首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Wang  Hua-kun  Yan  Yu-hao  Chen  Can-ming  Ji  Chun-ning  Zhai  Qiu 《中国海洋工程》2019,33(6):723-733
A numerical study of vortex-induced rotations(VIRs) of an equivalent triangular cylinder, which is free to rotate in the azimuthal direction in a uniform flow, is presented. Based on an immersed boundary method, the numerical model is established, and is verified through the benchmark problem of flow past a freely rotating rectangular body.The computation is performed for a fixed reduced mass of m~*=2.0 and the structural stiffness and damping ratio are set to zero. The effects of Reynolds number(Re=25-180) on the characteristics of VIR are studied. It is found that the dynamic response of the triangular cylinder exhibits four distinct modes with increasing Re: a rest position,periodic rotational oscillation, random rotation and autorotation. For the rotational oscillation mode, the cylinder undergoes a periodic vibration around an equilibrium position with one side facing the incoming flow. Since the rotation effect, the outset of vortex shedding from cylinder shifts to a much lower Reynolds number. Further increase in Re leads to 2 P and P+S vortex shedding modes besides the typical 2 S pattern. Our simulation results also elucidate that the free rotation significantly changes the drag and lift forces. Inspired by these facts, the effect of free rotation on flow-induced vibration of a triangular cylinder in the in-line and transverse directions is investigated. The results show that when the translational vibration is coupled with rotation, the triangular cylinder presents a galloping response instead of vortex-induced vibration(VIV).  相似文献   

2.
Tapered circular cylinders are employed in a variety of ocean engineering applications. While being geometrically simple, this configuration creates a complex flow pattern in the near wake of the structure. Most previous experimental studies on tapered circular cylinders were dealing with stationary cylinders to explore the wake flow field and vortex shedding patterns past the cylinder. Few studies paid attentions to the vortex induced vibration of the tapered cylinders. This paper reports some results from in-water towing-tank experiments on the vortex-excited vibrations of tapered circular cylinders in a uniform flow. Cylinders with different mean diameters (28 and 78 mm), mass ratios (6.1 and 2.27) and tapers (5–20), along with their equivalent uniform cylinders, have been examined. The single degree of freedom vibrating system has a low mass-damping parameter (m*ξ = 0.0084–0.0279). The Reynolds number, based on mean diameter of the cylinders, ranges from 1400 to 70,200. The reduced velocities vary from 1.5 to 22. Effects of variations in the taper and mass ratios on the lock-in range, the reduced response amplitude, the reduced velocity for the peak vibration response and other stream-wise and cross-flow VIV parameters are reported and discussed.  相似文献   

3.
In this study, a practical model is proposed to predict cross-flow (CF) and in-line (IL) vortex-induced vibrations of a flexible riser in time domain. The hydrodynamic force as a function of non-dimensional amplitude and frequency is obtained from the forced vibration experimental data of a two-dimensional cylinder. An empirical nonlinear damping model is used to simulate the hydrodynamic damping outside the experiment's range. Coupling effect of CF and IL-VIV is taken into account by implanting a magnification model for the IL hydrodynamic force associated with CF amplitude, and by increasing the non-dimensional amplitude corresponding to the IL hydrodynamic coefficient in the second excitation region. The experimental models of flexible riser under the uniform and sheared current are simulated to validate the proposed model. The predicted displacement, curvatures, excited modes and fatigue damage show reasonable agreement with the measured data.  相似文献   

4.
In this study the basic characteristics of the dynamic response and vortex shedding from an elastically mounted circular cylinder in laminar flow is numerically investigated. The Reynolds number ranges from 80 to 160, a regime that is fully laminar. The governing equations of fluid flow are cast in terms of vorticity. The two-dimensional vorticity transport equation is solved using a vortex method. Effects of important parameters on the system response and vortex shedding are investigated; these include: mass ratio, damping ratio, Reynolds number and reduced velocity. The numerical results show that a decrease in either the mass ratio or damping ratio of the system can lead to an increase in both the oscillation amplitude and the reduced velocity range over which lock-in occurs. The results also suggest that the mass-damping parameter may characterize the system response adequately, although the effect of changing mass ratio appears to be a little more profound compared to damping ratio. Vorticity contour plots suggest that the vortex shedding occurs in the 2S mode, although a wake structure similar to the C(2S) mode appears at distances 15–20 diameters downstream in the lock-in region. The simulation results are in good agreement with previously published data.  相似文献   

5.
低雷诺数下圆柱涡激振动的二维有限元数值模拟   总被引:2,自引:0,他引:2  
采用有限元方法求解原始变量的二维不可压粘性流体的N-S方程,计算了雷诺数从90到150范围内圆柱绕流引起的涡激振动,完整地再现了流固耦合系统从不共振到频率锁定,再到脱离锁定的过程,成功地预测到了涡激振动的“拍”和“锁定”现象,并与A nagnostopou los和B earam an的试验结果进行了比较。计算涡激振动时用ALE方法分析圆柱和流体的耦合作用,圆柱振动被简化为质量-弹簧-阻尼系统。  相似文献   

6.
The response of an oscillating circular cylinder at the wake of an upstream fixed circular cylinder was classified by different researchers as galloping, wake induced galloping or wake induced vibration. Furthermore it is already known that a sharp edge square cylinder would undergo galloping if it is subjected to uniform flow. In this study the influence of the wake of a fixed circular cylinder on the response of a downstream square cylinder at different spacing ratios (S/D = 4, 8, 11) is experimentally investigated. The subject appears not to have received previous attention. The lateral displacements, lift forces and the pressure data from gauges mounted in the wake of the oscillating cylinder are recorded and analyzed. The single degree of freedom vibrating system has a low mass-damping parameter and the Reynolds number ranges from 7.7 × 102 to 3.7 × 104.In contrast to that for two circular cylinders in tandem arrangement, the freely mounted downstream square cylinder displays a VIV type of response at all spacing ratios tested. There is no sign of galloping or wake induced galloping with the square cylinder. With increase at the spacing ratio the cross-flow oscillations decrease. It is shown that the vortices arriving from the upstream fixed circular cylinder play a major role on the shedding mechanism behind the downstream square cylinder and cause the square cylinder to shed vortices with frequencies above Strouhal frequency of the fixed square cylinder (St = 0.13). The VIV type of oscillations in the downstream square cylinder is most probably caused by the vortices newly generated behind the square cylinder.  相似文献   

7.
Numerical simulations of a low-mass-damping circular cylinder which can oscillate freely at transverse and streamwise directions are presented in this work. The Navier-Stokes equations are solved with finite volume method, and large eddy simulation of vortex is also performed in the calculation. In order to implement dynamic mesh, overlapping grids are generated to lessen the computation for mesh field itself. Self-excited vibrations are firstly calculated to obtain the average amplitudes and frequencies of the target circular cylinder in the current flow situation, and then forced oscillations are implemented with parameters obtained in vortex-induced vibrations previously. With slight amplitude modulation, time series of displacements in vortex-induced vibrations are essentially harmonic. Regarding the fluid force, which are larger in forced oscillations than those in corresponding self-excited cases because the fluid subtracts energy from the forced cylinders. The phase angles between forces and displacements are 0o and 180o for self-excited case and forced case respectively. In vortex-induced vibrations, the interactions between fluid and structure produce some weakly energetic vortices which induce the modulations of amplitude and frequency.  相似文献   

8.
Numerical simulations of a low-mass-damping circular cylinder which can oscillate freely at transverse and streamwise directions are presented in this work.The Navier-Stokes equations are solved with finite volume method,and large eddy simulation of vortex is also performed in the calculation.In order to implement dynamic mesh,overlapping grids are generated to lessen the computation for mesh field itself.Self-excited vibrations are firstly calculated to obtain the average amplitudes and frequencies of the target circular cylinder in the current flow situation,and then forced oscillations are implemented with parameters obtained in vortex-induced vibrations previously.With slight amplitude modulation,time series of displacements in vortex-induced vibrations are essentially harmonic.Regarding the fluid force,which are larger in forced oscillations than those in corresponding self-excited cases because the fluid subtracts energy from the forced cylinders.The phase angles between forces and displacements are 0° and 180° for self-excited case and forced case respectively.In vortex-induced vibrations,the interactions between fluid and structure produce some weakly energetic vortices which induce the modulations of amplitude and frequency.  相似文献   

9.
This paper discusses numerical results from three-dimensional large eddy simulations of an oscillating cylinder under prescribed movements in uniform flow. Six cases,namely pure in-line,pure cross-flow and two groups of 'Figure of Eight' oscillation patterns are under investigation at Reynolds number Re=24000. The 'Figure of Eight' pattern in each group is with identical shape but opposite orbital directions. The numerical results on hydrodynamic forces,higher order force components,and vortex shedding mode...  相似文献   

10.
J. Xu  M. He  N. Bose 《Ocean Engineering》2009,36(6-7):456-467
Investigations of the velocity and vorticity fields in the wake of a flexible riser with a length to diameter ratio of 181 were conducted in a towing tank at moderate Reynolds numbers in the range of 9400–47,000. Wake velocity measurements were made with the riser freely vibrating in both in-line and cross-flow directions. The motion and wake field of the riser, undergoing free vibration, were simultaneously measured by accelerometers installed inside the riser and by using a digital particle image velocimetry (DPIV) system. The vortex-induced vibration (VIV) results show that the riser freely oscillated at multiple vibration frequencies and amplitudes at each Reynolds number. Mixed vortex modes, ‘2S’, ‘2P’ and ‘P+S’, were observed in the near wake of the riser at different instants of time. The occurrence of these vortex modes depended on the Reynolds number, dominant frequency and mean amplitude. At lower Reynolds number, the single stable mode ‘2S’ dominated the wake. With the increase of Reynolds number, the percentage of the ‘2S’ modes decreased while the percentage of ‘2P’ modes increased steadily except at Reynolds numbers of 14,100 and 47,000. The ‘P+S’ modes occurred mostly at a Reynolds number of 14,100 accompanied by more ‘2P’ modes and less ‘2S’ modes. At this Reynolds number, the frequency of the VIV was very close to the natural frequency of 0.72 Hz, which was obtained from a riser decay test in steady water and the average amplitude to diameter ratio reached 0.95, the highest found in these tests.  相似文献   

11.
赵宇蒙  温鸿杰  任冰  王超 《海洋工程》2021,39(4):134-143
基于光滑粒子流体动力学(SPH)方法,开发了能够准确描述水流作用下圆柱强迫振动特性的数学模型。通过引入适合于无网格粒子法的开边界算法,来模拟出入流边界条件,建立了具有造流功能的SPH数值水槽。圆柱及计算域的上下边界均采用修正的动力边界条件进行模拟。借助于粒子位移矫正和压力修正算法,避免了圆柱周围流体粒子压力大幅震荡以及结构下游区域出现空腔等非物理性现象。使用典型的圆柱绕流数据,验证了所建SPH模型的计算性能,研究了固定圆柱在低雷诺数情况下的尾涡脱落模式和升阻力变化规律。明确了低雷诺数下强迫振动圆柱在频率锁定以及非锁定区间内的升力变化规律,量化了升力与外界激励频率之间的关系。  相似文献   

12.
基于自主研发的紧致插值曲线CIP (Constrained Interpolation Profile)方法数学模型,对均匀来流条件时不同运动自由度组合下的串列双圆柱涡激振动问题开展二维数值模拟。模型针对雷诺数Re=100,质量比m*=2的串列双圆柱涡激振动问题,选取上、下游圆柱不同运动自由度组合工况进行模拟。重点分析圆柱的升阻力系数、运动位移随折合速度Ur变化的响应。研究表明:当上游圆柱双自由度运动时,随着下游圆柱运动自由度的增加,下游圆柱对上游圆柱涡激振动响应的影响减弱;当下游圆柱双自由度运动时,随着上游圆柱运动自由度的增加,上游圆柱对下游圆柱涡激振动响应的影响变强。研究结果表明圆柱运动自由度组合形式对串列双圆柱涡激振动的影响不可忽略。  相似文献   

13.
Unlike most previous studies on the transverse vortex-induced vibration(VIV) of a cylinder mainly under the wallfree condition (Williamson & Govardhan,2004),this paper experimentally investigates the vortex-induced vibration of a cylinder with two degrees of freedom near a rigid wall exposed to steady flow.The amplitude and frequency responses of the cylinder are discussed.The lee wake flow patterns of the cylinder undergoing VIV were visualized by employing the hydrogen bubble technique.The effects of the gap-to-diameter ratio (e0/D) and the mass ratio on the vibration amplitude and frequency are analyzed.Comparisons of VIV response of the cylinder are made between one degree (only transverse) and two degrees of freedom (streamwise and transverse) and those between the present study and previous ones.The experimental observation indicates that there are two types of streamwise vibration,i.e.the first streamwise vibration (FSV) with small amplitude and the second streamwise vibration (SSV) which coexists with transverse vibration.The vortex shedding pattem for the FSV is approximately symmetric and that for the SSV is alternate.The first streamwise vibration tends to disappear with the decrease of e0/D.For the case of large gap-to-diameter ratios (e.g.e0/D = 0.54~1.58),the maximum amplitudes of the second streamwise vibration and transverse one increase with the increasing gapto-diameter ratio.But for the case of small gap-to-diameter ratios (e.g.e0/D = 0.16,0.23),the vibration amplitude of the cylinder increases slowly at the initial stage (i.e.at small reduced velocity V,),and across the maximum amplitude it decreases quickly at the last stage (i.e.at large Vr).Within the range ofthe examined small mass ratio (m<4),both streamwise and transverse vibration amplitude of the cylinder decrease with the increase of mass ratio for the fixed value of V,.The vibration range (in terms of Vr ) tends to widen with the decrease of the mass ratio.In the second streamwise vibration region,the vibration frequency of the cylinder with a small mass ratio (e.g.mx = 1.44) undergoes a jump at a certain Vr,.The maximum amplitudes of the transverse vibration for two-degree-of-freedom case is larger than that for one-degree-of-freedom case,but the transverse vibration frequency of the cylinder with two degrees of freedom is lower than that with one degree of freedom (transverse).  相似文献   

14.
高洋洋  张演明  刘彩  王滨 《海洋工程》2020,38(1):86-100
基于计算流体力学(CFD)开源代码OpenFOAM开展了不同雷诺数(Re=100、1500和3900)和倾斜角度(-60°≤α≤60°)工况下倾斜圆柱绕流流场的三维数值模拟,研究倾斜圆柱绕流的三维瞬时及时均尾流流场、流线拓扑、升阻力系数与旋涡脱落频率随雷诺数及倾斜角度变化的规律,探讨在顺流向及逆流向情况下独立性原则对倾斜圆柱绕流的适用性。研究结果表明:随着圆柱倾角的增大,倾斜圆柱尾流产生较为明显的轴向流,尾流旋涡脱落受到明显抑制,细碎旋涡逐渐消失,尾流宽度随之减小;随着雷诺数的增大,圆柱尾流涡管发生明显的变形,展向掺混使得大量细碎旋涡产生,呈现出明显的三维特性。在不同雷诺数下,阻力系数均值、升力系数均方根及无量纲涡脱频率在一定倾角范围内符合独立性原则。  相似文献   

15.
The validity of the independence principle applied to the vortex-induced vibration (VIV) of an inclined cylinder in steady flow is investigated by conducting numerical simulations. In order to create a perfect end-effect-free condition, periodic boundary condition is applied on the two end boundaries that are perpendicular to the cylinder. It is found that the response amplitude and frequency for an inclination angle of α = 45° agree well with their counterparts for α = 0°. The numerical results demonstrated the validity of the independence principle in the case of vortex-induced vibration, which has not been demonstrated by laboratory tests due to the difficulty in avoiding the end effects.  相似文献   

16.
It is well known that the Reynolds number has a significant effect on the vortex-induced vibrations (VIV) of cylinders. In this paper, a novel in-line (IL) and cross-flow (CF) coupling VIV prediction model for circular cylinders has been proposed, in which the influence of the Reynolds number was comprehensively considered. The Strouhal number linked with the vortex shedding frequency was calculated through a function of the Reynolds number. The coefficient of the mean drag force was fitted as a new piecewise function of the Reynolds number, and its amplification resulted from the CF VIV was also taken into account. The oscillating drag and lift forces were modelled with classical van der Pol wake oscillators and their empirical parameters were determined based on the lock-in boundaries and the peak-amplitude formulas. A new peak-amplitude formula for the IL VIV was developed under the resonance condition with respect to the mass-damping ratio and the Reynolds number. When compared with the results from the experiments and some other prediction models, the present model could give good estimations on the vibration amplitudes and frequencies of the VIV both for elastically-mounted rigid and long flexible cylinders. The present model considering the influence of the Reynolds number could generally provide better results than that neglecting the effect of the Reynolds number.  相似文献   

17.
Vortex-induced vibration(VIV) for flexible cylinders under combined uniform and oscillatory flow is a challenging and practical issue in ocean engineering. In this paper, a time domain numerical model is adopted to investigate the characteristics of cross-flow VIV response and fatigue damage under different combined flow cases. Firstly, the adopted VIV model and fatigue analysis procedure are validated well against the published experimental results of a4-m cylinder model under pure oscillatory flows. Then, forty-five combined flow cases of the same cylinder model are designed to reveal the VIV response characteristics with different non-dimensional oscillation period T* and combined ratio r. The combined flow cases are classified into three categories to investigate the effect of r on cylinder's dynamic response, and the effect of T* is described under long and short period cases. Finally, fatigue analysis is carried out to investigate how the structural fatigue damage varies with the variations of r and T*. The captured characteristics of structural response and fatigue damage are explained through the VIV mechanism analysis.  相似文献   

18.
Experiments employing a low-mass-damping cylinder have been conducted to determine the vortex-induced vibration (VIV) response of four suppressors of the flexible-shroud family. The VIV suppressors were inspired in the concept of the Ventilated Trousers (VT), a flexible shroud composed of a flexible net fitted with three-dimensional bobbins. Reynolds number varied between 5 × 103 and 25 × 103, while reduced velocity varied from 2 to 26. The VIV dynamic response showed that the VT suppressed the peak amplitude of vibration down to 40% of that of a bare cylinder. Other flexible shrouds also achieved suppression, but not as efficiently. Drag was reduced during the VIV synchronization range, but remained above the value for a bare static cylinder thereafter. Spectral analysis of displacement and lift revealed that, depending on the geometry and distribution of the bobbins, the flexible shroud can develop an unstable behavior, capturing energy from the wake and sustaining vibrations for higher reduced velocities. PIV measurements of the wake revealed that the entrainment flow through the mesh is necessary to extend the vortex-formation length of the wake; this mechanism only occurs for the VT mesh.  相似文献   

19.
圆柱涡激振动问题一直以来备受关注,分离盘作为涡激振动抑制装置得到广泛研究。分离盘长度L与圆柱直径D之比L/D是影响抑制效果的主要因素。运用有限体积法结合RANS方程与一定的湍流模式离散和求解流场,通过编写自定义程序,使用动网格模拟结构物的运动带来的流域边界的变化,针对弹性支撑的圆柱及附加长度为0.5 D的分离盘模型,在约化速度Ur为2.5~13的情况下,对涡激振动及其抑制进行研究。结果表明:分离盘可以抑制甚至消除圆柱涡激振动,99%以上的振幅被抑制;锁定区始点被推后,锁定区变窄;附加分离盘的圆柱阻力和升力被抑制;其斯特鲁哈数(St)稍高于单圆柱St但差别不大。  相似文献   

20.
王艺 《中国海洋工程》2008,22(3):371-384
In this paper, equations calculating lift force of a rigid circular cylinder at lock-in in uniform flow are deduced in detail. Besides, equations calculating the lift force on a long flexible circular cylinder at lock-in are deduced based on mode analysis of a multi-degree freedom system. The simplified forms of these equations are also given. Furthemore, an approximate method to predict the forces and response of rigid circular cylinders and long flexible circular cylinders at lock-in is introduced in the case of low mass-damping ratio. A method to eliminate one deficiency of these equations is introduced. Comparison with experimental results shows the effectiveness of this approximate method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号