首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Evidence for a simple pathway to maghemite in Earth and Mars soils   总被引:1,自引:0,他引:1  
Soil magnetism is greatly influenced by maghemite (γ-Fe2O3), the presence of which is usually attributed to the following: (1) heating of goethite in the presence of organic matter; (2) oxidation of magnetite (Fe3O4); or (3) dehydroxylation of lepidocrocite (γ-FeOOH). Formation of the latter two minerals in turn requires the presence of Fe(II) in the system. No laboratory experiment or soil study to date has shown whether maghemite can form from ferrihydrite, a poorly crystalline Fe(III) oxide [∼Fe4.5(O,OH,H2O)13.5], below 250°C. However, ferrihydrite is the usual precursor of goethite (α-FeOOH) and hematite (α-Fe2O3), the most frequently occurring crystalline Fe(III) oxides in soils. Here is presented in vitro evidence that ferryhidrite can partly transform into maghemite at 150°C. This transformation occurs upon aging of ferrihydrite precipitated in the presence of phosphate or other ligands capable of ligand exchange with Fe-OH surface groups. This maghemite coexists with hematite and is a transient phase in the transformation of ferrihydrite to hematite, which is apparently stabilized by the adsorbed ligands. Its particle size is small (10 to 30 nm), and its X-ray diffraction pattern exhibits superstructure reflections. The possible formation of maghemite in Mars and in different Earth soils can partly be explained in the light of this pathway with minimal ad hoc assumptions.  相似文献   

2.
铁(氢)氧化物悬液中磷酸盐的吸附-解吸特性研究   总被引:2,自引:0,他引:2  
铁(氢)氧化物对P的吸持和释放在一定程度上决定着P的生物有效性和水体富营养化。以两种环境中常见晶质铁氧化物(针铁矿和赤铁矿)为对照,采用X射线衍射(XRD)、透射电镜(TEM)、热重分析(TGA)和孔径分析以及动力学和吸附-解吸热力学平衡等技术方法,研究了弱晶质水铁矿对P吸附-解吸特性,并探讨了相关机制。实验表明,三种矿物对P的吸附分为起始的快速反应和随后的慢速反应,它们均符合准一级动力学过程,反应中OH释放明显滞后于P吸附,P吸附经历了从外围到内囤配位、单齿到多齿配位过渡的过程,与晶质氧化铁比,水铁矿吸附容量和OH释放量更大、慢速吸附反应更快、存在缓慢扩散反应阶段,吸附容量依次是:水铁矿(436μmol/m^2)〉针铁矿(262μmol/m^2)〉赤铁矿(228μmol/m^2),针铁矿和赤铁矿吸附P符合L(Langmuir)模型,而水铁矿更符合F(Fremldlictl)模型。中性盐介质(KCl)中在最大吸附量时P的解吸率依次为:水铁矿(85%)〈针铁矿(10%)〈赤铁矿(125%),柠檬酸通过配体解吸和诱导溶解两种机制促进P的解吸,最大吸附量时解吸率依次是:针铁矿(25%)〈水铁矿(32%)〈赤铁矿(50%)。  相似文献   

3.
《Applied Geochemistry》2002,17(4):409-419
Iron oxide precipitates are abundant in small stream systems of NW Mississippi, USA especially during the wet winter months. The properties of these specific materials are unknown even though they have the potential to influence soil physical properties and adsorb chemical pollutants in sediment environments. Streamwater and associated precipitates were collected from 4 representative streams at Cedar Creek (CC), Lee's Creek (LC), Spring Creek (SC), and Toby Creek (TC) during winter flow periods. Precipitate specimens were characterized for mineralogy, color, and solubility in oxalate (o), dithionite (d), and HNO3. Chemical composition of the water was dominated by Ca, Na, Mg, and K, in that order, at an average pH of 7.0. X-ray diffraction (XRD) and differential scanning calorimeter (DSC) data indicated that the precipitates were primarily poorly ordered ferrihydrite (CC, TC) and lepidocrocite (LC, SC). The Feo/Fed ratios were 0.40 (CC), 0.68 (LC), 0.66 (SC), and 0.67 (TC). Organic C contents were 80.6, 38.0, 63.0, and 51.3 g kg−1 for the same samples. Precipitate color was uniform among sites, averaging 6.7 YR 4.8/6.2. After oxalate extraction, redness increased slightly in the CC and SC specimens, and decreased in the others. Extraction with dithionite depleted the red color in all specimens, but had less effect on the CC and SC samples which retained hues at 7.9 and 7.3 YR, respectively. Dithionite extractable P equaled 1.02 (CC), 0.72 (LC), 0.56 (SC), and 0.99 (TC) g kg−1. The results from this study indicated that: (1) the precipitates are either primarily poorly ordered ferrihydrite or lepidocrocite; (2) the solubility of ferrihydrite in both oxalate and dithionite is influenced by C contents; and (3) the redder, ferrihydrite specimens contain the greatest P concentrations.  相似文献   

4.
The deposition of ochreous is common by a consequence of acid mine drainage (AMD). The ochreous precipitated from the AMD sites around Tertiary coalfield of Assam, India were collected and characterized by X-ray diffractometry (XRD), Fe to S molar ratio, ammonium oxalate acid (pH 3.0) extraction, fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The ochreous mainly consists of goethite, schwertmannite, ferrihydrite and jarosite. Mineralogy of ochreous was controlled by the pH whereas formation of ferrihydrite was favored at high organic carbon content. Role of bacteria for the formation of secondary minerals was observed. Mobility of metals was controlled by the ochreous, and they were also retained during the process of phase transformation of poorly ordered iron-oxyhydroxysulfates into the stable forms.  相似文献   

5.
The study described herein concerns the application of selective chemical extractions on metal-bearing minerals and soils to geochemical exploration. Specifically, the study aims at the detection of anomalous soils in the vicinity of two mineralized zones in Southern Portugal.A kinetic study of the selectivity of partial chemical extractions applied to Cu minerals has been carried out in order to establish a systematic procedure (reagents, extraction plateau, etc.) which could be recommended for soils of the two study zones. It is shown that: (1) NH4 acetate dissolves malachite, azurite and cuprite completely and chrysocolla, conicalcite and atacamite only partially; (2) hydroxylamine hydrochloride dissolves chrysocolla and conicalcite only partially; (3) H2O2 dissolves chalcopyrite only partially; (4) NH4 oxalate (U.V.) dissolves conicalcite and atacamite only partially; (5) mixed-acid attack dissolves residual chalcopyrite, chrysocolla, atacamite and conicalcite.A total of 740 soil samples were collected from the Salgadinho and Tinoca areas. The Cu mineralization in the Salgadinho area is situated in an Upper-Devonian Volcanic-Siliceous Complex. The weathering products of the mineralization are mainly amorphous iron oxides, goethite and hematite. The Cu mineralization in Tinoca area is located in the Arronches-Campo Maior belt, where stratiform Cu mineralization is found. The weathering products of the mineralization are mainly malachite, amorphous iron oxides, goethite and hematite.In order to identify the Cu-bearing phases and the extraction plateau, the −80 mesh fraction of two soil samples was submitted to an extraction procedure using the following reagents in sequence: NH4 acetate, hydroxylamine hydrochloride, NH4 oxalate (dark), NH4 oxalate (U.V.) and finally strong acids.In soils from the Salgadinho and Tinoca areas, the use of NH4 oxalate (U.V.) in single dissolution which would incorporate those phases dissolved by NH4 acetate and NH4 oxalate (dark), gives the broadest anomalous surface and higher contrast for Cu than acid digestion. The analysis of NH4 oxalate (U.V.) extractions, instead of acid digestion, can thus be recommended for both areas.  相似文献   

6.
Young ochreous precipitations from Fe-bearing spring waters in Finland consist mainly of ferrihydrite. a poorly ordered Fe-oxide with a layer structure and the bulk composition 5 Fe2O3 ·9 H2O Crystallinity ranges from a reasonably well developed structure to a highly disordered one with only two prismatic reflections at 2.5 and 1.5 Å. In contrast to other Fe-oxides. ferrihydrite is highly soluble in oxalate. Electron microscopy shows spherical particles 2–5 nm in diameter forming aggregates of 100–300 nm. The specific surface ranges from 220 to 560 m2/g. During their formation, the ferrihydrites adsorb large quantities of silica, part of which is unpolymerized as indicated by Si-O-Fe bonds (i.r.), and part of which is polymerized. NaOH preferentially extracts polymerized silica causing a shift in the i.r. absorption band. Silica also causes a shift in the temperature at which ferrihydrite converts to hematite. ‘Hydrous Fe(III)-oxides’ with 0–15mol% Si prepared from Si containing Fe(III) salt solutions showed similar properties: Si-O-Fe bonds are shown by i.r. and increasing temperatures of transformation to hematite with increasing amount of Si. Adsorbed Si may also retard the transformation of ferrihydrite to the more stable goethite in nature.  相似文献   

7.
The behaviour of trace amounts of arsenate coprecipitated with ferrihydrite, lepidocrocite and goethite was studied during reductive dissolution and phase transformation of the iron oxides using [55Fe]- and [73As]-labelled iron oxides. The As/Fe molar ratio ranged from 0 to 0.005 for ferrihydrite and lepidocrocite and from 0 to 0.001 for goethite. For ferrihydrite and lepidocrocite, all the arsenate remained associated with the surface, whereas for goethite only 30% of the arsenate was desorbable. The rate of reductive dissolution in 10 mM ascorbic acid was unaffected by the presence of arsenate for any of the iron oxides and the arsenate was not reduced to arsenite by ascorbic acid. During reductive dissolution of the iron oxides, arsenate was released incongruently with Fe2+ for all the iron oxides. For ferrihydrite and goethite, the arsenate remained adsorbed to the surface and was not released until the surface area became too small to adsorb all the arsenate. In contrast, arsenate preferentially desorbs from the surface of lepidocrocite. During Fe2+ catalysed transformation of ferrihydrite and lepidocrocite, arsenate became bound more strongly to the product phases. X-ray diffractograms showed that ferrihydrite was transformed into lepidocrocite, goethite and magnetite whereas lepidocrocite either remained untransformed or was transformed into magnetite. The rate of recrystallization of ferrihydrite was not affected by the presence of arsenate. The results presented here imply that during reductive dissolution of iron oxides in natural sediments there will be no simple correlation between the release of arsenate and Fe2+. Recrystallization of the more reactive iron oxides into more crystalline phases, induced by the appearance of Fe2+ in anoxic aquifers, may be an important trapping mechanism for arsenic.  相似文献   

8.
《Applied Geochemistry》2004,19(6):973-979
The association of rare earth and other trace elements with Fe and Mn oxides was studied in Fe-Mn-nodules from a lateritic soil from Serra do Navio (Northern Brazil). Two improved methods of selective dissolution by hydroxylamine hydrochloride and acidified hydrogen peroxide along with a classical Na–citrate–bicarbonate–dithionite method were used. The two former reagents were used to dissolve Mn oxides without significant dissolution of Fe oxides, and the latter reagent was used to dissolve both Mn and Fe oxides. Soil nodules and matrix were separated by hand. Inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry after fusion with lithium metaborate, and X-ray diffraction were used to determine the elemental and mineralogical composition of the nodules and soil matrix. The latter was composed of kaolinite, gibbsite, goethite, hematite, and quartz. In the nodules, lithiophorite LiAl2(MnIV2MnIII)O6(OH)6 was detected in addition to the above-mentioned minerals. The presence of hollandite (BaMn8O16) and/or coronadite (PbMn8O16) in the nodules is also possible. In comparison to the matrix, the nodules were enriched in Mn, Fe, K, and P, and relatively poor in Si, Al, and Ti. The nodules were also enriched in all trace elements determined. Phosphorus, As and Cr were associated mainly with Fe oxides; Cu, Ni, and V were associated with both Fe and Mn oxides; and Ba, Co, and Pb were associated mainly with Mn oxides. Distribution of rare earth elements indicated a strong positive Ce-anomaly in the nodules, compared to the absence of any anomaly in the matrix. Some of Ce was associated with Mn oxides. The improved methods achieved almost complete release of Mn from the sample without decreasing the selectivity of dissolution, i.e., without dissolving significant amounts of Fe oxides and other minerals, and provided reliable information on associations of trace elements with Mn oxides. These methods are thus proposed to be included in sequential extraction schemes for fractionation of trace elements in soils and sediments.  相似文献   

9.
The poorly crystalline Fe(III) hydroxide ferrihydrite is considered one of the most important sinks for (in)organic contaminants and nutrients within soils, sediments, and waters. The ripening of ferrihydrite to more stable and hence less reactive phases such as goethite is catalyzed by surface reaction with aqueous Fe(II). While ferrihydrite within most natural environments contains high concentrations of adsorbed or co-precipitated cations (particularly Al), little is known regarding the impact of these cations on Fe(II)-induced transformation of ferrihydrite to secondary phases. Accordingly, we explored the extent, rates, and pathways of Fe(II)-induced secondary mineralization of Al-ferrihydrites by reacting aqueous Fe(II) (0.2 and 2.0 mM) with 2-line ferrihydrite containing a range of Al levels substituted within (6-24 mol% Al) or adsorbed on the surface (0.1-27% Γmax). Here, we show that regardless of the Fe(II) concentration, Al substituted within or adsorbed on ferrihydrite results in diminished secondary mineralization and preservation of ferrihydrite. In contrast to pure ferrihydrite, the concentration of Fe(II) may not in fact influence the mineralization products of Al-compromised ferrihydrites. Furthermore, the secondary mineral profiles upon Fe(II) reaction with ferrihydrite are not only a function of Al concentration but also the mode of Al incorporation. While Al substitution impedes lepidocrocite formation and magnetite nucleation, Al adsorption completely inhibits goethite formation and appears to have a lesser impact on magnetite nucleation. When normalized to total Al content associated with ferrihydrite, Al adsorption results in greater degree of ferrihydrite preservation relative to Al substitution. These findings provide insight into mechanisms that may be responsible for ferrihydrite preservation and low levels of secondary magnetite typically found in sedimentary environments. Considering the preponderance of cation substitution within and adsorption on ferrihydrite in soils and sediments, the reactivity of natural (compromised) ferrihydrites and the subsequent impact on mineral evolution needs to be more fully explored.  相似文献   

10.
《Applied Geochemistry》2005,20(2):383-396
Potential contamination of rivers by trace elements can be controlled, among others, by the precipitation of oxyhydroxides. The streambed of the studied area, located in “La Châtaigneraie” district (Lot River Basin, France), is characterised by iron-rich ochreous deposits, acidic pH (2.7–4.8) and SO4–Mg waters. Beyond the acid mine drainage, the presence of As both in the dissolved fraction and in the deposits is also a problem. Upstream, at the gallery outlet, As concentrations are high (Asmax = 2.6 μmol/l and up to 5 wt% locally, respectively, in the dissolved and in the solid fractions). Downstream, As concentrations decrease below 0.1 μmol/l in the dissolved fraction and to 1327 mg/kg in the solid fraction. This natural attenuation is related to the As retention within ochreous precipitates (amorphous to poorly crystalline Fe oxyhydroxides, schwertmannite and goethite), which have great affinities for this metalloid. Upstream, schwertmannite is dominant while downstream, goethite becomes the main mineral. The transformation of schwertmannite into goethite is observed in the upstream deposits as schwertmannite is unstable relative to goethite. Furthermore, thermodynamic calculations indicate that the downstream goethite is not able to precipitate in situ according to the water chemistry. Goethite mainly results from the transformation of schwertmannite and its solid transport downstream.Moreover, as highlighted by leaching experiments carried out on the ochreous precipitates, this transformation does not seem to affect the As-retention in solids as no release of As was observed in the solution. Arsenic may either be strongly trapped by co-precipitation in the present minerals or it may be quickly released and re-adsorbed on the precipitate surface.  相似文献   

11.
The biologically-mediated reduction of synthetic samples of the Fe(III)-bearing minerals hematite, goethite, lepidocrocite, feroxhyte, ford ferrihydrite, akaganeite and schwertmannite by Geobacter sulfurreducens has been investigated using microbiological techniques in conjunction with X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). This combination of approaches offers unique insights into the influence of subtle variations in the crystallinity of a given mineral on biogeochemical processes, and has highlighted the importance of (oxyhydr)oxide crystallite morphology in determining the changes occurring in a given mineral phase. Problems arising from normalising the biological Fe(III) reduction rates relative to the specific surface areas of the starting materials are also highlighted. These problems are caused primarily by particle aggregation, and compounded when using spectrophotometric assays to monitor reduction. For example, the initial rates of Fe(III) reduction observed for two synthetic feroxyhytes with different crystallinities (as shown by XRD and TEM studies) but almost identical surface areas, differ substantially. Both microbiological and high-resolution TEM studies show that hematite and goethite are susceptible to limited amounts of Fe(III) reduction, as evidenced by the accumulation of Fe(II) during incubation with G. sulfurreducens and the growth of nodular structures on crystalline goethite laths during incubation. Lepidocrocite and akaganeite readily transform into mixtures of magnetite and goethite, and XRD data indicate that the proportion of magnetite increases within the transformation products as the crystallinity of the starting material decreases. The presence of anthraquinone-2,6-disulfonate (AQDS) as an electron shuttle increases both the initial rate and longer term extent of biological Fe(III) reduction for all of the synthetic minerals examined. High-resolution XPS indicates subtle but measurable differences in the Fe(III):Fe(II) ratios at the mineral surfaces following extended incubation. For example, for a poorly crystalline schwertmannite, deconvolution of the Fe2p3/2 peak suggests that the Fe(III):Fe(II) ratio of the near-surface regions varies from 1.0 in the starting material to 0.9 following 144 h of incubation with G.sulfurreducens, and to 0.75 following the same incubation period in the presence of 10 μM AQDS. These results have important implications for the biogeochemical cycling of iron.  相似文献   

12.
Dissimilatory metal reducing bacteria (DMRB) can influence geochemical processes that affect the speciation and mobility of metallic contaminants within natural environments. Most investigations into the effect of DMRB on sediment geochemistry utilize various synthetic oxides as the FeIII source (e.g., ferrihydrite, goethite, hematite). These synthetic materials do not represent the mineralogical composition of natural systems, and do not account for the effect of sediment mineral composition on microbially mediated processes. Our experiments with a DMRB (Shewanella putrefaciens 200) and a divalent metal (ZnII) indicate that, while complexity in sediment mineral composition may not strongly impact the degree of “microbial iron reducibility,” it does alter the geochemical consequences of such microbial activity. The ferrihydrite and clay mineral content are key factors. Microbial reduction of a synthetic blend of goethite and ferrihydrite (VHSA-G) carrying previously adsorbed ZnII increased both [ZnII-aq] and the proportion of adsorbed ZnII that is insoluble in 0.5 M HCl. Microbial reduction of FeIII in similarly treated iron-bearing clayey sediment (Fe-K-Q) and hematite sand, which contained minimal amounts of ferrihydrite, had no similar effect. Addition of ferrihydrite increased the effect of microbial FeIII reduction on ZnII association with a 0.5 M HCl insoluble phase in all sediment treatments, but the effect was inconsequential in the Fe-K-Q. Zinc k-edge X-ray absorption spectroscopy (XAS) data indicate that microbial FeIII reduction altered ZnII bonding in fundamentally different ways for VHSA-G and Fe-K-Q. In VHSA-G, ZnO6 octahedra were present in both sterile and reduced samples; with a slightly increased average Zn-O coordination number and a slightly higher degree of long-range order in the reduced sample. This result may be consistent with enhanced ZnII substitution within goethite in the microbially reduced sample, though these data do not show the large increase in the degree of Zn-O-metal interactions expected to accompany this change. In Fe-K-Q, microbial FeIII reduction transforms Zn-O polyhedra from octahedral to tetrahedral coordination and leads to the formation of a ZnCl2 moiety and an increased degree of multiple scattering. This study indicates that, while many sedimentary iron minerals are easily reduced by DMRB, the effects of microbial FeIII reduction on trace metal geochemistry are dependent on sediment mineral composition.  相似文献   

13.
《Applied Geochemistry》2002,17(8):1081-1092
Different types of fine-grained chemical precipitates were characterized in the surroundings of the pyrite-chalcopyrite mine of Libiola (Northern Italy). Both water chemistry and sediment composition were used to investigate metal mobility near the mine area. Local drainage waters were very acidic (with a pH as low as 2.5) and were rich in dissolved metals (Fe, Al, Cu, Zn, Mn, Ni). Sediments associated with low pH water (pH <4.5) were ochreous mixtures of schwertmannite and goethite with traces of jarosite. Their chemistry was dominated by Fe and they had, compared to other sediments investigated, low concentrations of other metals. When the acidity decreased gradually, other precipitates formed. At a pH of approximately 5, a poorly crystalline, whitish, Al-rich precipitate occurred. At a pH between 6 and 7, a poorly crystalline, blue, Cu (Zn) rich phase was present. These “sequential” precipitation events progressively reduced the metal loading typical of the acidic mine water when there was a gradual mixing with normal water. When a sudden mixing between normal waters (pH ∼8, Ca–HCO3, low metal bearing) and acidic waters took place, a rapid flocculation occurred of mixed precipitates containing Fe, Al and trace elements.  相似文献   

14.
Changes in surface charge of soil particles that accompany mineral transformations during soil formation were measured for a humid tropical chronosequence in Hawaiian basalt ranging in lava flow age from 0.3 to 4100 kiloyears (ky). Parent mineralogy is dominated by glass, olivine, pyroxene, and feldspar, whereas poorly crystalline (PC) weathering products (allophane, microcrystalline gibbsite, ferrihydrite) accumulate in early to intermediate weathering stages (through 400 ky), and crystalline secondary minerals (kaolinite, gibbsite, goethite) are dominant in the oldest (1400 and 4100 ky) soils. Detailed characterization of the solid phase was accomplished with chemical extractions, X-ray diffraction analysis, and molecular spectroscopy (FTIR and 13C MAS NMR). Simultaneous proton titration and background ion adsorption measurements were made on LiCl saturated soils over a range in pH (2-9) and ionic strength (0.001 and 0.01 M LiCl). Dependence of variable surface charge on solution composition reflects the changing nature of mineral-organic interactions over the course of pedogenesis. Points of zero net proton charge (PZNPC) ranged from 3.4 to 6.2 and 2.0 to 5.8 at 0.001 and 0.01 M ionic strength (I), respectively. Intermediate-aged soils containing the highest mass concentration of humified soil organic matter (SOM) and its complexes with PC minerals gave rise to the steepest charging curves (largest pH dependence) and highest PZNPC values. Surface charge properties of these soils most closely reflected their weakly acidic Al and Fe hydroxide constituents, which is consistent with metal hydroxide saturation of organic functional groups, rather than organic coating of mineral surfaces. Charging curves were less steep and PZNPC values were lower for the older soils, consistent with SOM coating of more crystalline goethite, kaolinite, and gibbsite surfaces in a soil system less impacted by labile Al and Fe.  相似文献   

15.
Mining and metallurgical processing of gold and base metal ores can lead to the release of arsenic into the aqueous environment as a result of the weathering and leaching of As-bearing minerals during processing and following disposal. Arsenic in process solutions and mine drainage can be effectively stabilized through the precipitation of ferrihydrite. However, under anaerobic conditions imposed by burial and waste cover systems, ferrihydrite is susceptible to microbial reduction. This research, stimulated by the paucity of information and limited understanding of the microbial reduction of arsenical ferrihydrite, was conducted on synthetic adsorbed and co-precipitated arsenical 6-line ferrihydrite (Fe/As molar ratio of 10/1) using Shewanella sp. ANA-3 and Shewanella putrefaciens CN32 in a chemically defined medium containing 0.045 mM phosphate concentration. Both bacteria were equally effective in their reducing abilities around pH 7, resulting in initial rates of formation of dissolved As(III) of 0.10 μM/h for the adsorbed, and 0.08 μM/h for the co-precipitated arsenical 6-line ferrihydrite samples. The solid phases in the post-reduction samples were characterized by powder X-ray diffraction (XRD), micro-XRD, scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron microprobe and X-ray absorption spectroscopy (XAS) techniques. The results indicate the formation of secondary phases such as a biogenic Fe(II)–As(III) compound, akaganeite, goethite, hematite and possibly magnetite during bacterial reduction experiments. Holes and bacterial imprints measuring about 1–2 μm were observed on the surfaces of the secondary phases formed after 1200 h of reduction. This study demonstrates the influence of Fe and As reducing bacteria on the release of significant concentrations of more mobile and toxic As(III) species from arsenical 6-line ferrihydrite, more readily from the adsorbed than from the co-precipitated ferrihydrite.  相似文献   

16.
Processing U ores in the JEB Mill of the McClean Lake Operation in northern Saskatchewan produces spent leaching solutions (raffinates) with pH  1.5, and As and Ni concentrations up to 6800 and 5200 mg L−1, respectively. Bench-scale neutralization experiments (pH 2–8) were performed to help optimize the design of mill processes for reducing As and Ni concentrations in tailings and raffinates to 1 mg L−1 prior to their disposal. Precipitate mineralogy determined by chemical analysis, XRD, SEM, EM, XM and EXAFS methods, included gypsum (the dominant precipitate), poorly crystalline scorodite (precipitated esp. from pH 2–4), annabergite, hydrobasaluminite, ferrihydrite, green rust II and theophrastite. The As was mostly in scorodite with smaller amounts in annabergite and trace As adsorbed and/or co-precipitated, probably by ferrihydrite. Geochemical modeling indicated that above pH 2, the ion activity product (IAP) of scorodite lies between the solubility products of amorphous and crystalline phases (log Ksp = −23.0 and −25.83, respectively). The IAP decreases with increasing pH, suggesting that the crystallinity of the scorodite increases with pH. Forward geochemical models support the assumption that during neutralization, particles of added base produce sharp local pH gradients and disequilibrium with bulk solutions, facilitating annabergite and theophrastite precipitation.  相似文献   

17.
Due to the strong reducing capacity of ferrous Fe, the fate of Fe(II) following dissimilatory iron reduction will have a profound bearing on biogeochemical cycles. We have previously observed the rapid and near complete conversion of 2-line ferrihydrite to goethite (minor phase) and magnetite (major phase) under advective flow in an organic carbon-rich artificial groundwater medium. Yet, in many mineralogically mature environments, well-ordered iron (hydr)oxide phases dominate and may therefore control the extent and rate of Fe(III) reduction. Accordingly, here we compare the reducing capacity and Fe(II) sequestration mechanisms of goethite and hematite to 2-line ferrihydrite under advective flow within a medium mimicking that of natural groundwater supplemented with organic carbon. Introduction of dissolved organic carbon upon flow initiation results in the onset of dissimilatory iron reduction of all three Fe phases (2-line ferrihydrite, goethite, and hematite). While the initial surface area normalized rates are similar (∼10−11 mol Fe(II) m−2 g−1), the total amount of Fe(III) reduced over time along with the mechanisms and extent of Fe(II) sequestration differ among the three iron (hydr)oxide substrates. Following 16 d of reaction, the amount of Fe(III) reduced within the ferrihydrite, goethite, and hematite columns is 25, 5, and 1%, respectively. While 83% of the Fe(II) produced in the ferrihydrite system is retained within the solid-phase, merely 17% is retained within both the goethite and hematite columns. Magnetite precipitation is responsible for the majority of Fe(II) sequestration within ferrihydrite, yet magnetite was not detected in either the goethite or hematite systems. Instead, Fe(II) may be sequestered as localized spinel-like (magnetite) domains within surface hydrated layers (ca. 1 nm thick) on goethite and hematite or by electron delocalization within the bulk phase. The decreased solubility of goethite and hematite relative to ferrihydrite, resulting in lower Fe(III)aq and bacterially-generated Fe(II)aq concentrations, may hinder magnetite precipitation beyond mere surface reorganization into nanometer-sized, spinel-like domains. Nevertheless, following an initial, more rapid reduction period, the three Fe (hydr)oxides support similar aqueous ferrous iron concentrations, bacterial populations, and microbial Fe(III) reduction rates. A decline in microbial reduction rates and further Fe(II) retention in the solid-phase correlates with the initial degree of phase disorder (high energy sites). As such, sustained microbial reduction of 2-line ferrihydrite, goethite, and hematite appears to be controlled, in large part, by changes in surface reactivity (energy), which is influenced by microbial reduction and secondary Fe(II) sequestration processes regardless of structural order (crystallinity) and surface area.  相似文献   

18.
Effects of process parameters such as concentrations of FeCl2, NaOH, and drying temperature on the formation mechanism and chemical characteristics of ferrihydrite-modified diatomite are studied by using X-ray absorption near-edge structure spectroscopy. The spectra were recorded in total electron yield mode and/or fluorescence yield mode to investigate the chemical nature of Fe and Si on the surface and/or in the bulk of ferrihydrite-modified diatomite, respectively. It was found that only the surface SiO2 was partially dissolved in the NaOH solution with stirring and heating, whereas the bulk of diatomite seemed to be preserved. The dissolved Si was incorporated into the structure of ferrihydrite to form the 2-line Si-containing ferrihydrite on the surface of diatomite. The crystalline degree of ferrihydrite increased with the increasing FeCl2 concentration and the Brunauer–Emmett–Teller specific surface area of ferrihydrite-modified diatomite decreased with the increasing FeCl2 concentration. The crystalline degree of ferrihydrite decreased with the increase of NaOH concentration. The high temperature calcination caused an energy shift in the Si L-edge spectra to the high energy side and a transformation of Si-containing ferrihydrite to crystallized hematite might occur when ferrihydrite-modified diatomite is calcined at 900°C. In this study, the optimal synthesis conditions for the ferrihydrite-modified diatomite with the least crystalline Si-containing ferrihydrite and the highest surface area were found to be as the follows: 0.5 M FeCl2 solution, 6 M NaOH solution and drying temperature of 50°C.  相似文献   

19.
The reductive dissolution of FeIII (hydr)oxides by dissimilatory iron-reducing bacteria (DIRB) could have a large impact on sediment genesis and Fe transport. If DIRB are able to reduce FeIII in minerals of high structural order to carry out anaerobic respiration, their range could encompass virtually every O2-free environment containing FeIII and adequate conditions for cell growth. Previous studies have established that Shewanella putrefaciens CN32, a known DIRB, will reduce crystalline Fe oxides when initially grown at high densities in a nutrient-rich broth, conditions that poorly model the environments where CN32 is found. By contrast, we grew CN32 by batch culture solely in a minimal growth medium. The stringent conditions imposed by the growth method better represent the conditions that cells are likely to encounter in their natural habitat. Furthermore, the expression of reductases necessary to carry out dissimilatory Fe reduction depends on the method of growth. It was found that under anaerobic conditions CN32 reduced hydrous ferric oxide (HFO), a poorly crystalline FeIII mineral, and did not reduce suspensions containing 4 mM FeIII in the form of poorly ordered nanometer-sized goethite (α-FeOOH), well-ordered micron-sized goethite, or nanometer-sized hematite (α-Fe2O3) crystallites. Transmission electron microscopy (TEM) showed that all minerals but the micron-sized goethite attached extensively to the bacteria and appeared to penetrate the outer cellular membrane. In the treatment with HFO, new FeII and FeIII minerals formed during reduction of HFO-Fe in culture medium containing 4.0 mmol/L Pi (soluble inorganic P), as observed by TEM with energy-dispersive X-ray spectroscopy, selected area electron diffraction, and X-ray diffraction. The minerals included magnetite (Fe3O4), goethite, green rust, and vivianite [Fe3(PO4)2 · 8H2O]. Vivianite appeared to be the stable end product and the mean coherence length was influenced by the rate of FeIII reduction. When Pi was 0.4 mol/L under otherwise identical conditions, goethite was the only mineral observed to form, and less Fe2+ was produced overall. Hence, the ability of DIRB to reduce Fe (hydr)oxides may be limited when the bacteria are grown under nutrient-limited conditions, and the minerals that result depend on the vigor of FeIII reduction.  相似文献   

20.
Hexavalent uranium [U(VI)] dissolved in a modified lactate-C medium was treated under anoxic conditions with a mixture of an Fe(III)-(hydr)oxide mineral (hematite, goethite, or ferrihydrite) and quartz. The mass of Fe(III)-(hydr)oxide mineral was varied to give equivalent Fe(III)-mineral surface areas. After equilibration, the U(VI)-mineral suspensions were inoculated with sulfate-reducing bacteria, Desulfovibrio desulfuricans G20. Inoculation of the suspensions containing sulfate-limited medium yielded significant G20 growth, along with concomitant reduction of sulfate and U(VI) from solution. With lactate-limited medium, however, some of the uranium that had been removed from solution was resolubilized in the hematite treatments and, to a lesser extent, in the goethite treatments, once the lactate was depleted. No resolubilization was observed in the lactate-limited ferrihydrite treatment even after a prolonged incubation of 4 months. Uranium resolubilization was attributed to reoxidation of the uraninite by Fe(III) present in the (hydr)oxide phases. Analysis by U L3-edge XANES spectroscopy of mineral specimens sampled at the end of the experiments yielded spectra similar to that of uraninite, but having distinct features, notably a much more intense and slightly broader white line consistent with precipitation of nanometer-sized particles. The XANES spectra thus provided strong evidence for SRB-promoted removal of U(VI) from solution by reductive precipitation of uraninite. Consequently, our results suggest that SRB mediate reduction of soluble U(VI) to an insoluble U(IV) oxide, so long as a suitable electron donor is available. Depletion of the electron donor may result in partial reoxidation of the U(IV) to soluble U(VI) species when the surfaces of crystalline Fe(III)-(hydr)oxides are incompletely reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号