首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ten cores consisting of varved clay from the northern part of Lake Peipsi in eastern Estonia have been correlated using varve thickness variations and specific marker varves into a 375-year floating varve chronology. Continuous sedimentation during gradual ice recession is concluded from a clear transition from proximal to distal varves. Cyclic variations in varve thickness are caused mainly by thickness changes of clayey winter layers. This is interpreted to indicate increased influx of finer material due to faster melting of the glacier. The cyclic pattern of thickness change is explained by alternating periods of increased and decreased melting of the ice. Simultaneous accumulation of varved clay in glacial Lake Peipsi and in the Luga and Neva basins of Russia is concluded from the good visual correlation between the mean varve thickness diagrams for the three chronologies. Because the varve chronologies from northwestern Russia have been tentatively correlated to the Swedish varve chronology, the timing of the clay accumulation in glacial Lake Peipsi is placed between c . 13 500 and 13 100 varve years BP.  相似文献   

2.
The varve record from High Arctic, proglacial Bear Lake reveals a regionally coherent hydroclimatic signal as well as complexities due to changing hydroclimatic and limnologic conditions. Varve formation is strongly dependent on underflows that exhibit variability in strength during the past 750 yr. Periods with reduced underflow sedimentation and accumulation rates fail to produce varves in the distal part of the lake. Isolated coarse silt and sand grains occur in 80% of the varves and are interpreted to be niveo-aeolian in origin. Coarse (>500 μm) sand grains deposited on the lake ice by strong winter winds are notably less common since A.D. 1850, likely due to reduced storminess. Regression of the varve thickness record with meteorological records indicates high correlations with autumn (September and October) temperatures and total monthly snowfall. These correlations are best at times when underflow activity is sufficiently strong to produce varves throughout the lake. The close association with warmer temperatures and snow-bearing synoptic systems moving north in Baffin Bay suggests that the primary climate signal in the varves is varying autumn snow pack that controls nival discharge in the following year. The similarity between the other records of melt season temperature and sea-ice cover and the Bear Lake record suggests that summer and autumn conditions were generally similar across the Baffin Bay region through much of the last millennium.  相似文献   

3.
We analyze both new and previously published paleomagnetic records of secular variation (PSV) from Lake Superior sediment cores and compare these records to correlated rhythmite (varve) thickness records to determine post-glacial sedimentation rates and to reassess the termination of glaciolacustrine varves in the basin. The results suggest that offshore sedimentation rates have exhibited considerable spatial variation over the past 8000 years, particularly during the mid-Holocene. We attribute offshore, mid-Holocene sedimentation changes to alterations in whole basin circulation, perhaps precipitated by a greater dominance of the Gulf of Mexico air mass during the summer season. Nearshore bays are characterized by high sedimentation rates for at least 1000 years after varve cessation and during a period between around 4500 and 2000 cal. BP. After 2000 cal. BP, sedimentation rates subsided to earlier rates. The increases between 4500 and 2000 cal. BP are probably due to lake level fall after the Nipissing II highstand.The older glaciolacustrine varve thickness records suggest that the influx of glacially derived sediment ended abruptly everywhere in the lake, except near the Lake Nipigon inlets. Multiple sediment cores reveal 36 anomalously thick varves, previously ascribed to the formation of the Nakina moraine, which were deposited just prior to varve cessation in the open lake. The PSV records support the observation that the cessation of these thick varves is a temporally correlative event, occurring at 9035±170 cal. BP (calibrated years before 1950, ca 7950–8250 14C BP). This date would correlate to the eastern diversion of Lake Agassiz and glacial meltwater into Lake Ojibway.  相似文献   

4.
A series of piston cores from Flathead Lake, Montana, USA and a new radiocarbon date from the sedimentary record provide the basis for describing sedimentary processes related to deglaciation of the Flathead Lobe of the Cordilleran Ice Sheet and for interpreting the retreat history of the lobe. The oldest part of Flathead Lake sediment core records is Late Pleistocene in age and consists of cm-scale rhythmites of silt and clay, interpreted here as annual varves. Each varve contains a light-colored coarser-grained portion, inferred to represent deposition during peak annual runoff, and a darker-colored finer-grained portion interpreted to represent sediment accumulation during seasonal low-flow conditions. The coarser-grained portions, especially in the stratigraphically older sections of each core, contain sedimentary structures that reflect traction transport. Based on these sedimentary structures, their facies characteristics, and their spatial distribution within the lake, we interpret the thicker, light-colored portion of each varve to be deposited by hyperpycnal flows caused by seasonal melt events rather than more classic turbidity currents.Immediately overlying Late Pleistocene rhythmites in all Flathead Lake cores is a unique, significantly coarser-grained dm-scale silt bed with a median grain size up to 50 µm. This silt bed has a sharp, locally erosional base and fines upward but does not contain any other sedimentary structures. In contrast to the rhythmites, we interpret this silt bed to represent a single, short-lived catastrophic sedimentation event generated by a large glacial outburst flood. Overlying this distinct bed are several other cm-scale beds of mainly silt that exhibit a basal upward-coarsening followed by an upward-fining median grain size profile. We interpret these beds and their grain size trends as reflecting the rising and falling hydrograph limbs of outburst floods derived from more distal sources located in the upstream parts of the upper Flathead watershed.The sediment record from Flathead Lake, together with results from geologic and geomorphologic 1:24,000 scale mapping around the lake margins, provide a series of constraints regarding the paleogeographic evolution of the area during deglaciation. Overall upward-thinning and upward-fining of the varved portion of the sediment core records reflects northward retreat of the southern Flathead Lobe ice margin starting at latest 14,475 ± 150 cal yr BP, the depositional age of the oldest varve in any of our cores. The depositional age of silt beds overlying the varved records is constrained as between 14,150 ± 150 cal yr BP and 13,180 ± 120 cal yr BP. Within the available chronostratigraphic constraints, the outburst floods interpreted to have delivered this silt to the Flathead Lake basin also downcut a bedrock nick point below the Flathead Lake outlet, oriented a series of large boulders downstream, and deposited a series of large flood bars on the lower Flathead River floodplain.  相似文献   

5.
The annually laminated, or varved, sediments of Lake Gościź, Poland, cover the last c. 12900 years, from Late Allerød up to the present. We have analysed the thickness of 1912 varves in this time-series by means of auto-correlation analysis, in the hope of obtaining information on patterns in past climate, for example patterns of 11 years, which might indicate a relation with solar activity. We analysed the total varve thickness and the thickness of the summer and the winter layer. Two single-bootstrap experiments confirmed the validity of the methods in general, but they indicated that the moving-window technique with overlapping windows hampered the assessment of statistical significance. Three global significance assessment procedures, taking into account the total number of auto-correlation coefficients (ACs) that is tested, showed significance of the ACs only at a lag of one year and only for the winter layer and the total varve. This auto-correlation with the preceding year may be explained by a factor internal to the lake, for instance some depositional mechanism. We found no indication of a relation between varve formation and the sun-spot cycle.  相似文献   

6.
同号文 《地层学杂志》1996,20(1):23-28,T002
衡阳市郊五马归槽始新世鱼化石保存在黑色湖相纹层中。根据纹层序列的对比,发现该地的鱼化石均为同一层位;根据鱼化石在纹层序列中的具体位置及鱼化石的保存状况,笔者推测鱼群的死亡并非由于季节更替,而是由气候干旱引起的湖水盐度升高所控制;黑白纹层的变化是由大气降雨所致。  相似文献   

7.
The thickness of varves in the sediments of Skilak Lake, Alaska, are correlated with the mean annual temperature (r = 0.574), inversely correlated with the mean annual cumulative snowfall (r = −0.794), and not correlated with the mean annual precipitation (r = 0.202) of the southern Alaska climatological division for the years 1907–1934 A.D. Varve thickness in Skilak Lake is sensitive to annual temperature and snowfall because Skilak Glacier, the dominant source of sediment for Skilak Lake, is sensitive to these climatic parameters. Trends of varve thickness are well correlated with trends of mean annual cumulative snowfall ( ) of the southern Alaska climatological division and with trends of mean annual temperature of the southern ( ) and northern ( ) Alaska climatological divisions. Trends of varve thickness also correlate with trends of annual temperature in Seattle and North Head, Washington ( , respectively). Comparisons of trends of varve thickness with trends of annual temperature in California, Oregon, and Washington suggest no widespread regional correlation. Trends of annual snowfall in the southern Alaska climatological division and trends of annual temperature in the southern and northern Alaska climatological divisions are reconstructed for the years 1700–1906 A.D. Climatic reconstructions on the basis of varve thickness in Skilak Lake utilize equations derived from the regression of series of smoothed climatological data on series of smoothed varve thickness. Reconstruction of trends of mean annual cunulative snowfall in the southern Alaska climatological division suggests that snowfall during the 1700s and 1800s was much greater than that during the early and mid-1900s. The periods 1770–1790 and 1890–1906 show marked decreases in the mean annual snowfall. Reconstructed trends of the annual temperature of the northern and southern Alaska climatological divisions suggest that annual temperatures during the 1700s and 1800s were lower than those of the early and mid-1900s. Two periods of relatively high annual temperatures coincide with the periods of low annual snowfall thus determined.  相似文献   

8.
The Fehmarn Belt is a key area for the Late Pleistocene and Holocene development of the Baltic Sea as it was a passage for marine and fresh water during its different stages. The pre‐Holocene geological development of this area is presented based on the analysis of seismic profiles and sedimentary gravity cores. Late Pleistocene varve sediments of the initial Baltic Ice Lake were identified. An exceptionally thick varve layer, overlain by a section of thinner varves with convolute bedding in turn covered by undisturbed varves with decreasing thicknesses is found in the Fehmarn Belt. This succession, along with a change in varve geochemistry, represents a rapid ice‐sheet withdrawal and increasingly distal sedimentation in front of the ice margin. Two erosional unconformities are observed in the eastern Mecklenburg Bight, one marking the top of the initial Baltic Ice Lake deposits and the second one indicating the end of the final Baltic Ice Lake. These unconformities join in Fehmarn Belt, where deposits of the final Baltic Ice Lake are missing due to an erosional hiatus related to a lake‐level drop during its final drainage. After this lake‐level drop, a lowstand environment represented by river deposits developed. These deposits are covered by lake marls of Yoldia age. Tilting of the early glacial lake sediments indicates a period of vertical movements prior to the onset of the Holocene. Deposits of the earliest stages of the Baltic Sea have been exposed by ongoing erosion in the Fehmarn Belt at the transition to the Mecklenburg Bight.  相似文献   

9.
We revise the conceptual model of calcite varves and present, for the first time, a dual lake monitoring study in two alkaline lakes providing new insights into the seasonal sedimentation processes forming these varves. The study lakes, Tiefer See in NE Germany and Czechowskie in N Poland, have distinct morphology and bathymetry, and therefore, they are ideal to decipher local effects on seasonal deposition. The monitoring setup in both lakes is largely identical and includes instrumental observation of (i) meteorological parameters, (ii) chemical profiling of the lake water column including water sampling, and (iii) sediment trapping at both bi-weekly and monthly intervals. We then compare our monitoring data with varve micro-facies in the sediment record. One main finding is that calcite varves form complex laminae triplets rather than simple couplets as commonly thought. Sedimentation of varve sub-layers in both lakes is largely dependent on the lake mixing dynamics and results from the same seasonality, commencing with diatom blooms in spring turning into a pulse of calcite precipitation in summer and terminating with a re-suspension layer in autumn and winter, composed of calcite patches, plant fragments and benthic diatoms. Despite the common seasonal cycle, the share of each of these depositional phases in the total annual sediment yield is different between the lakes. In Lake Tiefer See calcite sedimentation has the highest yields, whereas in Lake Czechowskie, the so far underestimated re-suspension sub-layer dominates the sediment accumulation. Even in undisturbed varved sediments, re-suspended material becomes integrated in the sediment fabric and makes up an important share of calcite varves. Thus, while the biogeochemical lake cycle defines the varves’ autochthonous components and micro-facies, the physical setting plays an important role in determining the varve sub-layers’ proportion.  相似文献   

10.
A Quaternary interglacial lake sediment record from the Piànico-Sèllere Basin (northern Italy) consists of biochemical calcite varves with intercalated detrital layers. At the end of the Piànico Interglacial, continuous varve formation was replaced by predominantly detrital sedimentation. However, 427 varve-years before this shift, an abrupt increase in the frequency and thickness of detrital layers occurred. Microfacies analyses reveal a total of 152 detrital layers, ranging from 0·2 to 20·15 mm in thickness, deposited during the last 896 years of the Piànico Interglacial. Three microfacies types are distinguished: (i) graded layers, (ii) non-graded silt layers, and (iii) matrix-supported layers. The position of detrital layers within an individual varve provides additional information on the season in which they have been deposited. Microfacies analyses in combination with varve counting further enabled precise varve-to-varve correlation of the detrital layers for two sediment sections cropping out ca 130 m apart. The detailed intra-basin correlation allows the source regions of detrital layers to be inferred. Moreover, micro-erosion at sub-millimetre scale has been established. Of the described facies types, only the accumulation of summer and spring graded and non-graded silt layers abruptly increased before the end of interglacial varve formation whereas non-graded winter silt and matrix-supported layers are randomly distributed over the entire study period. Heavy rainfalls are assumed to have triggered spring and summer graded layers, so that the occurrence of these layers is thought to be a proxy for extreme precipitation events in the past.  相似文献   

11.
Glacial varves can give significant insights into recession and melting rates of decaying ice sheets. Moreover, varve chronologies can provide an independent means of comparison to other annually resolved climatic archives, which ultimately help to assess the timing and response of an ice sheet to changes across rapid climate transitions. Here we report a composite 1257‐year‐long varve chronology from southeastern Sweden spanning the regional late Allerød–late Younger Dryas pollen zone. The chronology was correlated to the Greenland Ice‐Core Chronology 2005 using the time‐synchronous Vedde Ash volcanic marker, which can be found in both successions. For the first time, this enables secure placement of the Lateglacial Swedish varve chronology in absolute time. Geochemical analysis from new varve successions indicate a marked change in sedimentation regime accompanied by an interruption of ice‐rafted debris deposition synchronous with the onset of Greenland Stadial 1 (GS‐1; 12 846 years before AD 1950). With the support of a simple ice‐flow/calving model, we suggest that slowdown of sediment transfer can be explained by ice‐sheet margin stabilization/advance in response to a significant drop of the Baltic Ice Lake level. A reassessment of chronological evidence from central‐western and southern Sweden further supports the hypothesis of synchronicity between the first (penultimate) catastrophic drainage of the Baltic Ice Lake and the start of GS‐1 in Greenland ice‐cores. Our results may therefore provide the first chronologically robust evidence linking continental meltwater forcing to rapid atmosphere–ocean circulation changes in the North Atlantic.  相似文献   

12.
Several new varve measurements have been made at Skövde and Tibro in the middle Swedish end moraine belt to the east of Mount Billingen, Västergötland. Some varve sequences are very long, containing 400–700 varves, but correlations are still difficult to make. This is probably due to stagnation and advances of the inland ice margin, indicated by disturbed varves and by sand or till on the clay. SE of Skövde a series of more than 560 varves is covered by a glaciofluvial delta. This delta must have been formed not far from the ice margin. After a slow ice recession at Tibro - 17 km in 400–600 years - advances are indicated by the stratigraphy in the northern parts of the area.  相似文献   

13.
A 10-cm long section from varved sequence of Lake Nautajärvi, Finland, has been analysed using both X-ray densitometry and image analysis of Backscattered Scanning Electron microscope Images (BSEI) of thin sections. Lake Nautajärvi's clastic-organi c varves appear in X-ray images as a succession of dark and pale stripes, pale ones being the spring detrital minerogenic layers and dark ones organic matter laid down during the time of summer, autumn and winter ice cover. Owing to the sharp contrast of the minerogenic spring layer, a semiautomatic tree-ring width and density measurement DendroScan system was applied to obtain seasonal/annual data of relative X-ray density. Mean density of BSEI was also acquired. Then BSEI were processed to produce black and white images, where white pixels represent the clay-rich sedimentary matrix and black pixels the particles in the matrix: silt- or sand-sized, terrigenous grains, authigenic particles and diatoms. Measurements of the size of the detrital particles forming the varves were obtained. For each varve, mean grey-level values in BSEI correlated well with the mean grey-level values of X-ray images, but grain size obtained on BSEI did not correlate with any parameters computed from X-ray radiography.  相似文献   

14.
Sediment microfacies, geochemical μ‐XRF and X‐ray density analyses were conducted on varved sediments from Lake Kortejärvi (eastern Finland) covering the last 2700 years. The varves comprise couplets of detrital and organic sub‐layers throughout the complete time‐span. Based on their microfacies and stratigraphical position within a varve as well as comparisons with local discharge and meteorological data, thicker detrital layers are interpreted to reflect intensified snow‐melt floods following more humid winters. Detailed comparisons with monthly to annually resolved North Atlantic Oscillation (NAO) indices back to AD 1049 (901 a BP) suggest that multidecadal increases in snow‐melt layer thickness tend to be connected with a more positive phase of the NAO and, consequently, warmer winters. In contrast, distinct centennial intervals of thicker snow‐melt layers from −40 to 170, 280 to 460 and 1900 to 2300 a BP as well as around 2600 a BP do not consistently correspond to a particular NAO phase, but coincide with extended sea‐ice margins and a colder North Atlantic climate, causing intensified and southward shifted westerly cyclones. Our results point to a differential modification of North Atlantic winter hydroclimate working on varying time scales.  相似文献   

15.
In sections and cores from an area of the Baltic Ice Lake in Blekinge complete varve series of fine-grained glacial sediments have been found. It is possible to divide the series, from bottom to top, into four varve types. A core from Karlshamn in Blekinge shows most varves of the investigated localities, in all 355 varves. Antevs' (1915) local chronology has been used, as the most recent revision of the Swedish time scale has not yet been completed. The chronology in this investigation ranges from - 325 to + 315, or 640 years. The varve chronology and the velocity of the ice recession, c. 90 m/year in northeastern Skåne, shows good agreement with the work of Antevs, whose unpublished diagrams have been re-worked and used in this investigation.  相似文献   

16.
Cyclic variations in the grain size, colour, carbonate content and organic content are interpreted as the result of proximal glaciomarine varve deposition along a fjord-like valley in southwestern Sweden. The sedimentological factors which allow varve development in this generally inhibiting environment arc considered by analogy with modern examples. Density stratification which is best developed during the spring and summer period of high discharge is suggested to have an essential influence on the cyclic character. Since sedimentation is interpreted to have occurred primarily from meltwater overflow the degree of mixing and salinity-induced coagulation largely governs fine-sediment sorting. Although these varves are not as well defined or as easily correlated as classical varves, they are considered useful in many comparable applications.  相似文献   

17.
Two varved clay sequences, at Rystad and Tottnäs, situated in the Middle Swedish ice marginal zone were analysed palaeomagnetically. Two parallel profiles were sampled and analysed at each site. The varved clay at Rystad was dated by floating varve chronology. The varves at Tottnäs can be linked to Swedish time scale, expressed in calendar years B.P. Due to the distance between the sites they cannot be correlated by means of varve diagrams. Palaemagnetic methods were used as an alternative. Based an AF demanetization of pilot samples, the palaeomanetic to be too low, in the order of15, compared to the site latitude. At Tottnäs the inclination records are very close to the expected inclination with respect to the site latitude. Because of a systematic inclination error in the Rystad profiles the correlation was based on the declination records. Statistical comparisons of these records between the two sites indicate that the sediment successions are partly synchronous. It is concluded that the deglaciation at Tottnäs started c. 130 years earlier than at Rystad. This mean that the Swedish ice marginal zone east of Rystad will have a more northeasterly extension than previously thought.  相似文献   

18.
Livingstone, S. J., Ó Cofaigh, C., Evans, D. J. A. & Palmer, A. 2010: Sedimentary evidence for a major glacial oscillation and proglacial lake formation in the Solway Lowlands (Cumbria, UK) during Late Devensian deglaciation. Boreas, Vol. 39, pp. 505–527. 10.1111/j.1502‐3885.2010.00149.x. ISSN 0300‐9483. This paper is a sedimentological investigation of Late Devensian glacial deposits from the Solway Lowlands, northwest England, in the central sector of the last British–Irish Ice Sheet. In this region, laminated glaciolacustrine sediments occur, sandwiched between diamictons interpreted as subglacial tills. At one location the laminated sediments are interpreted as varves, and indicate the former presence of a proglacial lake. Correlation of these varves with other laminated sediments indicates that the glacial lake was at least 140 km2 in area and probably much larger. Extensive beds of sand, silt and gravel throughout the Solway Basin associated with the lake demonstrate ice‐free conditions over a large area. Based on the number of varves, the lake was in existence for at least 261 years. The stratigraphic sequence of varves bracketed by tills implies a major glacial oscillation prior to the Scottish Re‐advance (16.8 cal. ka BP). This oscillation is tentatively correlated with the Gosforth oscillation at c.19.5 cal. ka BP. Subsequent overriding of these glaciolacustrine sediments during a westward‐moving re‐advance demonstrates rapid ice loss and then gain within the Solway Lowlands from ice‐dispersal centres in the Lake District, Pennines and Southern Uplands. It is speculated that the existence of this and other lakes along the northeastern edge of the Irish Sea Basin would have influenced ice‐sheet dynamics.  相似文献   

19.
The deglaciation pattern at Mt. Billingen, within the Middle Swedish end moraine zone, and its relationship with dramatic water level changes in the Baltic Ice Lake is a classic topic of Swedish Quaternary Geology. Based on data west of Mt. Billingen, the authors (in two earlier papers) presented a stratigraphic model associated with this subject. This study is an attempt to test the model east of Mt. Billingen, i.e. inside the Baltic Ice Lake itself. Lake Mullsjon is situated 30 km southeast of the drainage area of the Baltic Ice Lake and within the final drainage zone. About 8 m of Late Weichselian sediments (mostly varved clay) were recovered from the lake and analysed from different stratigraphic viewpoints, including lithology, grainsize, varve chronology, and pollen. These analyses show that the site was deglaciated in the later part of the Allerød Chronozone. Shortly thereafter the first drainage of the Baltice Ice Lake took place but without isolating Lake Mullsjon. After a short period of disturbed sedimentation varved clay continued to form as the glacier receded for another 120 varve years until the onset of the Younger Dryas cooling, as registered both in the pollen and in the varve stratigraphies. After c. another 120 varve years our analyses suggest that the Baltic Ice Lake was dammed once again. About 230 varve years of further ice readvance followed west of Mt. Billingen, while the ice margin in the east was more or less stationary. Rapid melting set in, at first producing coarse varves, but soon the clay was thin-varved and fine. This continued for 140 varve years until suddenly the lake became isolated. At this isolation thick beds of silty-sandy deposits were deposited on the lake floor. The isolation is dated to 10,400–10,500 14C years B.P., which corresponds to the assumed age of the final drainage of the Baltic Ice Lake. It was also isolated at the same time as lakes (on the same isobase) situated 20 m lower, but west of Mt. Billingen, were raised above sea level. This strongly suggests that Lake Mullsjön was isolated as an effect of the drainage of the Baltic Ice Lake. Significant differences between the clay-varve and the 14C chronologies are also presented.  相似文献   

20.
ABSTRACT Surface sediments, cores and seismic reflection profiling delineate sedimentary environments and processes of sedimentation in Lake Tekapo. Sedimentation is dominated by the Godley River which forms an extensive delta in the northern third of the lake. Delta growth accounts for 55% of annual sediment deposition. In winter sandy muds are deposited at the top of the delta slope, where they may move under gravity as a surficial slide. Oversteepening of the upper slope also generates deep seated failures. The entire 20 km2 of delta slope is subjected to rotational slumping which episodically reworks large volumes of sediment. Down the delta slope sedimentation rates decrease, surface sediments get finer and varves become better developed.
In the lake basin sediments are parallel bedded varves, which contain typical winter-summer annual cycles as well as minor, non-annual flood varves. Annual varve thickness and semi-annual varve frequency are determined by variations in the discharge of the Godley River. Sedimentation in the basin accounts for 40% of the budget and sedimentation rates decrease with distance from the delta, except at the distal end of the basin, where turbid underflows are stopped by the rising lake floor. Beyond the basin, sedimentation rates decrease abruptly. Coriolis deflection of inflowing river water increases sedimentation rates down the eastern shore. The remaining 5% of the sediment is deposited on the lateral slopes and shoulders where sediments form a thin muddy veneer over basement, which occasionally slumps to the basin floor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号