首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A systematic deviation has been found of the refraction given in Pulkovo Tables, fifth edition, from the standard refraction calculated for the same ground level meteorological conditions by the procedure described in one of our previous papers. This deviation, negative for zenith distances smaller than 75° and positive for zenith distances larger than 80°, is considerably greater than the error proven to be admissible for the pure refraction determined in the latter way. The value of deviation is of the order of 0″.03 already at z0 = 45°. For zenith distances smaller than 75° the deviation originates almost exclusively from unsufficiently accurate corrections for the air humidity. For larger zenith distances the deviation originates mainly from the correction for the air temperature and contributions of the remaining corrections can partly compensate for it. In conclusion a proposition of a new unique standard of the pure refraction is stated.  相似文献   

2.
We present a software package developed for the automatic 4-D stellar parameterization. The package can be adopted to virtually any multicolour photometric system. Procedure of simultaneous determination of T eff, log g, [M/H] and E B-V is very flexible and can be performed by applying various photometric parameters(magnitudes, colour indices etc.). Any changes of the photometric systems, weighting schemes or parameterization criteria can be implemented easily. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
We present a method and results of evaluation of the photometric systems (PSs) proposed for the GAIA mission. The method, however, can be applied for the analysis of virtually any multicolour PS designed for the global investigation of the Galactic stellar populations. Performance of the 1F, 2A and 3G PSs is evaluated taking into account their ability to simultaneously determine the main stellar parameters,T eff, log g, [M/H] and E B-V, for a large variety of stars down to G ∼ 20. The representative Galactic stellar populations were constructed and employed for evaluation of the PSs. Despite the fact that the 2A and 3G PSs perform significantly better than the 1F (presently adopted as a baseline PS for GAIA), we conclude that still there is no photometric system proposed to date, which would allow to achieve the scientific objectives of the GAIA mission. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The goal of this work is to assess the expected scientific output from the photometric studies of globular clusters in the Large Magellanic Cloud with ESA's astrometric space mission GAIA. For this purpose we simulate GAIA photometry of individual stars in synthetic cluster populations, covering a large range of cluster ages and metallicities. We find that accurate effective temperatures (Δ T eff<10%) can be obtained from GAIA photometry down to V ∼ 18 for stars in populations within the studied metallicity range ([M/H] = -0.4 ... -1.7). GAIA will also provide photometric metallicities (Δ [M/H] ≲ 0.3 dex) for the cluster giants brighter than V ∼ 17.5. The knowledge of the effective temperature sand metallicities will allow to obtain accurate ages of stellar populations younger than about 1 Gyr using the usual procedure of main sequence turn-off point fitting. Ages of older stellar populations (≳ 1 Gyr) may be constrained from the isochrone fits to the giant branches in the observed CMDs. We conclude that GAIA will provide excellent opportunities for studying star formation histories far beyond the Milky Way, providing means for better understanding of stellar and galactic evolution in different astrophysical environments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
We investigate the plausibility of using diffuse interstellar band at862 nm for tracing interstellar extinction with the ESA's astrometric space mission GAIA. For this purpose we perform numerical tests to simulate the conditions of real observations, covering a wide range of stellar parameters and different amounts of interstellar extinction. Our simulations indicate that with the present Radial Velocity Spectrometer setup the uncertainty in color excess of σE(B-V)≤ 0.05 can be achieved only for the interstellar reddening tracers brighter than V ∼ 13. None of the plausible tracers can provide accurate color excesses (σ E(B-V) ≤ 0.05) at the distances beyond 2 kpc. We therefore conclude that with the currently planned instrumentation onboard GAIA this method can not be used as a stand-alone approach for probing interstellar extinction on the Galactic distance scales within the framework of the GAIA mission. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
A very accurate imitation of Hipparcos and Tycho Hp, B T, andV T magnitudes was made using W, B, V, R magnitudes from the Tien Shan photometric catalogue. The calculated magnitudes were compared to the observed ones. It is shown that there are systematic differences between calculated and observed magnitudes. The systematic errors are supposed to be bound up with the sky scanning procedure on the Hipparcos satellite. Polynomials in powers of coordinates have been proposed to take into account the systematic errors. 6558 stars have been found to be appropriate high-precision photometric standards. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Blue Supergiants (BSGs) are the brightest stars in the universe at visual light with absolute magnitudes up to M V =−10 mag. They are ideal stellar objects for the determination of extragalactic distances, in particular, because the perennial uncertainties troubling most of the other stellar distance indicators, interstellar extinction and metallicity, do not affect them. The quantitative spectral analysis of low resolution spectra of individual BSGs provides accurate stellar parameters and chemical composition, which are then used to determine accurate reddening and extinction from photometry for each individual object. Accurate distances can be determined from stellar gravities and effective temperatures using the “Flux Weighted Gravity–Luminosity Relationship (FGLR)”.  相似文献   

8.
We have performed photometric B, V, and R observations of nine disk galaxies that presumably have abnormally low total mass-to-light (M/L) ratios for given color indices. Our data on surface photometry are used to analyze the possible causes of anomalous M/L estimates. In many cases, these can be the result of errors in photometry or rotational velocity determination but can also reflect the real peculiarities of the stellar composition of galaxies. Comparison of the photometric and dynamical disk mass estimates obtained by analyzing the rotational velocities shows that low M/L values for a given color index are probably real for some of the galaxies. This is primarily true of NGC 4826 (Sab), NGC 5347 (Sab), and NGC 6814 (Sb). The small number of such galaxies suggests that the stellar initial mass function is universal. However, a small fraction of galaxies probably may have a non-typical mass function “depleted” in low-mass stars. Such galaxies require a more careful study.  相似文献   

9.
A new photometric system suitable for deep, precise and quick metallicity mapping in galaxies is proposed. We find a linear correlation between our metallicity index and the Mg2 index for stellar, globular-cluster, and early-type galaxy spectra, and model spectral energy distributions of the simple stellar populations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Measuring distances to galaxies, determining their chemical composition, investigating the nature of their stellar populations and the absorbing properties of their interstellar medium are fundamental activities in modern extragalactic astronomy helping to understand the evolution of galaxies and the expanding universe. The optically brightest stars in the universe, blue supergiants of spectral A and B, are unique tools for these purposes. With absolute visual magnitudes up to MV ≃ ‐9.5 they are ideal to obtain accurate quantitative information about galaxies through the powerful modern methods of quantitative stellar spectroscopy. The spectral analysis of individual blue supergiant targets provides invaluable information about chemical abundances and abundance gradients, which is more comprehensive than the one obtained from HII regions, as it includes additional atomic species, and which is also more accurate, since it avoids the systematic uncertainties inherent in the strong line studies usually applied to the HII regions of spiral galaxies beyond the Local Group. Simultaneously, the spectral analysis yields stellar parameters and interstellar extinction for each individual supergiant target, which provides an alternative very accurate way to determine extragalactic distances through a newly developed method, called the Flux‐weighted Gravity–Luminosity Relationship (FGLR). With the present generation of 10 m‐class telescopes these spectroscopic studies can reach out to distances of 10 Mpc. The new generation of 30 m‐class telescopes will allow to extend this work out to 30 Mpc, a substantial volume of the local universe (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Various errors in determination of the local pure astronomical refraction are evaluated versus the apparent zenith distance z0. Numerical integration with the step imposed by heights of an aerological sounding brings the error smaller than 0″01 until z0 = 70°. For larger zenith distances integration with a more dense step is possible after fitting the data to a five-parameter functional dependence of the refractive index on height. The fitting is simultaneously a good equalization of aerological data reducing considerably their experimental error as well as short-term local fluctuations of the atmosphere. After equalization, the error in the refraction originating from the error in the aerological data is found to approach 0″01 at z0 = 72°, 0″1 at z0 = 82°, 1″ at z0 = 87°, and 10″ at the horizon. This has to be taken into account when considering systematic deviations of the local pure refraction from that determined in a standard way. The purely stochastic error in the refraction originating in the error of the refractive index at the observation site is discussed within the context of local fluctuations of the atmosphere. It is evaluated that until z0 = 85° the precision in determining the astronomical refraction in a single observation is limited by refraction anomalies (image motion) and only above 85° the error in aerological data becomes more important.  相似文献   

12.
Based on the spectral observations of the LAMOST (DR2) survey, the radii, masses, and luminosities of 700 481 stars were estimated. These stars belong to spectral types A, F, G, and K, and have metallicities between ?0.845 and 0.0. To determine the properties of the stars, we used up-to-date models of the stellar interior structure, computed with account for the stellar evolution rate and the initial mass function. The use of evolutionary estimates for two types of stars—with and without rotation—allowed us to account for the uncertainty associated with the lack of data on the rotation velocity of the stars under consideration. The obtained stellar radii, together with the photometric estimates of interstellar extinction and angular diameters can be used to study the dependence of interstellar extinction on distance as well as to estimate the stellar distances.  相似文献   

13.
We propose a multicomponent analysis of starburst galaxies, based on a model that takes into account the young and evolved stellar components and the gas emission, with their respective extinction, in the frame of a coherent dust distribution pattern. Near-IR signatures are preferentially investigated, in order to penetrate as deep as possible into the dusty starburst cores. We computed the 1.4-2.5 μm spectra of synthetic stellar populations evolving through strong, short timescale bursts of star formation (continuum and lines, R ? 500). The evolution model is specifically sensitive to cool stellar populations (AGB and red supergiant stars). It takes advantage of the stellar library of Lançon & Rocca-Volmerange (1992) [A&ASS, 96, 593], observed with the same instrument (FTS/CFHT) as the analysed galaxy sample, so that the instrumental effects are minimised. The main near-IR observable constraints are the molecular signatures of CO and H2O and the slope of the continuum, observed over a range exceptionally broad for spectroscopic data. The H - K colour determined from the spectra measures the intrinsic stellar energy distribution but also differential extinction, which is further constrained by optical emission line ratios. Other observational constraints are the near-IR emission lines (Brγ, He I 2.06 μm, [Fe II] 1.64 μm, H2 2.12 μm) and the far-IR luminosity. The coherence of the results relies on the interpretation in terms of stellar populations from which all observable properties are derived, so that the link between the various wavelength ranges is secured. The luminosity LK is used for the absolute calibration.We apply this approach to the typical spectrum of the core of NGC 1614. Consistent solutions for the starburst characteristics (star-formation rate, IMF, burst age, morphology) are found and the role of each observational constraint in deriving satisfactory models is extensively discussed. The acceptable contamination of the K band light by the underlying population amounts ≥ 15% even through a 5 arcsec aperture. The model leads to a limit on the direct absorption of Lyman continuum photons by dust situated inside the ionised areas, which in turn, with standard gas-to-dust ratios, translates into small characteristic sizes for the individual coexisting H II regions of the massive starburst area (clusters containing ∼ 102 ionising stars). We show that room is left for IMFs extending to 120 M, rather than truncated at ∼ 60 M as most conservative studies conclude. High internal velocity dispersions (≥ 20 km s−1) are then needed for the H II regions. An original feature of this work is to base the analysis of near-infrared spectral galaxy observations on a large wavelength range, using models constructed with spectral stellar data observed with the same instrument. However a broader use of this spectral evolution model on other spectral or photometric data samples is possible if the spectral resolution of the model is adapted to observations or if colours are derived from the energy distributions.Catherine J. Cesarsky  相似文献   

14.
Spectral types (M4–M6), effective temperatures T ef (2700–2900 K), and free fall accelerations logg (4.0–4.5) are determined for five M dwarfs using their energy distributions in the spectral range λλ = 680…840 nm. Stellar spectra with resolutions R = 4000 were obtained using the IMACS spectrograph mounted on the ESO Walter Baade 6.5-m telescope. The spectral types are derived from spectral indices and the effective temperatures of the stars are estimated based on their spectral types. Values of T ef and logg are also derived from the comparison between the observed and theoretical energy distributions, calculated both for dust-free, standard NextGen model atmospheres of red dwarfs, and for semiempirical models considering the presence of dust in stellar atmospheres according to the technique developed by Pavlenko et al. We determine dust parameters for stellar atmospheres of these stars, and establish that it is necessary to account for the decrease in concentration of TiO molecules due to their condensation on dust grains, when T ef < 3000 K. We conclude that the radiation scattering by dust grains does not have an appreciable effect on energy distributions in the spectra of the considered stars.  相似文献   

15.
It is shown that the infrared flux method for determining stellar effective temperatures (Blackwell and Shallis 1977; Blackwell, Petford and Shallis 1980) can be applied to cool carbon stars. Although the spectra of cool carbon stars are highly line blanketed, the spectral region between 3 and 4 μm (L-band in the infrared photometry system) is found to be relatively free from strong line absorption. The ratioR L of bolometric flux toL flux can then be used as a measure of effective temperature. On the basis of the predicted line-blanketed flux based on model atmospheres, with an empirical correction for the effect of 3 μm absorption due to polyatomic species (HCN, C2H2), it is shown thatR L is roughly proportional to T3 eff. The high sensitivity ofR L to Teff makes it a very good measure of effective temperature, and the usual difficulty due to differential line blanketing effect in the analyses of photometric indices of cool carbon stars can be minimized. It is found that the majority of N-type carbon stars with small variability (SRb and Lb variables) are confined to the effective temperature range between 2400 and 3200 K, in contrast to M-giant stars (M0 III - M6 III, including SRb and Lb variables) that are confined to the effective temperature range between 3200 and 3900 K. The effective temperatures based on the infrared flux method show good agreement with those derived directly from angular diameter measurements of 5 carbon stars. On the basis of the new effective temperature scale for carbon stars, it is shown that the well known C-classification does not represent a temperature sequence. On the other hand, colour temperatures based on various photometric indices all show good correlations with our derived effective temperatures. An erratum to this article is available at .  相似文献   

16.
UBVRI photometric observations and models of spotting are presented for four noneclipsing RS CVn systems: IN Com (G5III/IV), IL Com (F8V+F8V), UX Ari (K01V+G5V), and V711 Tau (K1IV+G5V). A low amplitude variability caused by cold (T=1700K)spots which can occupy up to 19% of the star's surface is confirmed for the little-studied star IL Com. Long-term light curves are constructed and the stellar magnitudes and color indices of the unspotted photospheres are estimated for IN com, UX Ari, and V711 Tau. It is shown that UX Ari becomes bluer with decreasing brightness, so its variability cannot be fully explained in terms of cold spots. Models of spotting on In Com and V711 Tau are constructed from the full set of available photometric observations. The spots on both of these variables lie at middle latitudes and occupy up to 22% (In Com) and 33% (V711 Tau) of the stars' surfaces. Both stars manifest a tendency for the width of the spots to decrease as their area increases. This is a crude analog of the Maunder butterflies. These stars experience cyclical spot activity and have a differential rotation of the type found on the sun.  相似文献   

17.
As part of an ongoing project aimed at studying the age and metallicity gradients of the stellar populations along the bars of a sample of barred spirals of different morphological types, we present our first results on NGC 4314 (SBa). We have obtained optical and NIR colours and spectral indices along the bar and we interpret some of these results here and discuss their uncertainties on the basis of single stellar population models. In a preliminary analysis, we constrain the limits for the age and metallicity of the nucleus and two selected regions in the star formation ring of NGC 4314, characterizing both as metal rich (Z<Z solar) stellar populations, and finding a difference in the mean luminosity-weighted age of at least ∼ 3–4 Gyr. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Because of the influence of atmospheric refraction the astronomical observations of the objects with the angles of elevation below 15° are generally avoided, but for the sake of the complete theoretical research the atmospheric refraction under the condition of lower angles of elevation is still worthy to be analyzed and explored. Especially for some engineering applications the objects with low angles of elevation must be observed sometimes. A new idea for determining atmospheric refraction by utilizing the differential method is proposed. A series of observations of the starry sky at different heights are carried out and by starting from the zenith with a telescope with larger field of view, the derivatives of various orders of atmospheric refraction function at different zenith distances are calculated and finally the actually observed values of atmospheric refraction can be found via numerical integration. The method does not depend upon the strict local parameters and complex precise observational instrumentation, and the observational principle is relatively simple. By the end of 2007 a simply constructed telescope with a larger field of view at Xinglong Observing Station was employed to carry out trial observations. The values of atmospheric refraction at the true zenith distances of 44.8° to 87.5° were obtained from the practical observations based on the differential method, and the feasibility of the method of differential measurement of atmospheric refraction was preliminarily justified. Being limited by the observational conditions, the accuracy of the observed result was limited, the maximal accidental error was about 6” and there existed certain systematic errors. The value of the difference between the result obtained at the zenith distance of 84° and that given in the Pulkovo atmospheric refraction table was about 15”. How to eliminate the cumulative error introduced due to the integration model error is the key problem which needs to be solved in future.  相似文献   

19.
The results of photometric and polarimetric observations of the star CH Cygni in the B, V, and R filters are presented. Variations of brightness and color indices are given as functions of the time of observation. A fairly irregular character was found, both in the brightness variations and in the variations of color indices. The polarization observations showed that the light of CH Cygni is intrinsically polarized.  相似文献   

20.
Available velocity dispersion estimates for the old stellar population of galactic disks at galactocentric distances r?2L (where L is the photometric radial scale length of the disk) are used to determine the threshold local surface density of disks that are stable against gravitational perturbations. The mass of the disk Md calculated under the assumption of its marginal stability is compared with the total mass Mt and luminosity L B of the galaxy within r=4L. We corroborate the conclusion that a substantial fraction of the mass in galaxies is probably located in their dark halos. The ratio of the radial velocity dispersion to the circular velocity increases along the sequence of galactic color indices and decreases from the early to late morphological types. For most of the galaxies with large color indices (B–V)0>0.75, which mainly belong to the S0 type, the velocity dispersion exceeds significantly the threshold value required for the disk to be stable. The reverse situation is true for spiral galaxies: the ratios Md/LB for these agree well with those expected for evolving stellar systems with the observed color indices. This suggests that the disks of spiral galaxies underwent no significant dynamical heating after they reached a quasi-equilibrium stable state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号