首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The propagation characteristics of MHD fast-mode disturbances, which can emanate from flare regions, are computed for realistic conditions of the solar corona at the times of particular flares. The path of a fast-mode disturbance is determined by the large-scale (global) coronal distributions of magnetic field and density, and can be computed by a general raytracing procedure (eikonal equation) adapted to MHD. We use the coronal (electron) density distribution calculated from daily K-coronameter data, and the coronal magnetic field calculated under the current-free approximation from magnetograph measurements of the photospheric magnetic field. We compare the path and time-development of an MHD fast-mode wavefront emitted from the flare region (as calculated from a realistic model corona for the day of the observed Moreton wave event) with actual observations of the Moreton wave event, and find that the Moreton wave can be identified with the rapidly moving intersection of the coronal fast-mode wavefront and the chromosphere (as hypothesized in our previous paper); the directivity (anisotropic propagation), as well as other characteristics of the propagation of the Moreton wave can be successfully explained.sponsored by the National Science Foundation.  相似文献   

2.
Two competing fundamental hypotheses are usually postulated in the solar coronal heating problem: heating by nanoflares and heating by waves. In the latter it is assumed that acoustic and magnetohydrodynamic disturbances whose amplitude grows as they propagate in a medium with a decreasing density come from the convection zone. The shock waves forming in the process heat up the corona. In this paper we draw attention to yet another very efficient shock wave generation process that can be realized under certain conditions typical for quiet regions on the Sun. In the approximation of stationary dissipative hydrodynamics we show that a shock wave can be generated in the quiet solar chromosphere–corona transition region by the fall of plasma from the corona into the chromosphere. This shock wave is directed upward, and its dissipation in the corona returns part of the kinetic energy of the falling plasma to the thermal energy of the corona. We discuss the prospects for developing a quantitative nonstationary model of the phenomenon.  相似文献   

3.
The nonlinear propagation of Alfvén waves on open solar magnetic flux tubes is considered. The flux tubes are taken to be vertical and axisymmetric, and they are initially untwisted. The Alfvén waves are time-dependent axisymmetric twists. Their propagation into the chromosphere and corona is investigated by solving numerically a set of nonlinear time-dependent equations, which couple the Alfvén waves into motions parallel to the initial magnetic field (motion in the third coordinate direction is artificially suppressed). The principal conclusions are: (1) Alfvén waves can steepen into fast shocks in the chromosphere. These shocks can pass through the transition region into the corona, and heat the corona. (2) As the fast shocks pass through the transition region, they produce large-velocity pulses in the direction transverse to B o. The pulses typically have amplitudes of 60 km s–1 or so and durations of a few tens of seconds. Such features may have been observed, suggesting that the corona is in fact heated by fast shocks. (3) Alfvén waves exhibit a strong tendency to drive upward flows, with many of the properties of spicules. Spicules, and the observed corrugated nature of the transition region, may therefore be by-products of magnetic heating of the corona. (4) It is qualitatively suggested that Alfvén waves may heat the upper chromosphere indirectly by exerting time-dependent forces on the plasma, rather than by directly depositing heat into the plasma.  相似文献   

4.
The solar atmosphere, from the photosphere to the corona, is structured by the presence of magnetic fields. We consider the nature of such inhomogeneity and emphasis that the usual picture of hydromagnetic wave propagation in a uniform medium may be misleading if applied to a structured field. We investigate the occurrence of magnetoacoustic surface waves at a single magnetic interface and consider in detail the case where one side of the interface is field-free. For such an interface, a slow surface wave can always propagate. In addition, a fast surface wave may propagate if the field-free medium is warmer than the magnetic atmosphere.  相似文献   

5.
Solar p modes are one of the dominant types of coherent signals in Doppler velocity in the solar photosphere, with periods showing a power peak at five minutes. The propagation (or leakage) of these p-mode signals into the higher solar atmosphere is one of the key drivers of oscillatory motions in the higher solar chromosphere and corona. This paper examines numerically the direct propagation of acoustic waves driven harmonically at the photosphere, into the nonmagnetic solar atmosphere. Erdélyi et al. (Astron. Astrophys. 467, 1299, 2007) investigated the acoustic response to a single point-source driver. In the follow-up work here we generalise this previous study to more structured, coherent, photospheric drivers mimicking solar global oscillations. When our atmosphere is driven with a pair of point drivers separated in space, reflection at the transition region causes cavity oscillations in the lower chromosphere, and amplification and cavity resonance of waves at the transition region generate strong surface oscillations. When driven with a widely horizontally coherent velocity signal, cavity modes are caused in the chromosphere, surface waves occur at the transition region, and fine structures are generated extending from a dynamic transition region into the lower corona, even in the absence of a magnetic field.  相似文献   

6.
Penn  M. J.  Allen  C. L. 《Solar physics》1997,174(1-2):359-366
Imaging spectroscopic data of the Sii 1082.7 nm (photospheric) and Hei 1083.0 nm (chromospheric) spectral lines were taken starting 22:05 UT on 23 July, 1996 with the NASA/NSO Spectromagnetograph at the NSO/Kitt Peak Vacuum Telescope. Observations were made near the north solar pole, with a field of view of 100 by 400 arc sec and with a temporal cadence of 53 s for 2 hr. Simple fitting to the line profiles measured the line position, depth, and spectral full-width at half-maximum. Power spectra of the velocity oscillations in each line were computed, and the oscillation power in the 2 to 6 mHz frequency band versus view angle was measured to search for horizontal oscillations. Horizontal waves are not detected to limiting amplitudes (1) of 22 m s-1 in the chromosphere and 9 m s-1 in the photosphere. These values are used to estimate limits for the energy flux into the corona. The amplitude of radial oscillations in the chromosphere is twice that of the photosphere. No statistically meaningful oscillation power is measured in the spectral parameters of the Hei line in the emission shell seen above the continuum limb. Finally, rapidly evolving red-shift events are observed in the Hei 1083 nm line on the disk; these events are some sort of coronal rain, and there are about 40 of these events on the solar disk at any moment.  相似文献   

7.
Surface magnetohydrodynamic wave propagation on a magnetic interface in a cold plasma is studied. The anisotropic ion viscosity is taken into account. Only long waves damping weakly in a wave period are considered. The dispersion equation is obtained. This equation is shown always to have exactly one root if there is no viscosity. The dependences of phase velocity, penetration depth and damping decrement of waves on the parameters of undisturbed plasma and wave propagation direction are investigated. The resulting application for describing of surface wave damping in the solar corona is discussed.  相似文献   

8.
The behavior of oscillations in the quite solar chromosphere under a coronal hole at several heights has been investigated. The properties of oscillations in cell, network, and weak-floccule areas have been analyzed. A time series of spectrograms in three ionized calcium lines, the Ca II K and H resonance doublet lines and the infrared Ca II 849.8-nm triplet line, was used. The observations were carried out at the horizontal solar telescope of the Sayan Observatory. The goal of this study was to compare the distributions of spectral power in various frequency ranges and their variations for selected spatial areas at different heights of the chromosphere. Particular attention was paid to the weak floccule due to a noticeable difference in the central intensity distribution between the K and H lines and the 849.8-nm line. A spectral Fourier analysis was used. The central intensities of the observed spectral lines, the K-index, and the equivalent width (the latter for the 849.8-nm line) were chosen as oscillation parameters. The studies have shown that the main intensity oscillation power at both atmospheric levels is concentrated at frequencies below 9 mHz. In the distribution of intensity oscillation power at different chromospheric levels, there are differences clearly distinguishable in the floccule. Powerful five-minute oscillations whose main peak frequency decreases with height, while the amplitude increases have been detected in the central part of the floccule. This result confirms the assumptions recently pointed out in the literature that vertical magnetic field concentrations can serve as a channel for the passage of low-frequency oscillations from the photosphere to the chromosphere in faculae. The intensity oscillation power in the frequency ranges under consideration has turned out to decrease with height, on average, for the entire observed spatial area. This may be related to the loss of part of the wave energy through the reflection, dissipation, and transformation of wave modes in the magnetic canopy layer. An area with a low brightness but powerful oscillations at about 3.3 mHz covering a considerable range of heights probably pertaining to “magnetic flashers” has been isolated in the telescope’s field of view.  相似文献   

9.
The paper considers wave coupling for an arbitrary direction of propagation on the basis of single fluid hydromagnetic equations appropriate for a rarefied plasma. The analysis is used to study the transfer of solar wind momenta into the magnetosphere. It is found that wave refraction is significant only during disturbed conditions for waves travelling with the wind. Enhanced reflection of waves might be important even under quiet conditions in the flanks of the magnetosphere.  相似文献   

10.
The pulsation of the solar surface is caused by acoustic waves traveling in the solar interior. Thorough analyses of observational data indicate that these f and p helioseismic oscillation modes are not bounced back completely at the surface but they partially penetrate into the atmosphere. Atmospheric effects and their possible observational application are investigated in one‐dimensional magnetohydrodynamic models. It is found that f and p mode frequencies are shifted of the order of μHz due to the presence of an atmospheric magnetic field. This shift varies with the direction of the wave propagation.Resonant coupling of global helioseismic modes to local Alfvén and slow waves reduce the life time of the global modes. The resulting line width of the frequency line is of the order of nHz, and it also varies with propagation angle. These features enable us to use helioseismic observations in magnetic diagnostics of the lower atmosphere. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
It is suggested that longitudinal compression waves are propagating parallel to the solar surface from the umbra towards the photosphere. It is shown that the line-absorption coefficient is asymmetrical, when integrated over a wavelength of the compression wave. The effect of the waves on the line profile is discussed, and it is shown that asymmetrical line profiles of the type observed in sunspot penumbrae will be produced.With the Evershed effect interpreted as an acoustical wave phenomenon the propagation (of the waves) may also be perpendicular to the magnetic lines of force, whereas material motion is likely to be restricted to the direction along the lines of force.  相似文献   

12.
Astronomy Letters - We consider the gravitational energy of the material falling from the corona as a source of energy for the formation of spicules in the solar chromosphere. We show that in the...  相似文献   

13.
Transfer of material between the chromosphere and corona of the Sun must occur whenever the geometry of any interconnecting magnetic structure changes, and there will also be a flow of plasma along field lines caused by any pressure difference between the two feet of each arch. Part of the energy conducted downwards towards the chromosphere is required to heat plasma rising into the corona, whereas material falling back towards the solar surface gives up energy to reinforce the conducted flow.This study shows that the term associated with flow is comparable to the radiation-loss term in the energy budget of the transition zone if the plasma speed at the base of the corona reaches about 3 km s–1. This value is probably exceeded within most flux tubes during some period of their development, and speeds an order of magnitude higher can occur in favourable regions.This paper also examines limits to the temperature gradient of the transition zone set by the requirement of continuity of plasma flow.  相似文献   

14.
The instrument SUMER - Solar Ultraviolet Measurements of Emitted Radiation is designed to investigate structures and associated dynamical processes occurring in the solar atmosphere, from the chromosphere through the transition region to the inner corona, over a temperature range from 104 to 2 × 106 K and above. These observations will permit detailed spectroscopic diagnostics of plasma densities and temperatures in many solar features, and will support penetrating studies of underlying physical processes, including plasma flows, turbulence and wave motions, diffusion transport processes, events associated with solar magnetic activity, atmospheric heating, and solar wind acceleration in the inner corona. Specifically, SUMER will measure profiles and intensities of EUV lines; determine Doppler shifts and line broadenings with high accuracy; provide stigmatic images of the Sun in the EUV with high spatial, spectral, and temporal resolution; and obtain monochromatic maps of the full Sun and the inner corona or selected areas thereof. SUMER will be flown on the Solar and Heliospheric Observatory (SOHO), scheduled for launch in November, 1995. This paper has been written to familiarize solar physicists with SUMER and to demonstrate some command procedures for achieving certain scientific observations.  相似文献   

15.
The formation of fibrils in low-lying loops is investigated by performing one-dimensional nonlinear hydrodynamic calculations. The loops have the height of 3000–5000 km and have an atmosphere extending from the photosphere to the corona. A shock wave is generated from a pressure pulse in the photosphere and it ejects the chromosphere-corona transition region along the loop, expanding the underlying chromosphere into the corona. This expanding chromospheric material in a loop is regarded as a fibril. The shock propagates in the corona and collides with another transition region where a reflected shock and a penetrating shock are generated. The effect of the reflected shock on the motion of the fibril is weak. The fibril shows a nearly ballistic motion as observations suggest, if it does not extend beyond the summit of the loop. The corona in the loop is compressed nearly adiabatically by the fibril, and the enhanced coronal pressure leads the fibril finally to a retracting motion even if the fibril goes beyond the summit of the loop.Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 261.  相似文献   

16.
Although the inhomogeneous nature of solar magnetic fields is now well established, most theoretical analyses of hydromagnetic wave propagation assume infinite homogeneous fields. Here we reformulate the hydromagnetic wave problem for magnetic fields which vary in one direction perpendicular to the field. The permitted modes of small amplitude hydromagnetic oscillations are considered, first in the case of a single interface between semi-infinite magnetic and non-magnetic compressible regions, and secondly for a magnetic flux sheath of given thickness imbedded in a nonmagnetic region. It is shown that, for small values of R (the ratio of the Alfvén to the sound speed), an acoustic or p-mode wave front passes through the flux sheath with only minor deformation. However, for large R, the transmitted acoustic wave is attenuated and, depending upon the thickness of the flux sheath and the angle of incidence, a hydromagnetic wave may be effectively trapped and guided along the flux sheath. It is also shown that, for the symmetric vibration of the flux sheath in the absence of incident acoustic waves, only slow mode type waves are permitted. Thus, in compressible regions for which R > 1 the Alfvénic-type fast mode is not a permitted mode of free vibration of a flux sheath.  相似文献   

17.
The propagation and interference of Alfvén waves in magnetic regions is studied. A multilayer approximation of the standard models of the solar atmosphere is used. In each layer, there is a linear law of temperature variation and a power law of Alfvén velocity variation. The analytical solutions of a wave equation are stitched at the layer boundaries. The low-frequency Alfvén waves (P > 1 s) are able to transfer the energy from sunspots into the corona by tunneling only. The chromosphere is not a resonance filter for the Alfvén waves. The interference and resonance of Alfvén waves are found to be important to wave propagation through the magnetic coronal arches. The transmission coefficient of Alfvén waves into the corona increases sharply on the resonance frequences. To take into account the wave absorption in the corona, a method of equivalent schemes is developed. The heating of a coronal arch by Alfvén waves is discussed.  相似文献   

18.
Coronal heating is one of the unresolved puzzles in solar physics from decades. In the present paper we have investigated the dynamics of vortices to apprehend coronal heating problem. A three dimensional (3d) model has been developed to study propagation of dispersive Alfvén waves (DAWs) in presence of ion acoustic waves which results in excitation of DAW and evolution of vortices. Taking ponderomotive nonlinearity into account, development of these vortices has been studied. There are observations of such vortices in the chromosphere, transition region and also in the lower solar corona. These structures may play an important role in transferring energy from lower solar atmosphere to corona and result in coronal heating. Nonlinear interaction of these waves is studied in view of recent simulation work and observations of giant magnetic tornadoes in solar corona and lower atmosphere of sun by solar dynamical observatory (SDO).  相似文献   

19.
Missing power in the spectrum of intensity fluctuations of both XUV and radio emission in the transition layer and inner corona as well as the 90° phase shift between intensity and velocity fluctuations in the chromosphere indicate that the 5 min oscillation transports little energy and is not a significant mechanical heat source for the chromosphere and possibly not even for the corona.  相似文献   

20.
We analyze the oscillations of the Hα profile width based on our observations of the chromosphere at the base of solar coronal holes. The maximum oscillation amplitude averaged over ten time series is 64 m 0 A. Direct calculations show that this value cannot be reached through temperature oscillations, because the periodic intensity fluctuations observed during our experiment did not exceed 5%, corresponding to Hα profile broadening only by 1.5–2 m Å. We hypothesize that the observed variations can result from the propagation of torsional Alfvén waves in the chromosphere of coronal holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号