首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 607 毫秒
1.
Although the long-term effects and the fate of petroleum hydrocarbons in marine and freshwater environments are not fully understood, it is generally recognized that much of the oil released by accidental spills or by various land sources ends up in the sediment where it may remain for at least several years The present study was undertaken to collect some initial data on the hydrocarbon concentrations in surficial sediments of lakes St Clair, Erie, and Ontario The distribution of hydrocarbons in these lakes followed the general patterns found for a number of contaminants, in that the distribution tended to coincide with the outlines of the sedimentary basins The highest concentrations were found in the Western Basin of Lake Erie and in the inshore zone around the west end of the lake, suggesting major inputs from the Detroit River Apart from some spots of high concentration around known dumping grounds, the concentrations gradually diminish toward the east The distribution pattern in Lake Ontario may be more readily ascribed to water circulation patterns than to any specific source around the lake The hydrocarbon levels were found to be significantly lower than those in Lake Erie in Lake St Clair only trace quantities of hydrocarbons were found, suggesting either low inputs or low sedimentation/accumulation rates due to its shallowness Although the present survey was limited to the top 3 cm of the sediments, the resulting distribution patterns indicate the western end of Lake Erie as the area with the heaviest hydrocarbon loadings The results may also facilitate the selection of specific areas where core sampling coupled with more complete analysis of the extracts could yield significant information on the long-term accumulation of anthropogenic hydrocarbons, and on their persistence and transformations in Great Lakes sediments  相似文献   

2.
A zone of synchronous end moraines has been recognized in the Lake Superior region across northern Ontario and Michigan. The moraines were formed between 11,000 and 10,100 y.a. as cold climate resulted in successive halts in the general ice retreat. The cold climate is also indicated by the presence of tundra near Lake Superior until about 10,000 y.a. This episode is here referred to as the Algonquin Stadial. It was preceded and followed by rapid deglaciation. The Algonquin Stadial is comparable in age with the Younger Dryas Stadial of Europe, and indicates a reversal in the continuous trend toward a warmer climate during Late-Wisconsin (an) time. The apparent conflict between the present result (based on geologic evidence) and earlier pollen stratigraphical studies with no reversal is discussed.Glacial Lake Duluth formed in the western Lake Superior basin before 11,000 BP, followed by a series of Post-Duluth lakes between approximately 11,000 and over 10,100 BP. The Main Lake Algonquin stage in the Huron and Michigan basins terminated approximately 11,000 BP. The subsequent high-level post-Main Algonquin lakes, which were contemporaneous with the Post-Duluth lakes, existed in the southeastern Lake Superior basin. When the ice margin was along the north shore 9500 BP Lake Minong occupied the whole Lake Superior basin. By 9000 BP the ice had retreated north of Lake Superior-Hudson Bay divide.  相似文献   

3.
《Applied Geochemistry》2004,19(7):1157-1175
Environmental legislation has reduced the anthropogenic loadings of Pb and Cd to the Great Lakes region over the past 3 decades. However, the accumulation rates of these metals still remain above background values. Because environmental legislation was targeted at major sources (e.g., Pb in gasoline) whose influence on the environment was on a regional scale, local sources (e.g., watershed scale) for the metals may now play a more significant role. The relative importance of regional versus local scale influences on metal inputs to the environment is poorly understood. In this study, sediment chronologies of Pb and Cd were examined from 12 inland lakes that cover the broad geographic area of the State of Michigan. These chronologies were compared temporally and spatially and to watershed population densities and metal production records to gain an understanding of local and regional influences on metal inputs to the Great Lakes region. Results show that anthropogenic Pb loading during the 1930s and 1970s was dominated by regional sources, such as coal burning and use of leaded gasoline. Current loadings are now more related to local influences such as watershed population densities, rather than atmospheric deposition. Anthropogenic Cd loadings to the Great Lakes region have been dominated by both regional and local sources over time. Lead may also have shown the influence of local sources over time, if the influence of emissions from gasoline had not been present. This work shows that Pb and Cd loadings in the Great Lakes region are strongly related to watershed population densities, however, the specific sources and pathways for the metal cycling are unclear.  相似文献   

4.
Sediment cores from two locations in Green Bay and two in lake Michigan were analyzed for 12 polycyclic aromatic hydrocarbons (PAHs), loss-on-ignition (LOI),210Pb,137Cs, and7Be to study differences in deposition patterns between the freshwater estuary Green Bay, with several local sources, and the open Lake Michigan, dominated by atmospheric inputs. We found that the remote sites receive relatively less high-molecular weight PAHs such as ideno(1,2,3-cd)pyrene and dibenz(ah)anthracene and are more depleted in anthracene and pyrene. This may be related to a low Henry’s law constant for the high molecular compounds and to selective photo-oxidation of anthracene and pyrene during transport. While sedimentation rates are higher in Green Bay than in the open lake, the PAH levels are generally comparable (0.3–8.5 μg g?1) in the two areas. However, the highest PAH levels are found in a core from Green Bay (GB88G). The two Green Bay cores have total PAH concentration maxima in 1985, which appear to be related to the combustion of petroleum. Also, one Green Bay core (GB88G) and the two from Lake Michigan exhibit PAH maxima in the early 1950s in agreement with observations from other study areas. There is a significant correlation between total PAH and LOI, and thus total organic carbon, for the Green Bay cores, but little or no such correlation for the Lake Michigan cores. This may indicate that PAHs in Green Bay are effectively scavenged by settling detritus.  相似文献   

5.
This study evaluates the accuracy of optically stimulated luminescence to date well-preserved strandline sequences at Manistique/Thompson bay (Lake Michigan), and Tahquamenon and Grand Traverse Bays (Lake Superior) that span the past ∼4500 yr. The single aliquot regeneration (SAR) method is applied to produce absolute ages for littoral and eolian sediments. SAR ages are compared against AMS and conventional 14C ages on swale organics. Modern littoral and eolian sediments yield SAR ages <100 yr indicating near, if not complete, solar resetting of luminescence prior to deposition. Beach ridges that yield SAR ages <2000 yr show general agreement with corresponding 14C ages on swale organics. Significant variability in 14C ages >2000 cal yr B.P. complicates comparison to SAR ages at all sites. However, a SAR age of 4280 ± 390 yr (UIC913) on ridge77 at Tahquamenon Bay is consistent with regional regression from the high lake level of the Nipissing II phase ca. 4500 cal yr B.P. SAR ages indicate a decrease in ridge formation rate after ∼1500 yr ago, likely reflecting separation of Lake Superior from lakes Huron and Michigan. This study shows that SAR is a credible alternative to 14C methods for dating littoral and eolian landforms in Great Lakes and other coastal strandplains where 14C methods prove problematic.  相似文献   

6.
The northern limits of glacial lake Algonquin in upper Michigan   总被引:1,自引:0,他引:1  
A number of ancient shorelines formed by late-Pleistocene proglacial lakes have been found in eastern upper Michigan. These shorelines delimit several water planes, the uppermost of which is correlated with the Main Lake Algonquin stage. This correlation is based on the continuity of the highest water plane with Main Algonquin shorelines in Wisconsin and Ontario, the strength of the shoreline features, its altitudinal relationship with lower water planes, and a reinterpretation of radiocarbon dates from the Sault Ste. Maria area. The isobases of this water plane have a bearing of S75°E. At the time of the maximum extent of Lake Algonquin, ca. 10,600 yr B.P., its northern, ice-limited border lay along the Munising moraine, the northernmost of the two main morainic systems of eastern upper Michigan. This interpretation lends support to the idea of a period of slow deglaciation from ca. 11,000 to 10,000 yr B.P. An ice lobe occupied the central Lake Superior basin until early Holocene time. Radiocarbon dates on wood found beneath till or outwash at several sites indicate a minor ice readvance from the central Lake Superior basin ca. 10,000 yr B.P. If true, this would have prevented the development of the post-Duluth series of glacial lakes in the western Lake Superior basin until ca. 9900 yr B.P., well after the end of the main Lake Algonquin stage.  相似文献   

7.
The accumulation and mobility of Fe, Mn, Al, Cu, Ni and Pb in the sediments of two lakes (Clearwater, pH 4.5; and McFarlane, pH 7.5) near Sudbury, Ontario have been investigated. The Al, Cu and Ni concentrations are expectedly relatively high in the overlying waters of Clearwater Lake and much lower for Al and Cu in McFarlane Lake. The low trace metal concentrations found in the anoxic porewaters of Clearwater Lake could be explained by a sharp increase in porewater pH concomitant with SO42 reduction and H2S production within the first 1–2 cm of the sediments, which has conceivably led to the precipitation of mineral phases such as AL(OH)3, NiS, and CuS. In both lakes, Fe concentrations in anoxic porewaters appear to be controlled by FeS and/or FeCO3 formation. Solubility calculations also indicate MnCO3 precipitation in McFarlane Lake. In Clearwater Lake, however, both porewater and total Mn were relatively low, a possible result of the continuous loss of Mn(II) through the acidic interface. It is suggested that upwardly decreasing total Mn profiles resulting from the removal of Mn from the top sediment layers under acidic conditions may constitute a reliable symptom of recent lake acidification.The downward diffusion of AI, Cu and Ni from the overlying water to the sediments has been estimated from their concentration gradients at the interface and compared to their total accumulation rates in the sediments. In both lakes the diffusion of Al is negligible compared to its accumulation rate. However, diffusion accounts for 24–52% of the accumulation of Cu in the sediments of Clearwater Lake, but appears negligible in McFarlane Lake. The downward diffusive flux of Ni is important and may explain 76–161% of the estimated Ni accumulation rate in Clearwater Lake, and 59% in McFarlane Lake. The porewater Cu and Ni profiles suggest that the subsurface sedimentary trace metal peaks observed in Clearwater Lake (as in other acid lakes) may not be caused by sediment leaching or by a recent reduction in sedimentation but may have a diagenetic origin instead. Diffusion to the sediments thus appears to be an important and previously overlooked trace metal deposition mechanism, particularly in acid lakes.  相似文献   

8.
The relationships between watershed variables and lakewater chemistry were examined for 53 lakes in the Upper Peninsula of Michigan to identify factors influencing lake sensitivity to atmospheric inputs. The lakes lie in three distinct geologic/geomorphic regions. Acid neutralization capacity (ANC), sulfate, and color were correlated with parameters related to atmospheric loading, watershed area and relief, hydrology, geology, and land use for the entire 53-lake set and for lower alkalinity subsets. Acid-neutralizing capacity was related to atmospheric acidic inputs and, in the southern portion of the Upper Peninsula, to the presence of mineralized groundwater inputs. In the north, ANC is correlated with hydrologic lake type and surficial deposits. Results show the highest density of acidified lakes in the northern region, which is underlain by noncalcareous sedimentary rocks. Color was related to lake size and the presence of organic soils in the watershed, whereas lake sulfate concentration was mainly influenced by atmospheric or groundwater inputs, surficial deposits, and soil type.  相似文献   

9.
Sediment core segments from Sylvan Lake, Lake Champlain and Lake Canadarago were dated radiometrically with 210Pb and 137Cs. Their respective sedimentation rates were determined to be 0.11, 0.14 and 0.52 g cm?2 yr?1. For the two lakes of lower sedimentation the variations of selected elemental abundances as function of depth were analyzed. Two groupings were found: Al, K, Ti, Rb and Zr were correlated among themselves but reflected different variations in the input of terrigenous erosion material to the lakes. The Cu, Zn and Pb correlated among themselves showed similar depth dependence with increasing concentrations toward the top which can be attributed to cultural pollution. Recent ‘excess’ fluxes to the sediments above the natural contribution by clastic material were derived for the location of the cores, which for Cu, Zn and Pb amounted to 3.8, 24 and 16 μg cm?2 yr?1 respectively for Sylvan Lake and 4.9, 20 and 16 μg cm?2 yr?1 for Lake Champlain. The corresponding 210Pb flux was 3.3 and 2.3 dpm cm?2 yr?1, respectively for the two lakes.Approximate residence times in the water column were obtained for trace metals at the Lake Champlain location. Short residence times estimated for Pb (< 0.15 yr) and Cu (< 0.4 yr) indicate fast removal, whereas those for Zn (1.0 ± 0.3 yr) and Cr (2.0 ± 0.5 yr) appeared to be dominated by the water residence time.  相似文献   

10.
Although limited in coverage, perched sand dunes situated on high coastal bluffs are considered the most prized of Great Lakes dunes. Grand Sable Dunes on Lake Superior and Sleeping Bear Dunes on Lake Michigan are featured attractions of national lakeshores under National Park Service management. The source of sand for perched dunes is the high bluff along their lakeward edge. As onshore wind crosses the bluff, flow is accelerated upslope, resulting in greatly elevated levels of wind stress over the slope brow. On barren, sandy bluffs, wind erosion is concentrated in the brow zone, and for the Grand Sable Bluff, it averaged 1 m3/yr per linear meter along the highest sections for the period 1973–1983. This mechanism accounts for about 6,500 m3 of sand nourishment to the dunefield annually and clearly has been the predominant mechanism for the long-term development of the dunefield. However, wind erosion and dune nourishment are possible only where the bluff is denuded of plant cover by mass movements and related processes induced by wave erosion. In the Great Lakes, wave erosion and bluff retreat vary with lake levels; the nourishment of perched dunes is favored by high levels. Lake levels have been relatively high for the past 50 years, and shore erosion has become a major environmental issue leading property owners and politicians to support lake-level regulation. Trimming high water levels could reduce geomorphic activity on high bluffs and affect dune nourishment rates. Locally, nourishment also may be influenced by sediment accumulation associated with harbor protection facilities and by planting programs aimed at stabilizing dunes.  相似文献   

11.
The lakes of the Himalaya are degrading due to increase in toxic heavy metal loading. This study reports the last 50-year heavy metal pollution loading in the Rewalsar Lake, Himachal Pradesh, India. Sediment cores were recovered to study the pollution loading in the lake sediments. The 137Cs and 210Pb isotope-based sedimentation rate suggest rapid sedimentation in the lake during the last ~50 years. The concentrations of Mn, Cu, Zn, Cd, Pb, Co, Ni, Cr metals in the lake sediments owe its contributions both to the natural and anthropogenic sources. Prior to ca 1990 AD, metal loading was dominated by the lithogenic input, whereas post ca 1990 AD the metal loading was controlled by the anthropogenic factors. The Pb concentration in the lake gradually increased during 1990–2004 and then decreased significantly till present. The higher concentration of Pb seems to be derived from the fossil fuel burning, while the Cr concentration in the lake indicates the use of fertilizer in the catchment area. The lowest concentrations of elements around ca 1990 AD seem to have occurred due to channelization of the lake feeding system.  相似文献   

12.
Between 10,500 and 9000 cal yr BP, δ18O values of benthic ostracodes within glaciolacustrine varves from Lake Superior range from − 18 to − 22‰ PDB. In contrast, coeval ostracode and bivalve records from the Lake Huron and Lake Michigan basins are characterized by extreme δ18O variations, ranging from values that reflect a source that is primarily glacial ( − 20‰ PDB) to much higher values characteristic of a regional meteoric source ( − 5‰ PDB). Re-evaluated age models for the Huron and Michigan records yield a more consistent δ18O stratigraphy. The striking feature of these records is a sharp drop in δ18O values between 9400 and 9000 cal yr BP. In the Huron basin, this low δ18O excursion was ascribed to the late Stanley lowstand, and in the Lake Michigan basin to Lake Agassiz flooding. Catastrophic flooding from Lake Agassiz is likely, but a second possibility is that the low δ18O excursion records the switching of overflow from the Lake Superior basin from an undocumented northern outlet back into the Great Lakes basin. Quantifying freshwater fluxes for this system remains difficult because the benthic ostracodes in the glaciolacustrine varves of Lake Superior and Lake Agassiz may not record the average δ18O value of surface water.  相似文献   

13.
Sediments from unpolluted and highly polluted lakes in northern Ontario have been fractionated into acid volatile sulfide, HCl-soluble sulfur, elemental sulfur, pyrite sulfur, ester sulfate and carbon-bonded sulfur and the isotopic composition of each fraction determined. In general, reduced inorganic S constitutes 25–50% of the total S in the polluted surficial sediments, but is <20% in the unpolluted samples, with pyrite formation being a minor process of S diagenesis in lake sediment ecosystems. Organic S in the form of ester sulfate and carbon-bonded S predominates and both the C/S ratios and the isotopic data suggest that, in unpolluted lakes, plant detritus can be a major contributor of organic-S to the sediments. The depth profiles observed suggest that the more labile ester sulfate is diagenetically converted to the carbon-bonded form. For the polluted sediments from the Sudbury basin, the isotopic data suggest that (a) the elemental S is derived from the oxidation of acid volatile sulfide in the aerobic surficial sediments, and (b) the isotopically light reduced S species are incorporated into the organic material. S diagenesis in lake sediments generally results in the release of 34S to the overlying water. The suggestion is made that sulfate concentrations over 5 mg/1 accompanied by an enrichment of surficial sediments with isotopically different S may signal significant inputs of pollutant S into the lake and its basin.  相似文献   

14.
The dissolved silica concentration in waters of Lake Superior probably is in a steady state because it is not influenced significantly by man, and the climate, topography and vegetation in the drainage area of the lake have been stable for the past 4000 years. Therefore the rate at which dissolved silica is introduced to the lake should equal the output rate.The primary inputs are: tributaries (4.1–4.6 × 108kgSiO2/yr), diffusion from sediment pore waters (0.21?0.78 × 108kgSiO2/yr) and atmospheric loading (0.26 × 108kgSiO2/yr). Silica is lost from the lake waters by: outflow through the St. Marys River, diatom deposition, adsorption onto particulates in the sediments, and authigenic formation of new silicate minerals. Tributary outflow accounts for less than one half the annual input of silica, and diatom deposition and silica adsorption withdraw less than 10% of the annual input. Therefore the formation of new silicate phases must be the dominant sink for dissolved silica in Lake Superior. The specific phases formed are not identified in the bottom sediments. X-ray diffraction studies suggest that smectite is one product, and amorphous ferroaluminum silicates may be another product.Mathematical modeling of the dissolved silica response to lake eutrophication suggests that the phosphate loading to Lake Superior would have to increase by about 250-fold to cause a silica depletion rate equal to that reported for Lake Michigan, assuming no change in the rate of upwelling of deep waters.  相似文献   

15.
Molluscs, ostracodes, diatoms, pollen, plant macrofossils, peat, and wood have been found in glacial Lake Algonquin sediments, and estuarine-alluvial sediments of the same age, in southern Ontario. Molluscs and ostracodes are particularly abundant and widespread. Pollen analysis of Lake Algonquin sediments, bogs on the Algonquin terrace, and upland bogs above the Algonquin terrace, indicate that Lake Algonquin was still in existence at the time of the spruce-pine pollen transition, previously dated at an average of 10,600 yr BP at a number of sites in Michigan, Ohio, and southern Ontario. Wood in estuarine-alluvial sediments graded to the Algonquin level is of similar radiocarbon age. Evidence from several sites in the eastern Great Lakes area suggests the presence of a preceding low-water stage (Kirkfield outlet stage); drowned and alluviated valleys and fining-upward sediment sequences have been identified in this study as further supporting evidence. Lake Algonquin drained from the southern sites by isostatic tilting and eventual opening of the “North Bay outlet” some time shortly after 10,400 yr BP.Our radiocarbon dates suggest the low-water stage has an age of about 11,000 yr BP, and that Lake Algonquin drained 10,000–15,000 y. a. Dates previously published for the Lake Michigan basin are generally too young in comparison with ours, and dates on the Champlain Sea are generally too old. More critical evaluation of all dating results is desirable.From fossil remains we suggest a rapidly expanding fauna in the waters of Lake Algonquin. The spruce pollen period was a time of rapid faunal and floral migration, when the ice front was retreating from Kirkfield to North Bay, Ontario. Diversity of some species and fossil numbers increased substantially at the transition from spruce to pine just before Lake Algonquin drained.  相似文献   

16.
Mn, Sr, Ba, Rb, Cu, Zn, Pb and Cd concentrations have been measured seasonally in the water and deposited sediments of the system comprising: Zala river (main input) — Lakes Kis-Balaton 1 and 2 (small artificial lakes created in a former bay of Lake Balaton) — Keszthely bay (hypertrophic part of Lake Balaton). The concentrations of the trace elements together with pH, alkalinity, dissolved cations (Ca2+, Mg2+, Na+, and K+), dissolved inorganic ligands (Cl, SO4 2–), particulate Al, Ca, inorganic and organic carbon are used to assess the contamination of the study area and biogeochemical processes controlling trace element concentrations. Thermodynamic speciation calculations have also been utilized to enhance our understanding of the system. In the sediments Rb, Ba, Cu and Zn concentrations were mainly controlled by the abundance of the aluminosilicate fraction. Strontium was mainly associated with the calcium carbonate fraction. The aluminosilicate fraction constitutes a major sink for Mn and Cd but the concentration of these elements are also strongly related to calcite precipitation. The main processes that control the dissolved distribution of trace elements in the Balaton system were: solid phase formation (carbonate) for Mn; coprecipitation with calcite for Sr, Ba, Rb and possibly Mn and Cd; adsorption/desorption processes (pH dependent) for Zn and Pb; solubilization of Mn and precipitation of Cd and Cu in reed covered wetland areas where anoxic conditions were probably existing during the warm season. A preliminary budget of atmospheric and river input to Lake Balaton has also been outlined. Although Lake Balaton, is subjected to anthropogenic inputs mainly from agricultural and domestic activities, their impact on trace element concentrations in the Balaton system is very limited due to the efficiency of removal processes (i.e. adsorption and co-precipitation) and to high sedimentation rates and strong sediment re-suspension. Anthropogenic inputs are only detected for Pb.  相似文献   

17.
Near surface (<10 cm) sediment distributions of234Th sampled multiple times at five locations along the axis of the Hudson Estuary from the Upper Bay of New York to Haverstraw Bay are compared with210Pb data from longer cores at the same locations. The comparison indicates that while there is little net sediment accumulation anywhere except at one location in the Upper Bay, near surface sediment in this reach of the estuary is mobile on short (months) time scales. The sediment appears to be physically mixed rather than bioturbated. Comparison of the sediment inventories of234Th with calculated water column production indicates short time scale (months) variability in234Th deposition. Some parts of the bottom have234Th inventories in excess of local production but these appear to be balanced by234Th deficient areas, resulting in a general equilibrium. Sediment inventories of Pb, Cu, and Zn normalized to210Pb show no evidence of a uniquely urban source of these metals to the lower estuary. Silver distributions in sediment indicate a possible source of silver from New York City, probably related to sewage inputs.  相似文献   

18.
Sediment profiles of210Pb and137Cs in cores collected at increasing distances from the heads of Smeaton Bay and Boca de Quadra fjords indicate that watersheds influence the inventories of radioisotopes present and that the steep topographies of the fjords enhance sediment redistribution. Episodic deposition of terrestrially derived sediment was responsible for roughly 50% of the137Cs and 45% of the210Pb inventories in shallower (less than 180 m) locations in Wilson and Bakewell arms of Smeaton Bay.210Pb sedimentation rates at shallower sites when corrected for episodic deposition were less than sedimentation rates obtained in the deep basins of the fjords where sediment focusing and increased primary productivity in the overlying water column occur. Higher fluxes of dissolved Mn from surficial sediments and subsequent reoxidation in the overlying water may have enhanced scavenging of210Pb in basin locations, resulting in higher inventories. Episodic events have occurred frequently in Smeaton Bay and Boca de Quadra suggesting that steady-state conditions with respect to sedimenting particles can be achieved only when averaged over long time periods approaching the time over which137Cs and210Pb are useful.  相似文献   

19.
Storm Surge Hazard in Canada   总被引:3,自引:2,他引:3  
Storm surges occur frequently in Canada mainlydue to extra-tropical cyclones (ETC'S) also referred to as winter storms. The hurricanes from the Gulf of Mexico can affect eastern Canada including Lakes Ontario and Erie regions, after they get modified and acquire some extra-tropical characteristics. Storm surges have occurred both on the Atlantic and Pacific coasts, in the Gulf of St.Lawrence, St.Lawrence Estuary, Bay of Fundy, Hudson Bay, James Bay, Northwest Passage, Beaufort Sea, the Great Lakes and other large lakes such as Lake Winnipeg.Squall lines which are embedded in the largerscale synoptic systems like the ETC'S could also generate storm surges (referred to as edge waves) in Lakes Huron, Erie and Ontario (edge waves are most prominent in Lake Michigan, but Canada has no territory touching this lake). The effect of climate change on storm surges in the Canadian water bodies could be two-fold. First, there may be some possible intensification of the weather systems and the associated wind fields resulting in bigger surges. Second, and probably even more relevant, is an east-west and north-south shift in the tracks of the weather systems, which could expose certain new areas to storm surge activity.A high priority for proper assessment of storm surge hazard is the production of maps showing inundation zones for storm surges that might occur in populated coastal areas. Such maps can be used to improve public awareness of tsunamis and for planning purposes (i.e., to reduce or avoid the risk).  相似文献   

20.
We have collected and analyzed a series of water samples from three closed-basin lakes (Lakes Bonney, Fryxell, and Hoare) in Taylor Valley, Antarctica, and the streams that flow into them. In all three lakes, the hypolimnetic waters have different 87Sr/86Sr ratios than the surface waters, with the deep water of Lakes Fryxell and Hoare being less radiogenic than the surface waters. The opposite occurs in Lake Bonney. The Lake Fryxell isotopic ratios are lower than modern-day ocean water and most of the whole-rock ratios of the surrounding geologic materials. A conceivable source of Sr to the system could be either the Cenozoic volcanic rocks that make up a small portion of the till deposited in the valley during the Last Glacial Maximum or from marble derived from the local basement rocks. The more radiogenic ratios from Lake Bonney originate from ancient salt deposits that flow into the lake from Taylor Glacier and the weathering of minerals with more radiogenic Sr isotopic ratios within the tills. The Sr isotopic data from the streams and lakes of Taylor Valley strongly support the notion documented by previous investigators that chemical weathering has been, and is currently, a major process in determining the overall aquatic chemistry of these lakes in this polar desert environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号