首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Coniston Limestone Group (Ashgill Series) in the southern Lake District shows greater lithological variation and lateral facies variation than hitherto suspected. The oldest part, the Longsleddale and Stile End Formations, is shown to correlate with the Cautleyan Stage, Zone 2, at Cautley; consequently the entire Coniston Limestone Group in the southern Lake District is considered to belong within the Ashgill Series. In the early Cautleyan, sedimentation was largely influenced by a central ridge which extended northward into a southerly transgressive sea. Later Cautleyan and Rawtheyan sedimentation was affected by an area of positive tectonic activity in the east of the region.  相似文献   

2.
Local developments of the Upper Ordovician Sholeshook Limestone are briefly described and inter-correlated on the basis of their trilobite faunas. The base of the formation is diachronous and overlies the Mydrim Shales unconformably. The base of the normally succeeding Slade and Redhill Mudstones is also diachronous and to the north and west of Haverfordwest this formation contains strata laterally equivalent to the main part of the Sholeshook Limestone. It is suggested that the Sholeshook Limestone falls within the Cautleyan Stage of the Ashgill Series. This extends the range of several trilobite species normally regarded as Middle Ashgill (Rawtheyan) indices.  相似文献   

3.
The Drummuck Group of the Girvan district (S. W. Scotland) comprises a varied sequence of marine siliciclastic sedimentary rocks some 350 m thick and ranging in age from early Cautleyan to late Rawtheyan (Ashgill Series). Deposition in an unstable slope environment is envisaged. These upper Ordovician rocks crop out in the centre of the Craighead inlier, north of the Girvan valley and are sporadically exposed and locally very fossiliferous. A detailed revision of the Drummuck rocks has permitted, for the first time, the formal lithostratigraphical division of the group. Four main units, in ascending order, the Auldthorns, Quarrel Hill, Lady Burn and South Threave formations are recognized and, within these, a number of smaller, useful divisions are defined. Detailed geological maps of the Drummuck outcrop are presented. Brachiopods numerically dominate the shelly faunas and all the divisions named are characterized by distinctive brachiopod assemblages. Preliminary correlations are discussed with selected upper Ordovician successions elsewhere but the emphasis of this study is placed upon the establishment of a stratigraphical framework within which future detailed research on the Drummuck faunas may be carried out.  相似文献   

4.
Mud-mound complexes identified within the early to middle Ashgill Cystoid Limestone Formation of northeastern Spain are the first fossil build-ups to be described in the high latitude north-facing margin of Gondwana. Mud-mound complexes comprise individual lenticular mounds (composed of floatstones, cephalopod-rich mudstones and cementstones), flanks and intermound deposits (including pelmatozoan packstones and floatstones). The small mounds are mainly composed of bryozoans, cystoids and crinoids, and were developed on outer ramp environments. Mound initiation depended upon the stabilization and colonization of densely packed lenses of pelmatozoan-rich sediments. In a mid-ramp setting, pelmatozoan–bryozoan meadows were episodically degraded by common wave- and storm-induced processes, the development of semi-consolidated substrates, and the periodic influx of terrigenous material. Finally, during the Hirnantian regression, the Iberian mixed (carbonate–siliciclastic) platform was exposed to subaerial conditions sufficiently for erosion and karstification to occur. From a palaeogeographical point of view, the pattern of the Ashgill Iberian platform deposition is characterized by episodic exclusion of carbonates from most nearshore environments by a shoreline source of siliciclastic sediments. A similar interpretation to that made on the Iberian Cystoid Limestone Formation, in terms of gradual proximality–distality changes, is proposed for comparable facies types in Ashgill limestones described in southwestern Europe. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
The nautiloid cephalopod fauna of the Kildare Limestone (Ordovician, Ashgill), County Kildare, eastern Ireland is described as a whole for the first time. It consists of four orthoconic taxa, newly assigned taxonomically, and one coiled form. There are other orthocones, doubtfully determined or undetermined.  相似文献   

6.
A large sample of coronates (over 90 specimens) from a narrow horizon in the Upper Ordovician, Sholeshook Limestone, at Talfan Farm, Llanddowror, South Wales allows assessment of variation and growth in a population of these rare Palaeozoic echinoderms. Variation is extensive and we synonymize two previously described species. This occurrence extends the stratigraphic range of Cupulocorona rugosa Donovan and Paul down to Cautleyan, Zone 2. Internal moulds reveal new morphological features, especially of the coronal canals. The flattened blade‐like and kite‐shaped portions support the idea that the coronal canals functioned in respiratory gas exchange by increasing the surface area. We suggest that internal currents flowed up the inner (adoral) canal and down the outer (aboral) canal. Quantitative estimates of flow rate suggest that a volume of coelomic fluid equivalent to the entire body cavity could be flushed through the coronal canals in 10 seconds at most. These coronates probably lived attached by a relatively long stem with a simple, conical holdfast and bent over in gentle currents. They seem to have been characteristic of relatively high‐energy environments and are not generally distributed in the Sholeshook Limestone of South Wales. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The Lake District terrane of northern England comprises Upper Cambrian–Silurian sediments and volcanics accumulated at the northern margin of the Avalonian Plate during growth and demise of the Iapetus Ocean. Ocean closure and suturing resulted in Late Ordovician and Acadian tectonism and were accompanied by emplacement of a large regional batholith. Palaeomagnetic study of intrusive igneous rocks, including application of thermal demagnetization, field tests and principal component analysis, identifies a history of Ordovician to Devonian magnetization. Late plutons (Shap and Skiddaw granites and/or aureoles) record a shallow dipolar (A3) axis (mean declination/inclination (D/I=278/+17°) dating from emplacement in late Early Devonian times (c. 395 Ma). Although this axis is recorded as a sporadic overprint in older rocks, no pervasive remagnetization is attributable to batholith emplacement. Instead, the Carrock Fell Complex Layered Gabbros have a mid- to late Ordovician (A1) remanence (D/I)=17·4/−58·1°, 36 samples, α95=4·8°) predating regional F2 folding. Later events in this igneous complex comprise the Carrock Fell Granophyre with a post-folding Ordovician remanence, and Round Knott Dolerite with a remanence linked to hydrothermal alteration late in the Ordovician magmatic episode. A Late Ordovician (Ashgill) palaeofield is also defined by remanence (A2) in the Threlkeld–St John's Microgranite and aureole (438 Ma, D/I=236·5/63·3°, 41 samples, α95=4·7°). Other intrusions carrying a remanence predating the Acadian deformation include the Great Cockup Picrite (458 Ma, D/I=43·2/−31·8°, 31 samples, α95=7·7°) and basic intrusives in the aureole of the Eskdale Granite (429 Ma, D/I=174·5/25·8°, 32 samples, α95=8·8°). Collectively the palaeomagnetic data from this terrane identify a hairpin in the apparent polar wander path during Late Ordovician (Caradoc–Ashgill) times corresponding to ‘soft’ closure of the Iapetus suture and accompanying deformation. The same motion is recognized in contemporaneous data from the Welsh Caledonides where declinations are rotated by c. 55° relative to contemporaneous results from the Lake District. Adjustment for this (probable late Acadian) rotation beings fold trends of the Paratectonic Caledonides into alignment and identifies a parallel mid- to late Ordovician destructive plate margin comprising forearc (Lake District) and backarc (North Wales). This arc was oriented latitudinally in mid-southerly latitudes during formation and the bulk of the magmatism occurred during a single normal-polarity chron. The relationships between magnetization and folding in both the Lake District and Welsh Borderlands identify the importance of Late Ordovician deformation along this arc during collision of Avalonia and Laurentia. Arc-related volcanism was succeeded in Silurian times by parallel foreland basins embracing the Welsh Basin and southern Lake District as the Laurentian Plate overrode the Avalonian Plate. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
9.
The motorway cuts approximately 1900 m of strata, of which about 56 per cent are continuously exposed in numerous long sections, a new standard being afforded for the Lower Old Red Sandstone in the southern Welsh Borders. The succession recognized is: LOWER OLD RED SANDSTONE Brownstones (L. Dev.) at least 795 m St. Maughan's Group (L. Dev.) 630 m Raglan Marl Group (Siluro-Dev.) 385 m Clifford's Mesne Sandstone (Sil.) at least 9 m LUDLOW SERIES (Silurian) at least 5 m The uppermost Ludlow Series and the Clifford's Mesne Sandstone are exposed in the core of the May Hill-Woolhope upfold. They are overlain in the complimentary syncline to the west by the Raglan Marl Group, St. Maughan's Group and Brownstones, in ascending order. Above the Clifford's Mesne Sandstone, there is a progressive upward increase in the number and thickness of sandstone relative to mudstone beds. Pedogenic limestones are largely concentrated in two short stratigraphic intervals. The lowest, mainly in the uppermost Raglan Marl Group but reaching into the St. Maughan's Group, includes the “Psammosteus” Limestone recognised elsewhere in the area. The second concentration occurs in the uppermost St. Maughan's Group. Vertebrates in the Raglan Marl Group and the St. Maughan's Group allow the Downtonian and Dittonian “stages” to be recognized.  相似文献   

10.
Sediments of the Ordovician to Devonian Sinakumbe Group (∼210 m thick) and overlying Upper Carboniferous to Lower Jurassic Karoo Supergroup (∼4.5 km thick) were deposited in the mid-Zambezi Rift Valley Basin, southern Zambia.The Sinakumbe-Karoo succession represents deposition in a extensional fault-controlled basin of half-graben type. The basin-fill succession incorporates two major fining-upward cycles that resulted from major tectonic events, one event beginning with Sinakumbe Group sedimentation, possibly as early as Ordovician times, and the other beginning with Upper Karoo Group sedimentation near the Permo-Triassic boundary. Minor tectonic pulses occurred during deposition of the two major cycles. In the initial fault-controlled half-graben, a basin slope and alluvial fan system (Sikalamba Conglomerate Formation), draining southeastward, was apparently succeeded, without an intervening transitional facies, by a braided river system (Zongwe Sandstone Formation) draining southwestward, parallel to the basin margin. Glaciation followed by deglaciation resulted in glaciofluvial and glacio-lacustrine deposits of the Upper Carboniferous to Lower Permian Siankondobo Sandstone Formation of the Lower Karoo Group, and isostatic rebound eventually produced a broad flood plain on which the coal-bearing Lower Permian Gwembe Coal Formation was deposited. Fault-controlled maximum subsidence is represente by the lacustrine Upper Permian Madumabisa Mudstone Formation. Block-faulting and downwarping, probably due to the Gondwanide Orogeny, culminated with the introduction of large quantities of sediment through braided fluvial systems that overwhelmed and terminated Madumabisa Lake sedimentation, and is now represented by the Triassic Escarpment Grit and Interbedded Sandstone and Mudstone Formations of the Upper Karoo Group. Outpourings of basaltic flows in the Early Jurassic terminated Karoo sedimentation.  相似文献   

11.
The Palaeozoic intracratonic basins in northwest Gondwana, i.e. the Amazonas, Parnaiba and Acera basins, probably opened during late Caradoc and Ashgill times. The fluviatile sedimentation later changed to littoral at the basinal margins. A transgression from the north-west region of Gondwana slowly overlapped the margins of the intracratonic basins. The transgression reached its maximum in the Rawtheyan (late Ashgill), as evidenced by fossiliferous shallow marine sediments in the Amazonas Basin. The Hirnantian glaciation in north Gondwana lowered the sea level, and in the Amazonas Basin a littoral sedimentation followed on shallow marine strata. From the opening of the basins onwards, a shallow sea probably existed close to the epicontinental basins in north-west Gondwana. The basins were connected via a narrow passage between the Guayana and Ivorian cratons.  相似文献   

12.
Palaeomagnetic poles derived from Precambrian formations can be valuable for determining relative, and sometimes absolute, ages of the formations. In this paper palaeomagnetic results are presented from a variety of these formations in Tanzania and Zambia. The Ikorongo Group sediments of Tanzania give a pole at 80° E, 25° S commensurate with an age of 900–1000 m.y. The lower Buanji Series of southern Tanzania yields a pole at 263°E,87°N indicating an age of either Late Precambrian (c. 650 m.y.) or Early Cambrian. The Plateau Series outcrop at the southern end of Lake Tanganyika gives several poles falling on the Late Precambrian to Ordovician apparent polar wander loop recognized by McElhinny et al. (1974), and a small amount of evidence from the Abercorn Sandstone and southern part of the Plateau Series outcrop suggests an age of c. 900 m.y. for these rocks. Dating of formations at the southern end of the Lake Tanganyika depression gives an estimate of 1500 m for the minimum amount of downthrow at this end of the rift system. Five sites from the Mbozi gabbro—syenite complex of southern Tanzania give a pole at 68° E, 72° N and two sites from Mbala dolerites of Zambia yield a pole close to one from the Bukoban dolerites of Tanzania and a similar age (c. 806 m.y.) is suggested.Some palaeomagnetic information is now available from all the Proterozoic platform sediments margining the Tanganyika craton and a correlation scheme is given which incorporates this information together with geochronological data. These formations postdate geosynclinal sequences involved in the Kibaran (c. 1300 m.y.) and Irumide (c. 1100 m.y.) mobile belts, and geological environment and situation demonstrate that the Tanganyika craton was subject to intermittent uplift between about 1000 m.y. and Cambrian times.  相似文献   

13.
Re-examination of the classic exposures of the Eggardon Grit (topmost Upper Greensand Formation) at Eggardon Hill, Dorset shows that the upper part of this unit has a more complex stratigraphy than has been previously recognised. The Eggardon Grit Member, as described herein, is capped by a hardground and associated conglomerate, and is entirely of Late Albian age. The hardground is probably the lateral equivalent of the Small Cove Hardground, which marks the top of the Upper Greensand succession in southeast Devon. The conglomerate is overlain by a thin sandy limestone containing Early Cenomanian ammonites. This limestone is almost certainly the horizon of the Early Cenomanian ammonite fauna that has previously been attributed to the top of the Eggardon Grit. The limestone is regarded as a thin lateral equivalent of the Beer Head Limestone Formation (formerly Cenomanian Limestone) exposed on the southeast Devon coast. The fauna of the limestone at Eggardon suggests that it is probably the age equivalent to the two lowest subdivisions of the Beer Head Limestone in southeast Devon, with a remanié fauna of the Pounds Pool Sandy Limestone Member combined with indigenous macrofossils of the Hooken Nodular Limestone Member. The next highest subdivision of the Beer Head Limestone in southeast Devon (Little Beach Bioclastic Limestone Member), equates with the ammonite-rich phosphatic conglomerate of the ‘Chalk Basement Bed’, which caps the Beer Head Limestone at Eggardon, and which was previously regarded as the base of the Chalk Group on Eggardon Hill.Petrographic analysis of the Eggardon Grit shows that lithologically it should more correctly be described as a sandy limestone rather than sandstone. The original stratigraphical definition of the unit should probably be modified to exclude the softer, nodular calcareous sandstones that have traditionally been included in the lower part of the member.Without the apparently clear evidence of unbroken sedimentation across the Albian-Cenomanian boundary, suggested by the previous interpretation of the Eggardon succession, it is harder to argue for this being a prevalent feature of Upper Greensand stratigraphy in southwest England. Correlation of the Eggardon succession with successions in Dorset and southeast Devon reveals a widespread regional break in sedimentation at the Albian-Cenomanian boundary. The sand-rich facies above this unconformity represent the true base of the Chalk Group, rather than the ‘Chalk Basement Bed’ of previous interpretations.Selected elements of regionally important Upper Greensand ammonite faunas previously reported from Shapwick Quarry, near Lyme Regis, and Babcombe Copse, near Newton Abbot, are newly figured herein.  相似文献   

14.
Accumulations of cephalopods in the Late Ordovician (Katian [Ka4]) Troutbeck Siltstone Member of the Ash Gill Mudstone Formation at Skelghyll Beck in the Lake District and in the Keisley Limestone Formation of the Cross Fell Inlier contribute toward an understanding of their respective depositional environments as well as the palaeogeography of the southeastern margins of the Lakesman Terrane. The accumulation present in the Troutbeck Siltstone Member is interpreted as having been deposited in a shallow, near-shore lagoon that supported stromatolite growth. The shore lay to the north of this site. Geopetals infilling cephalopods forming concentrations in the Keisley Limestone Formation indicate that the conchs came to rest on angles of 30–40° to horizontal. The lithologies of the matrix suggest that they were deposited in cavities or fissures from which fine-grained carbonate was either excluded or winnowed away. Both observations accord with hypotheses that the Keisley Limestone Formation represents the remnants of a carbonate mud mound, and facilitate comparison with the contemporaneous Boda mounds of Siljan, Sweden. Comparison with local late Katian – Hirnantian successions indicate that the Keisley mound would have formed a prominent feature on the sea floor, becoming largely buried by argillaceous sediments during the Hirnantian.  相似文献   

15.
Re-examination of the classic exposures of the Eggardon Grit (topmost Upper Greensand Formation) at Eggardon Hill, Dorset shows that the upper part of this unit has a more complex stratigraphy than has been previously recognised. The Eggardon Grit Member, as described herein, is capped by a hardground and associated conglomerate, and is entirely of Late Albian age. The hardground is probably the lateral equivalent of the Small Cove Hardground, which marks the top of the Upper Greensand succession in southeast Devon. The conglomerate is overlain by a thin sandy limestone containing Early Cenomanian ammonites. This limestone is almost certainly the horizon of the Early Cenomanian ammonite fauna that has previously been attributed to the top of the Eggardon Grit. The limestone is regarded as a thin lateral equivalent of the Beer Head Limestone Formation (formerly Cenomanian Limestone) exposed on the southeast Devon coast. The fauna of the limestone at Eggardon suggests that it is probably the age equivalent to the two lowest subdivisions of the Beer Head Limestone in southeast Devon, with a remanié fauna of the Pounds Pool Sandy Limestone Member combined with indigenous macrofossils of the Hooken Nodular Limestone Member. The next highest subdivision of the Beer Head Limestone in southeast Devon (Little Beach Bioclastic Limestone Member), equates with the ammonite-rich phosphatic conglomerate of the ‘Chalk Basement Bed’, which caps the Beer Head Limestone at Eggardon, and which was previously regarded as the base of the Chalk Group on Eggardon Hill.Petrographic analysis of the Eggardon Grit shows that lithologically it should more correctly be described as a sandy limestone rather than sandstone. The original stratigraphical definition of the unit should probably be modified to exclude the softer, nodular calcareous sandstones that have traditionally been included in the lower part of the member.Without the apparently clear evidence of unbroken sedimentation across the Albian–Cenomanian boundary, suggested by the previous interpretation of the Eggardon succession, it is harder to argue for this being a prevalent feature of Upper Greensand stratigraphy in southwest England. Correlation of the Eggardon succession with successions in Dorset and southeast Devon reveals a widespread regional break in sedimentation at the Albian–Cenomanian boundary. The sand-rich facies above this unconformity represent the true base of the Chalk Group, rather than the ‘Chalk Basement Bed’ of previous interpretations.Selected elements of regionally important Upper Greensand ammonite faunas previously reported from Shapwick Quarry, near Lyme Regis, and Babcombe Copse, near Newton Abbot, are newly figured herein.  相似文献   

16.
The Meso to Neoproterozoic succession in the western Chattisgarh basin around Rajnandgaon has been classified into coarse siliciclastic dominated proximal and fine siliciclastic-carbonate dominated distal assemblages. The proximal assemblage, the Chandarpur Group, unconformably overlies the Neoarchean to Paleoproterozoic Dongargarh- Kotri volcanics (c.2.2-2.3 Ga), Bengpal Granite (c.2.5-2.6 Ga) and BIF of the Dalli-Rajhara Group (~2.4 Ga). The Chandarpur Group consists of 15-20 m thick conglomerate and feldspathic sandstone at the basal part of the succession, which is mapped as a lateral equivalent of the Lohardih Formation. The coarse clastics, conglomerate succession gradationally passes up to ~280 m thick succession of supermature sandstone, the Kansapathar Formation. The thick mudstone dominated heterolithic unit, the Gomarda Formation and its lateral equivalent, the Chaporadih Formation is not present in the western part of the Chattisgarh basin. The fine siliciclastic-carbonate assemblage of the Raipur Group conformably overlies the Chandarpur Group. The Raipur Group consists of Charmuria Limestone (~320 m), Gunderdehi Shale (~450 m), Chandi Limestone (~ 550 m) with Deodongar Member (~50 m) and Tarenga Shale. The sediments of Chandarpur Group were deposited in a shallow marine environment with occasional fluvial input in a relatively fluctuating sea level. The palaeoshoreline was NW-SE oriented with an open sea towards north which remained same throughout the deposition of the Chandarpur-Raipur sequence. It has also been inferred that the Lohardih Formation and the Kansapathar Formation represents a rifting phase followed by a stable subsidence stage when the basin evolved into a large epicontinental sea. The sequences further display signatures of passive margin sedimentation with multiple events of carbonate-shale rhythmite deposition.  相似文献   

17.
Late Ashgill and Llandovery sedimentation across the Towy ‘axis’ southeast of Rhayader is interpreted within the context of the rapid southeasterly thickening of the upper portion of the Ashgill best demonstrable in the Chwefru valley. This thickening sequence overlies deep-water middle-fan arenites and is interpreted as a northwest prograding shelf/slope association. The slope eventually became non-depositional and was onlapped by the basinal facies of the Llandovery during relative sea-level rise. The non-depositional slope and associated major slump-scars at the shelf-edge explain many of the non-sequences- in the region previously ascribed to erosion related to episodes of tectonism. The regional strain history is thus simplified.  相似文献   

18.
在西藏1∶25万喀纳幅、日土县幅地质调查图成果的基础上,重建了班公湖-怒江结合带西段3个地层区的侏罗纪-早白垩世沉积地层序列,对地层纵向、横向序列变化和沉积环境进行对比分析,指出在侏罗纪-早白垩世时,班公湖-怒江中特提斯洋盆沉积与其南、北两侧大陆边缘沉积有明显差异;中特提斯海洋盆地演化经历了早-中侏罗世深海-半深海沉积、晚侏罗世-早白垩世残余海(洋)盆地沉积和晚白垩世残余海盆消亡等3个阶段。  相似文献   

19.
In this paper210 Pb and 137Cs dating methods were used to determine sedimentation rates of lakes Dianchi, Erhai and Poyanghu, and to establish the time scale of the sediments. Also based on geochemical records in the sediment column, the historical variation in heavy metal content over the past one hundred years was determined. Some element concentration increased rapidly after the 1970s, such as Cu, Zn and Mn in the sediments of northern Lake Dianchi, Cd and Mn in southern Lake Erhai and in the west central parts of Lake Poyanghu, Our investigations indicate that the increase in element concentration is caused by human activities. In order to understand the extent of the effect caused by human activities, we have calculated the flux of Zn, Cd and Mn. Results show that the flux caused by human activities is seven times greater than the natural one and the ratio is about 2 times in Lake Erhai and Lake Poyanghu.  相似文献   

20.
Tectono-stratigraphic models of foredeep sedimentation have generally presumed a direct link between changing rates of tectonism and concomitant sedimentological response as manifested by change in thickness, composition or depositional environment of sediment accumulating in adjacent basins. Lacustrine limestone units within the early Cretaceous fluvial/lacustrine Gannett Group of western Wyoming exhibit systematic variation in several geochemical proxies of relative rates of precipitation and evaporation, indicating that lakewater chemistry was controlled by variation in regional climate. Change in proportion of allochthonous terrigenous clastic vs. autochthonous carbonate deposition, as well as carbonate Mg/Ca ratio and stable isotopic composition, occurs at two scales. Metre-scale alternation of micritic limestone and argillaceous marl is accompanied by mineralogical and isotopic variation within individual beds, indicating preferential carbonate accumulation during intervals of decreased regional meteoric precipitation relative to lake-surface evaporation. Limestone deposition began during intervals of maximum aridity, and decreased as increased meteoric precipitation-driven flux of terrigenous clastic sediment overwhelmed sites of carbonate accumulation. Similar upsection variation in limestone mineralogy and isotopic composition at a scale of tens of metres reflects the multiple processes of long-term increase in meteoric precipitation and lakewater freshening prior to influx of terrigenous sediment, across-basin fluvial-deltaic progradation, and renewed accumulation of riverine terrigenous units. Such trends suggest that formation-scale alternation between fluvial clastic and lacustrine carbonate deposition was controlled by climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号