and yttrium appears independent of glacial–interglacial change; rather it may reflect a gradual shift in the geomorphology of the catchment, particularly the hydrology of large alluvial fans along the western side of the lake. In contrast to some lake records, changes in Zr concentration over time suggests only a weak, if any, increase in eolian sediment supply during colder periods. This is the first in a series of eleven papers published in this special issue dedicated to initial studies of El'gygytgyn Crater Lake and its catchment in NE Russia. Julie Brigham-Grette, Martin Melles, Pavel Minyuk were guest editors of this special issue.  相似文献   

17.
We studied multiple variables in a sediment core from Lake Kipojärvi, northern Finland, to investigate Holocene ecosystem changes in relation to catchment characteristics and known climate variations. We focused on a forested catchment because previous paleolimnological studies conducted in Fennoscandia focused mainly on subarctic lakes within a range of shifting treeline(s). Data on aquatic macrophytes, diatoms, Cladocera, C:N ratio, organic matter (LOI) and regional vegetation (pollen), revealed a three-phase limnological development. The early Holocene, species-rich, mesotrophic lake was transformed into an oligotrophic, species-poor aquatic ecosystem by the early middle Holocene, ca. 7,500 cal years BP, earlier than has generally been reported. The transition involved considerable changes in aquatic macrophytes. Changes in the Cladocera and diatom communities appear to have been linked to aquatic macrophyte development, which in turn, was probably regulated by catchment development and hydrology, and a consequent decrease in nutrient input from the catchment. During the more humid late Holocene, surface flow from the catchment probably increased, but the lake??s nutrient status remained oligotrophic. Possible reasons for low nutrient concentration in the late Holocene include: 1) slower biogeochemical cycling due to cooler climate, 2) a new hydrologic outlet and associated shorter water-retention times, and 3) accelerated peatland development in the catchment that affected water flow patterns and nutrient cycling.  相似文献   

18.
西藏“一江两河”中游地区风成地层沉积时代、沉积相和磁化率等研究结果表明,早在800KaB.P.前西南季风就已存在,受全球气候波动和青藏高原隆起的影响,其盛行衰变与东南季风具有较好的一致性,主要表现为本区地层所记录的气候变化信息不如东南季风区详细;而且西南季风因高原屏障作用给本区带来的降水愈来愈少,气候明显地向干冷化发展。  相似文献   

19.
Lacustrine Sedimentary Organic Matter Records of Late Quaternary Paleoclimates   总被引:32,自引:0,他引:32  
Identification of the sources of organic matter in sedimentary records provides important paleolimnologic information. As the types and abundances of plant life in and around lakes change, the composition and amount of organic matter delivered to lake sediments changes. Despite the extensive early diagenetic losses of organic matter in general and of some of its important biomarker compounds in particular, bulk identifiers of organic matter sources appear to undergo minimal alteration after sedimentation. Age-related changes in the elemental, isotopic, and petrographic compositions of bulk sedimentary organic matter therefore preserve evidence of past environmental changes.We review different bulk organic matter proxies of climate change in tropical and temperate sedimentary records ranging in age from 10-500 ka. Times of wetter climate result in enhanced algal productivity in lakes as a consequence of greater wash-in of soil nutrients, and these periods are recorded as elevated Rock-Eval hydrogen indices, lowered organic C/N ratios, less negative organic 13C values, and increased organic carbon mass accumulation rates. Lowering of lake water levels, which typically depresses algal productivity, can also cause an apparent increase in organic carbon mass accumulation rates through suspension of sediments from lake margins and redeposition in deeper basins. Alternations between C3 and C4 watershed plants accompany climate changes such as glacial/interglacial transitions and wet/dry cycles, and these changes in land-plant types are evident in 13C values of organic matter in lake sediments. Changes in climate-driven hydrologic balances of lakes are recorded in D values of sedimentary organic matter. Visual microscopic examination of organic matter detritus is particularly useful in identifying changes in bulk organic matter delivery to lake sediments and therefore is important as an indicator of climate changes.  相似文献   

20.
This is the first integrated multiproxy study to investigate climate, catchment evolution and lake ecology in South Greenland. A 4-m-long sedimentary sequence from Lake Igaliku (61o 00?? N, 45o 26?? W, 15?m asl) documents major environmental and climatic changes in south Greenland during the last 10?ka. The chronology is based on a 210Pb and 137Cs profile and 28 radiocarbon dates. The paleoenvironmental history is interpreted on the basis of magnetic susceptibility, grain size, total organic carbon, total nitrogen and sulphur, sedimentation rates, pollen, and diatom assemblages. The basal radiocarbon date at ca. 10?cal?ka BP provides a minimum age for the deglaciation of the basin, which is followed by ~500?years of high sedimentation rates in a glacio-marine environment. After the glacio-isostatic emergence of the basin ca. 9.5?cal?ka BP, limnological and terrestrial proxies suggests early warmth, which may have been interrupted by a cold, dry and windy period between 8.6 and 8.1?cal?ka BP. A dry and windy event ~5.3?C4.8?cal?ka BP preceded the Neoglacial transition at Lake Igaliku, which is characterized by a shift toward moister and perhaps cooler conditions ~4.8?cal?ka BP, causing major changes in terrestrial and aquatic ecological conditions. Significant cooling is documented after ~3?cal?ka BP. Since ~1?cal?ka BP the climatic-driven changes were overprinted by the human influence of Norse and recent agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号