首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Methods for the observation of chromospheric spicules with the large coronagraph mounted at the High Altitude Astronomical Station near Kislovodsk are described. The Hα-spectrograms and the filtergrams obtained by an Hα-Halle birefringent filter are shown. Some results of the observations and some conclusions on the structure of the chromosphere are reported.  相似文献   

2.
Hα filtergrams of the chromosphere show an emission rim in many hydrogen filaments. We suppose that formation of this rim is due to photospheric radiation reflected by the filament in the direction of the chromosphere. The calculations show that: (1) the maximum contrast of the rim relative to the undisturbed chromosphere amounts to 1.4; (2) the larger the optical thickness of the filament and the closer to the solar limb it is situated, the brighter and wider is the rim; (3) the rim was not observed in filaments whose heights exceeds 10000km above the chromosphere. These results are in close agreement with observations.  相似文献   

3.
Solar p modes are one of the dominant types of coherent signals in Doppler velocity in the solar photosphere, with periods showing a power peak at five minutes. The propagation (or leakage) of these p-mode signals into the higher solar atmosphere is one of the key drivers of oscillatory motions in the higher solar chromosphere and corona. This paper examines numerically the direct propagation of acoustic waves driven harmonically at the photosphere, into the nonmagnetic solar atmosphere. Erdélyi et al. (Astron. Astrophys. 467, 1299, 2007) investigated the acoustic response to a single point-source driver. In the follow-up work here we generalise this previous study to more structured, coherent, photospheric drivers mimicking solar global oscillations. When our atmosphere is driven with a pair of point drivers separated in space, reflection at the transition region causes cavity oscillations in the lower chromosphere, and amplification and cavity resonance of waves at the transition region generate strong surface oscillations. When driven with a widely horizontally coherent velocity signal, cavity modes are caused in the chromosphere, surface waves occur at the transition region, and fine structures are generated extending from a dynamic transition region into the lower corona, even in the absence of a magnetic field.  相似文献   

4.
We propose chromospheric models of plages to explain profiles of the Ca ii H, K, λl8498, λ8542, and λ8662 lines described in Paper I. These models are consistent with boundary conditions imposed by the photosphere and the Lyman continuum. We find that increasing emission in these lines is consistent with a picture of increasing temperature gradient in the low chromosphere and the resulting increase in pressure and electron density at similar line optical depths. With this picture we suggest how to empirically determine the distribution of chromospheric parameters across the solar disk directly from Ca ii filtergrams. We also propose that the high density aspects of solar activity are produced by steep temperature gradients in the low chromosphere and thus by the enhanced heating mechanisms that steepen these gradients.  相似文献   

5.
Direct images of the Sun were photographed in continuum emission centered at 6900 Å by the jumping film method near the second contact of the Mexico eclipse on 7 March 1970. The band width was 150 Å defined by a combination of a sharp cut filter and KODAK IV F film. The intensity distribution of the solar outer layers obtained shows a steep decrease by a factor of 0.9 in logarithmic units around 2500 km. This is interpreted as the boundary of the chromosphere and corona. Spicules observed at 3500 km are explained by log n e = 11.25 and T e 6000 K. Discussions are made in relation to the other observations and some chromosphere models.  相似文献   

6.
The possibility of the excitation of Farley‐Buneman turbulence in the solar atmosphere is examined. It is found that the conditions for the generation of the modified Farley‐Buneman instability can be realized in the chromosphere of the Sun 1000 km above the photosphere. While usual Farley‐Buneman waves studied in relation to the Earth's ionosphere are almost electrostatic, the modified Farley‐Buneman waves in the solar atmosphere are electromagnetic ones. This means, that not only the potential electric field caused by the charge distribution, but also the perturbations of the magnetic field and the circularly‐polarized electric field are essential. Although the physical pictures of usual and modified Farley‐Buneman waves are different, their dispersion equations are almost the same. However, the increment of the modified Farley‐Buneman waves is varied by additional electromagnetic effects. It is demonstrated that electromagnetic effects hinder a Farley‐Buneman instability in occurring while ξ < 1, where ξ is the square of the ratio of ion plasma frequency times ion‐neutral frequency to ion‐cyclotron frequency times wave number times speed of light in vacuum. Under the condition ξ > 1, no Farley‐Buneman disturbances appear at all. In weakly‐ionized solar regions, the modified (ξ < 1) and also the usual (ξ ≪ 1) Farley‐Buneman turbulence could make “electromagnetic” contributions to the process of energy dissipation of nonstationary streams of neutral gases. Besides, they may modify the low‐frequency acoustic noise. It seems that the modified Farley‐Buneman turbulence contributes to the sporadic radiation of the Sun. It is possible, that such an effect takes not only place in the chromosphere of the Sun, but also in the atmospheres of other stars.  相似文献   

7.
The Coudé feed of the vacuum telescope (aperture D = 65 cm) at the Big Bear Solar Observatory (BBSO) is currently completely remodelled to accommodate a correlation tracker and a high‐order Adaptive Optics (AO) system. The AO system serves two imaging magnetograph systems located at a new optical laboratory on the observatory's 2nd floor. The InfraRed Imaging Magnetograph (IRIM) is an innovative magnetograph system for near‐infrared (NIR) observations in the wavelength region from 1.0 μm to 1.6 μm. The Visible‐light Imaging Magnetograph (VIM) is basically a twin of IRIM for observations in the wavelength range from 550 nm to 700 nm. Both instruments were designed for high spatial and high temporal observations of the solar photosphere and chromosphere. Real‐time data processing is an integral part of the instruments and will enhance BBSO's capabilities in monitoring solar activity and predicting and forecasting space weather.  相似文献   

8.
High resolution filtergrams of the solar limb in D3 and off-band H have been used to investigate the spatial structure of the D3 chromosphere. It was found that spicules provide the major contribution to the intensity of the D3 emission band observed above the limb, with the remainder of the emission coming from a semi-homogeneous background component at low heights.The observations can be understood on the basis of the photoionization model, whereby it is found that helium is only slightly ionized at the height of peak intensity in the D3 emission band, and that spicules are at least 3 times denser than their surroundings at this height.In coronal holes, the D3 emission is confined to isolated emission patches, and these patches contain a fine structure resembling normal chromospheric spicules.  相似文献   

9.
10.
In this work we investigate p‐mode power variation with solar atmosphere. To this aim, we use THÉMIS observations of the Na D1 (λ 5896 Å) and K (λ 7699 Å) spectral lines. While the formation heights of the K spectral line are essentially located in the photospheric layer, the formation heights of the Na D1 line span a much wider region: from photosphere up to chromosphere. Hence, we had the opportunity to infer p‐mode power variation up to the chromospheric layer. By analyzing power spectra obtained by temporal series at different points of the Na D1 and K spectral lines, we confirm and quantify the increase in p‐mode power towards higher atmospheric layers. Furthermore, the large span in formation heights of the Na D1 line induces a larger enhancement of p‐mode power with solar atmosphere compared to the K spectral line. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Raju  K. P.  Srikanth  R.  Singh  Jagdev 《Solar physics》1998,178(2):251-257
The lifetimes and spatial scales of emission network cells in the solar chromosphere were studied from a nearly continuous sequence of Caii K filtergrams, obtained from Antarctica. The temporal autocorrelation function (ACF) was calculated for spatially-aligned windows from the time sequence of filtergrams. The lifetime of network cells was found to be dependent on the activity of the region. The estimated lifetimes are 24–34 hours for quiet-region cells and 58–61 hours for active-region cells. The temporal ACF shows prominent undulations in some of the quiet-region windows. The spatial ACF reveals the periodicity of the emission network in quiet regions.  相似文献   

12.
The rotational behaviour of the chromosphere, observed in the Ca ii K3 line, is studied during 1972–1973, years of decreasing solar activity. Daily chromospheric filtergrams, detected at the Anacapri Observatory, are digitized by means of a flying-spot photometer, controlled by computer. The time series of the daily chromospheric data detected at central meridian, relative to 30 consecutive latitude zones, are analyzed to determine the recurrence tendency due to the rotation of long-lived chromospheric features. The computed rotation rate is independent of latitude, in agreement with the results obtained for the green corona during the years before sunspot minimum. Namely both chromospheric and coronal features, with lifetime exceeding one solar rotation, are almost not affected by differential rotation before sunspot minimum.  相似文献   

13.
R. Wachter  J. Schou 《Solar physics》2009,258(2):331-341
We present a method to infer small-scale flatfields for imaging solar instruments using only regular-observation intensity images with a fixed field of view. The method is related to the flatfielding method developed by Kuhn, Lin, and Loranz (Publ. Astron. Soc. Pac. 103, 1097 – 1108, 1991), but does not require image offsets. Instead, it takes advantage of the fact that the solar image is changing in the CCD reference frame due to solar rotation. We apply the method to data sets of MDI filtergrams and compare the results to flat fields derived with other methods. Finally, we discuss the planned implementation of this method in the data processing for Helioseismic and Magnetic Imager on the Solar Dynamics Observatory.  相似文献   

14.

Recent dedicated Hinode polar region campaigns revealed the presence of concentrated kilogauss patches of the magnetic field in the polar regions of the Sun, which are also shown to be correlated with facular bright points at the photospheric level. In this work, we demonstrate that this spatial intermittency of the magnetic field persists even up to the chromospheric heights. The small-scale bright elements visible in the bright network lanes of the solar network structure as seen in the Ca ii H images are termed network bright points. We use special Hinode campaigns devoted to the observation of polar regions of the Sun to study the polar network bright points during the phase of the last extended solar minimum. We use Ca ii H images of chromosphere observed by the Solar Optical Telescope. For magnetic field information, level-2 data of the spectro-polarimeter is used. We observe a considerable association between the polar network bright points and magnetic field concentrations. The intensity of such bright points is found to be correlated well with the photospheric magnetic field strength underneath with a linear relation existing between them.

  相似文献   

15.
The GREGOR Fabry‐Pérot Interferometer (GFPI) is one of three first‐light instruments of the German 1.5‐meter GREGOR solar telescope at the Observatorio del Teide, Tenerife, Spain. The GFPI uses two tunable etalons in collimated mounting. Thanks to its large‐format, high‐cadence CCD detectors with sophisticated computer hard‐ and software it is capable of scanning spectral lines with a cadence that is sufficient to capture the dynamic evolution of the solar atmosphere. The field‐of‐view (FOV) of 50″×38″is well suited for quiet Sun and sunspot observations. However, in the vector spectropolarimetric mode the FOV reduces to 25″×38″. The spectral coverage in the spectroscopic mode extends from 530–860 nm with a theoretical spectral resolution of R ≈250 000, whereas in the vector spectropolarimetric mode the wavelength range is at present limited to 580–660 nm. The combination of fast narrow‐band imaging and post‐factum image restoration has the potential for discovery science concerning the dynamic Sun and its magnetic field at spatial scales down to ∼50 km on the solar surface (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We present first results of three‐dimensional numerical simulations of the non‐magnetic solar chromosphere, computed with the radiation hydrodynamics code CO5BOLD. Acoustic waves which are excited at the top of the convection zone propagate upwards into the chromosphere where the waves steepen into shocks. The interaction of the waves leads to the formation of complex structures which evolve on short time scales. Consequently, the model chromosphere is highly dynamical, inhomogeneous, and thermally bifurcated.  相似文献   

17.
We discuss a recent model for the solar chromosphere proposed by Suemoto (Solar Phys. 54, 3). We conclude that the model is incompatible with the basic constraints imposed by high resolution observations and by line formation theory, and that consequently the model does not adequately describe the solar chromosphere.Mitteilung aus dem Fraunhofer-Institut Nr. 159.  相似文献   

18.
Dravins  Dainis 《Solar physics》1974,37(2):323-342
Three dimensional vector magnetic field structure throughout the chromosphere above an active region is deduced by combining high resolution H filtergrams with a simultaneous digital magnetogram. An analog model of the field is made with 400 metal wires representing fieldlines which are assumed to outline the H structure. The height extent of the field is determined from vertical field gradient observations around sunspots, from observed fibril heights and from an assumption that the sources of the field should be largely local. After digitization the magnetic field H matrix is retrieved. Electric current densities j are computed from j=curl H. The currents (typically 10 mA m–2) flow in patterns not similar to observed features and not parallel to magnetic fields. Lorentz forces are computed from {ie0323-01}. The force structures correspond to observed solar features and a series of observed dynamics may be expected: downward motion in bipolar areas in lower chromosphere, an outflow of the outer chromosphere into the corona with radially outward flow above bipolar plage regions (where coronal streamers are observed) and motions of arch filament systems. Observed current structure and magnitude agree well with previous vector magnetograph observations but disagree with theoretical current-free or force-free concepts. A dynamic chromosphere with electromagnetic forces in action is thus inferred from observations.  相似文献   

19.
The NST (New Solar Telescope), a 1.6 m clear aperture, off‐axis telescope, is in its commissioning phase at Big Bear Solar Observatory (BBSO). It will be the most capable, largest aperture solar telescope in the US until the 4 m ATST (Advanced Technology Solar Telescope) comes on‐line late in the next decade. The NST will be outfitted with state‐of‐the‐art scientific instruments at the Nasmyth focus on the telescope floor and in the Coudé Lab beneath the telescope. At the Nasmyth focus, several filtergraphs already in routine operation have offered high spatial resolution photometry in TiO 706 nm, Hα 656 nm, G‐band 430 nm and the near infrared (NIR), with the aid of a correlation tracker and image reconstruction system. Also, a Cryogenic Infrared Spectrograph (CYRA) is being developed to supply high signal‐to‐noise‐ratio spectrometry and polarimetry spanning 1.0 to 5.0 μm. The Coudé Lab instrumentation will include Adaptive Optics (AO), InfraRed Imaging Magnetograph (IRIM), Visible Imaging Magnetograph (VIM), and Fast Imaging Solar Spectrograph (FISS). A 308 sub‐aperture (349‐actuator deformable mirror) AO system will enable nearly diffraction limited observations over the NST's principal operating wavelengths from 0.4 μm through 1.7 μm. IRIM and VIM are Fabry‐Pérot based narrow‐band tunable filters, which provide high resolution two‐dimensional spectroscopic and polarimetric imaging in the NIR and visible respectively. FISS is a collaboration between BBSO and Seoul National University focussing on chromosphere dynamics. This paper reports the up‐to‐date progress on these instruments including an overview of each instrument and details of the current state of design, integration, calibration and setup/testing on the NST (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
This series of high quality elemental abundance analyses of mostly main‐sequence band normal and peculiar B, A, and F stars defines their properties and provides data for the comparison with the analyses of somewhat similar stars and with theoretical predictions. Most use high dispersion and high S/N (≥ 200) spectrograms obtained with CCD detectors at the long camera of the Coudé spectrograph of the 1.22‐m Dominion Astrophysical Observatory telescope. Here we reanalyze 21 Aql with better quality spectra and increase the number of stars consistently analyzed in the spectral range B5 to A2 by analyzing three new stars for this series. In the early A stars the normal and non‐mCP stars have abundances with overlapping ranges. But more stars are needed especially in the B5 to B9 range. ξ2 Cet on average has a solar composition with a few abundances outside the solar range while both 21 Aql and ι Aql have abundances marginally less than solar. The abundances of ι Del are greater than solar with a few elements such as Ca being less than solar. It is an Am star (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号