首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 420 毫秒
1.
Palaeoclimatic records derived from a variety of independent proxies provide evidence of post‐glacial changes of temperature and soil moisture in northern Fennoscandia. We use pollen percentage, pollen influx, stomatal and chironomid records from Toskaljavri, a high‐altitude lake in northern Finland, to assess how treelines and alpine vegetation there have responded to these climate changes. The evidence suggests that the cool, moist climate of the early Holocene supported birch forest in the area 9600 cal. yr BP onwards and that a rise of temperature triggered the immigration of pine at 8300 cal. yr BP. At 6100–4000 cal. yr BP altitudinal treeline in the area was formed by pine, in contrast to the modern situation where mountain birch reaches a higher elevation. Alpine vegetation also demonstrates clear changes. Plant communities typical of dry, oligotrophic heaths of northern Fennoscandia expanded during the dry climatic period at 7000–4000 cal. yr BP and decreased in response to cooler and moister conditions after 4000 cal. yr BP. Alpine plant communities favouring moist sites show an inverse pattern, expanding after a change towards moister climate after 4000 cal. yr BP. In a redundancy analysis (RDA), a statistically significant proportion of the variability in the total chironomid assemblages was captured by changes in the pollen types reflecting alpine vegetation typical of moist sites. Although chironomid community changes appeared to follow the major patterns in the alpine vegetation succession, the present study does not support a direct link between the changing treeline position and chironomid stratigraphy. Rather, the data indicate that the terrestrial and aquatic environments have each responded directly to the same ultimate cause, namely changing Holocene climate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
A high-resolution Younger Dryas–late Holocene record of climate and environment from the Malangen fjord has been established on the basis of two marine sediment cores. Five pollen-spore assemblage zones have been defined covering the period c . 11 500 cal. yr BP (10 200 14C yr BP) to c . 1600 cal. yr BP (1600 14C yr BP) with a hiatus of c . 2000 cal. years between c . 10 200 and 8100 cal. yr BP (9000 and 7300 14C yr BP). The Holocene vegetation development from pioneer vegetation to forest development, identified in the marine pollen record, correlates well with pollen records from terrestrial sections of northern Norway. The marine pollen record was also correlated directly with marine proxy records of the bottom water temperature investigated in the same sediment cores. Correlation between the marine and terrestrial proxies suggests that changes in the influx of warm Atlantic Water to the fjord led to an instant change in the vegetation of the surrounding land area. The results thus support a strong link between marine and atmospheric mean climatic states in the North Atlantic region throughout the Holocene.  相似文献   

3.
Cores taken from an ombrotrophic peat bog in the coastal zone of Halland, southwest Sweden, were examined for wind transported mineral grains, pollen and humidity indicators. The core covers the period from 6500 cal. yr BP to present. Ombrotrophic conditions existed from ca. 4200 cal. yr BP onwards. Bog surface wetness fluctuated strongly until ca. 3700 cal. yr BP, with an apparent dominance of dry summer conditions from 4800–4500 cal. yr BP. Local wet shifts occurred around 4300, 2800, 2400 and 1500 cal. yr BP, whereas the most recent 600 years of the record show increasingly dry conditions. Mineral grain content, interpreted as aeolian sand influx (ASI), was used as a proxy for (winter) storm frequency and intensity until ca. 1500 cal. yr BP, after which increasing human impact, as reconstructed by pollen analysis, became a second important potential cause for increased sand drift. Strongly increased storminess occurred at 4800, 4200, 2800–2200, 1500, 1100 and 400–50 cal. yr BP, indicating a dominance of cold and stormy winters during these periods. Many of these storm periods apparently coincide with storm events in other sites in southwestern Scandinavia, suggesting that our ASI record reflects a regional scale climatic signal. Furthermore these stormy periods correlate to well‐known cold phases in the North Atlantic region, suggesting a link to large‐scale fluctuations in atmospheric circulation patterns. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
A sediment succession from Højby Sø, a lake in eastern Denmark, covering the time period 9400–7400 cal yr BP was studied using high-resolution geochemistry, magnetic susceptibility, pollen, macrofossil, diatom, and algal pigment analysis to investigate responses of the terrestrial and aquatic ecosystems to the 8.2 ka cold event. A reduced pollen production by thermophilous deciduous tree taxa in the period c. 8250–8000 cal yr BP reveal that the forest ecosystem was affected by low temperatures during the summer and winter/early-spring seasons. This finding is consistent with the timing of the 8.2 ka cold event as registered in the Greenland ice cores. At Højby Sø, the climate anomaly appears to have started 200–250 yr earlier than the 8.2 ka cold event as the lake proxy data provide strong evidence for a precipitation-induced distinct increase in catchment soil erosion beginning around 8500 cal yr BP. Alteration of the terrestrial environment then resulted in a major aquatic ecosystem change with nutrient enrichment of the lake and enhanced productivity, which lasted until c. 7900 cal yr BP.  相似文献   

5.
The last ca. 20,000 yr of palaeoenvironmental conditions in Podocarpus National Park in the southeastern Ecuadorian Andes have been reconstructed from two pollen records from Cerro Toledo (04°22'28.6"S, 79°06'41.5"W) at 3150 m and 3110 m elevation. Páramo vegetation with high proportions of Plantago rigida characterised the last glacial maximum (LGM), reflecting cold and wet conditions. The upper forest line was at markedly lower elevations than present. After ca. 16,200 cal yr BP, páramo vegetation decreased slightly while mountain rainforest developed, suggesting rising temperatures. The trend of increasing temperatures and mountain rainforest expansion continued until ca. 8500 cal yr BP, while highest temperatures probably occurred from 9300 to 8500 cal yr BP. From ca. 8500 cal yr BP, páramo vegetation re-expanded with dominance of Poaceae, suggesting a change to cooler conditions. During the late Holocene after ca. 1800 cal yr BP, a decrease in páramo indicates a change to warmer conditions. Anthropogenic impact near the study site is indicated for times after 2300 cal yr BP. The regional environmental history indicates that through time the eastern Andean Cordillera in South Ecuador was influenced by eastern Amazonian climates rather than western Pacific climates.  相似文献   

6.
The history of the low-elevation forest and forest-steppe ecotone on the east side of the Andes is revealed in pollen and charcoal records obtained from mid-latitude lakes. Prior to 15,000 cal yr BP, the vegetation was characterized by steppe vegetation with isolated stands of Nothofagus. The climate was generally dry, and the sparse vegetation apparently lacked sufficient fuels to burn extensively. After 15,000 cal yr BP, a mixture of Nothofagus forest and shrubland/steppe developed. Fire activity increased between 13,250 and 11,400 cal yr BP, contemporaneous with a regionally defined cold dry period (Huelmo/Mascardi Cold Reversal). The early-Holocene period was characterized by an open Nothofagus forest/shrubland mosaic, and fire frequency was high in dry sites and low in wet sites; the data suggest a sharp decrease in moisture eastward from the Andes. A shift to a surface-fire regime occurred at 7500 cal yr BP at the wet site and at 4400 cal yr BP at the dry site, preceding the expansion of Austrocedrus by 1000-1500 yr. The spread of Austrocedrus is explained by a shift towards a cooler and wetter climate in the middle and late Holocene. The change to a surface-fire regime is consistent with increased interannual climate variability and the onset or strengthening of ENSO. The present-day mixed forest dominated by Nothofagus and Austrocedrus was established in the last few millennia.  相似文献   

7.
Analysis of pollen, spores, macrofossils, and lithology of an AMS 14C-dated core from a subarctic fen on the Kenai Peninsula, Alaska reveals changes in vegetation and climate beginning 14,200 cal yr BP. Betula expansion and contraction of herb tundra vegetation characterize the Younger Dryas on the Kenai, suggesting increased winter snowfall concurrent with cool, sunny summers. Remarkable Polypodiaceae (fern) abundance between 11,500 and 8500 cal yr BP implies a significant change in climate. Enhanced peat preservation and the occurrence of wet meadow species suggest high moisture from 11,500 to 10,700 cal yr BP, in contrast to drier conditions in southeastern Alaska; this pattern may indicate an intensification and repositioning of the Aleutian Low (AL). Drier conditions on the Kenai Peninsula from 10,700 to 8500 cal yr BP may signify a weaker AL, but elevated fern abundance may have been sustained by high seasonality with substantial snowfall and enhanced glacial melt. Decreased insolation-induced seasonality resulted in climatic cooling after 8500 cal yr BP, with increased humidity from 8000 to 5000 cal yr BP. A dry interval punctuated by volcanic activity occurred between 5000 and 3500 cal yr BP, followed by cool, moist climate, coincident with Neoglaciation. Tsuga mertensiana expanded after ~ 1500 cal yr BP in response to the shift to cooler conditions.  相似文献   

8.
We present results from an investigation of relative sea-level changes in the Qaqortoq area in south Greenland from c. 11 000 cal. yr BP to the present. Isolation and transgression sequences from six lakes and two tidal basins have been identified using stratigraphical analyses, magnetic susceptibility, XRF and macrofossil analyses. Macrofossils and bulk sediments have been dated by AMS radiocarbon dating. Maximum and minimum altitudes for relative sea level are provided from two deglaciation and marine lagoon sequences. Initially, relative sea level fell rapidly and reached present-day level at ∼9000 cal. yr BP and continued falling until at least 8800 cal. yr BP. Between 8000 and 6000 cal. yr BP, sea level reached its lowest level of around 6-8 m below highest astronomical tide (h.a.t.). At around 3750 cal. yr BP, sea level has reached above 2.7 m below h.a.t. and continued to rise slowly, reaching the present-day level between ∼2000 cal. yr BP and the present. As in the Nanortalik area further south, initial isostatic rebound caused rapid isolation of low elevation basins in the Qaqortoq area. Distinct isolation contacts in the sediments are observed. The late Holocene transgression is less well defined and occurred over a longer time interval. The late Holocene sea-level rise implies reloading by advancing glaciers superimposed on the isostatic signal from the North American Ice Sheet. One consequence of this transgression is that settlements of Palaeo-Eskimo cultures from ∼4000 cal. yr BP may have been transgressed by the sea.  相似文献   

9.
High resolution pollen, plant macrofossil, charcoal, mineral magnetic and sedimentary analyses, combined with AMS 14C measurements, were performed on multiple sediment sequences along a transect through the former crater lake Preluca iganului in northwestern Romania in order to reconstruct the climatic and environmental changes during the early part of the Last Termination. Lake sediments started to accumulate at 14,700 cal yr BP. Initially the upland vegetation consisted of an open forest with mainly Betula and Salix and few Pinus sp., but from 14,500 cal yr BP onwards, Pinus mugo, P. sylvestris and Populus and later on also Larix became established around the lake. Between 14,150 and 13,950 cal yr BP, Pinus cembra seems to have replaced P. mugo and P. sylvestris. At 13,950 cal yr BP the tree cover increased and Picea appeared for the first time, together with Pinus cembra, P. mugo and Larix. From 13,750 cal yr BP onwards, a Picea forest developed around the site. Based on the combined proxy data the following climatic development may be inferred: 14,700–14,500 cal yr BP, cooler and wet/humid; 14,500–14,400 cal yr BP: gradually warmer temperatures, wet/humid with dry summers; 14,400–14,320 cal yr BP: warm and dry; 14,320–14,150 cal yr BP: cooler and wet/humid; 14,150–14,100 cal yr BP: warm and dry; 14,100–13,850 cal yr BP: warmer and wet/humid; <13,850 cal yr BP: warm and dry. The tentative correlation of this development with the North Atlantic region assumes that the period >14,700 cal yr could correspond to GS-2a, the time span between 14,700 and 14,320 to GI-1e, the phase between 14,320 and 14,150 cal yr BP to GI-1d and the time frame between 14,150 and 13,600 cal yr BP to the lower part of GI-1c.  相似文献   

10.
Pollen and plant macrofossil analyses from Svanåvatnet in northern Norway provide records of past vegetation and climate in this region from c . 8700 cal. yr BP until the present. Pollen accumulation rates and the presence of plant macrofossils indicate that Betula pubescens (birch) was present from c . 8600 cal. yr BP and Pinus sylvestris (pine) from c . 8200 cal. yr BP. Quantitative climate is reconstructed using modern pollen-climate transfer functions based on weighted-averaging partial least squares regression. A rapid increase in mean July temperature (Tjul) and mean annual precipitation (Pann) is inferred for the early Holocene. At times when tree abundance is at its highest and most diverse, inferred Tjul indicates maximum temperatures during the mid-Holocene of about 2°C warmer than at present. During the same time period, inferred Pann is 200–300 mm above present-day conditions until c . 3000 cal. yr BP. Mean January temperatures (Tjan) are reconstructed to be about 2°C warmer than today from 8000 to 3500 cal. yr BP. After 3500 cal. yr BP until today, a gradual decrease is seen in all the reconstructed climate parameters, together with a reduction in tree abundance and the development of a mosaic of open vegetation with grasses, dwarf shrubs and wet areas, and of woodland containing B. pubescens , P. sylvestris and Picea abies (spruce).  相似文献   

11.
Deglaciation took place in eastern Jämtland and Ångermanland in central Sweden c . 10 500–10 200 cal. yr BP. In the present study, vegetation development and shore displacement during the earliest ice-free period are investigated by 14C dating of sediment from six isolated lake basins and by pollen analysis. A brief but distinct peak in Hippophaë occurs in all pollen diagrams coincident with basin isolation, followed by up to 500 years (varying locally) by an Alnus rise. The Alnus curve does not display a synchronous rise in the area. Its expansion below the highest shore level is time-transgressive and controlled mainly by the timing of basin isolation. The relationship between regional Alnus expansion and changes in hydrology and climate is discussed. The pollen diagrams show Pinus predominance with Corylus to the east (more coastal areas) and Betula predominance (though less pronounced) to the west during the period 10 200–9000 cal. yr BP. However, comparisons between sites suggest marked variability in the forest development. Shore displacement in easternmost Jämtland c . 10 300–9000 cal. yr BP is equal to or slightly more rapid than that of SE Ångermanland, contrary to the present pattern of isostatic recovery. A rapid shore level regression c . 10 300–10 000 cal. yr BP may be related to drainage of the Ancylus Lake.  相似文献   

12.
The record of Almoloya Lake in the Upper Lerma basin starts with the deposition of the late Pleistocene Upper Toluca Pumice layer. The data from this interval indicate a period of climatic instability that lasted until 8500 cal yr B.P., when temperature conditions stabilized, although moisture fluctuations continued until 8000 cal yr B.P. Between 8500 and 5000 cal yr B.P. a temperate climate is indicated by dominance of Pinus. From 5000 to 3000 cal yr B.P. Quercus forest expanded, suggesting a warm temperate climate: a first indication of drier environmental conditions is an increase in grassland between 4200 and 3500 cal yr B.P. During the Late Holocene (3300 to 500 cal yr B.P.) the increase of Pinus and grassland indicates temperate dry conditions, with a considerable increase of Pinus between 1100 and 950 cal yr B.P. At the end of this period, humidity increased. The main tendency during the Holocene was a change from humid to dry conditions. During the Early Holocene, Almoloya Lake was larger and deeper; the changing humidity regime resulted in a fragmented marshland, with the presence of aquatic and subaquatic vegetation types.  相似文献   

13.
A new diatom record from Lake Victoria’s Pilkington Bay, subsampled at 21- to 25-year intervals and supported by 20 AMS dates, reveals a ∼10,000 calendar year environmental history that is supported by published diatom and pollen data from two nearby sites. With their chronologies adjusted here to account for newly documented ancient carbon effects in the lake, these three records provide a coherent, finely resolved reconstruction of Holocene climate change in equatorial East Africa. After an insolation-induced rainfall maximum ca. 8800-8300 cal yr B.P., precipitation became more seasonal and decreased abruptly ca. 8200 and 5700 yr B.P. in apparent association with northern deglaciation events. Century-scale rainfall increases occurred ca. 8500, 7000, 5800, and 4000 yr B.P. Conditions after 2700 yr B.P. were generally similar to those of today, but major droughts occurred ca. 1200-600 yr B.P. during Europe’s Medieval Warm Period.  相似文献   

14.
A 33,000-yr pollen record from Carp Lake provides information on the vegetation history of the forest/steppe border in the southwestern Columbia Basin. The site is located in the Pinus ponderosa Zone but through much of late Quaternary time the area was probably treeless. Pollen assemblages in sediments dating from 33,000 to 23,500 yr B.P. suggest a period of temperate climate and steppe coinciding with the end of the Olympia Interglaciation. The Fraser Glaciation (ca. 25,000–10,000 yr B.P.) was a period of periglacial steppe or tundra vegetation and conditions too dry and cold to support forests at low altitudes. Aridity is also inferred from the low level of the lake between 21,000 and 8500 yr B.P., and especially after about 13,500 yr B.P. About 10,000 yr B.P. Chenopodiineae and other temperate taxa spread locally, providing palynological evidence for a shift from cold, dry to warm, dry conditions. Pine woodland developed at the site with the onset of humid conditions at 8500 yr B.P.; further cooling is suggested at 4000 yr B.P., when Pseudotsuga and Abies were established locally.  相似文献   

15.
The shore displacement during the Holocene in southeastern Ångermanland, Sweden, has been investigated by means of radiocarbon-dating of isolation intervals in sediment cores from a total of nine new basins. Results from earlier investigations have been used in complement. There is a forced regression in the area from c. 9300 BP ( c . 10500 cal. yr BP) until c . 8000 BP ( c . 9000 cal. yr BP), on average c . 8 m/100 years, after which there is a gradually slowing regression of c . 2.5–1.0 m/100 years up to the present time. The most rapid regression occurs during the later phase of the Ancylus Lake stage, 9500–9000 cal. yr BP. There is no evidence of halts in the regression. Crustal uplift in the area since deglaciation is c . 310 m. The deglaciation of southeastern Ångermanland took place c . 9300 BP ( c . 10500 cal. yr BP); this is c . 900 years earlier than the age given by clay varve dating. The shore displacement curve provides a means of estimating the difference between the clay varve time scale and calibrated radiocarbon dates, by comparison with varve-dated altitudes of alluvial deltas of the River Ångermanalven. From c. 2500 to c. 8000 cal. BP there is a deficit in clay varves of some 300 years; further back in time this discrepancy increases significantly. The main explanation for the discrepancy is most likely lacking varves in the time-span 8500–10200 cal. yr BP, located along the upper reaches of River Ångermanalven below the highest shore level.  相似文献   

16.
Sediment cores from Lake Pupuke in Auckland City, New Zealand, contain a high‐resolution millennial to centennial‐scale record of changing climate and catchment hydrology spanning the past ca. 10 000 years. Here, we focus on the period between 9500 ± 25 and 7000 ± 155 cal. yr BP during which grain size, diatom palaeoecology, biogenic silica concentrations, sediment elemental and carbon isotope geochemistry reflect changes in sediment sources and lake conditions, with a significant event commencing at ca. 8240 cal. yr BP, commensurate with a lowering of lake level, faster erosion rates and increased sediment influx with a duration of ca. 360 yrs. However, the changes in the lake are not reflected in the terrestrial vegetation, where the pollen record indicates that podocarp forest dominated the Auckland region, with apparent environmental stability during this part of the early Holocene. The synchronous change in most of the proxies between ca. 8240 and 7880 cal. yr BP at Lake Pupuke indicates the presence of a sustained episode of relatively low lake level and concomitant increased rate of erosion in the early Holocene that appears to be at least partly coeval with the 8200 cal. yr BP meltwater event proposed for the North Atlantic region. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Pollen records from two sites in western Oregon provide information on late-glacial variations in vegetation and climate and on the extent and character of Younger Dryas cooling in the Pacific Northwest. A subalpine forest was present at Little Lake, central Coast Range, between 15,700 and 14,850 cal yr B.P. A warm period between 14,850 and 14,500 cal yr B.P. is suggested by an increase inPseudotsugapollen and charcoal. The recurrence of subalpine forest at 14,500 cal yr B.P. implies a return to cool conditions. Another warming trend is evidenced by the reestablishment ofPseudotsugaforest at 14,250 cal yr B.P. Increased haploxylonPinuspollen between 12,400 and 11,000 cal yr B.P. indicates cooler winters than before. After 11,000 cal yr B.P. warm dry conditions are implied by the expansion ofPseudotsuga.A subalpine parkland occupied Gordon Lake, western Cascade Range, until 14,500 cal yr B.P., when it was replaced during a warming trend by a montane forest. A rise inPinuspollen from 12,800 to 11,000 cal yr B.P. suggests increased summer aridity.Pseudotsugadominated the vegetation after 11,000 cal yr B.P. Other records from the Pacific Northwest show an expansion ofPinusfrom ca. 13,000 to 11,000 cal yr B.P. This expansion may be a response either to submillennial climate changes of Younger Dryas age or to millennial-scale climatic variations.  相似文献   

18.
Postglacial climatic conditions were inferred from cores taken from Big Lake in southern British Columbia. Low concentrations of nonarboreal pollen and pigments near the base of the core suggest that initial conditions were cool. Increases in both aquatic and terrestrial production suggest warmer and moister conditions until 8500 cal yr B.P. Hyposaline diatom assemblages, increases in nonarboreal pollen, and increased concentrations of pigments suggest the onset of arid conditions from 8500 to 7500 cal yr B.P. Slightly less arid conditions are inferred from 7500 until 6660 cal yr B.P. based on the diatoms, small increases and greater variability in biogenic silica and pigments, and higher percentages of arboreal pollen. At 6600 cal yr B.P., changes in diatoms, pigments, biogenic silica, and organic matter suggest that Big Lake became fresh, deep, and eutrophic until 3600 cal yr B.P., when water levels and nutrients decreased slightly. Our paleoclimatic inferences are similar to pollen-based studies until 6600 cal yr B.P. However, unlike these studies, our multiple lines of evidence from Big Lake imply large changes in effective moisture since 6000 cal yr B.P.  相似文献   

19.
Macrofossil, pollen, lithostratigraphy, mineral magnetic measurements (SIRM and magnetic susceptibility), loss‐on‐ignition, and AMS radiocarbon dating on sediments from two former crater lakes, situated at moderate altitudes in the Gutaiului Mountains of northwest Romania, allow reconstruction of Late Quaternary climate and environment. Shrubs and herbs with steppe and montane affinities along with stands of Betula and Pinus, colonised the surroundings of the sites prior to 14 700 cal. yr BP and the inferred climatic conditions were cold and dry. The gradual transition to open PinusBetula forests, slightly higher lake water temperatures, and higher lake productivity, indicate more stable environmental conditions between 14 700 and 14 100 cal. yr BP. This development was interrupted by cooler and drier climatic conditions between 14 100 and 13 800 cal. yr BP, as inferred from a reduction of open forests to patches, or stands, of Pinus, Betula, Larix, Salix and Populus. The expansion of a denser boreal forest, dominated by Picea, but including Pinus, Larix, Betula, Salix, and Ulmus started at 13 800 cal. yr BP, although the forest density seems to have been reduced between 13 400 and 13 200 cal. yr BP. Air temperature and moisture availability gradually increased, but a change towards drier conditions is seen at 13 400 cal. yr BP. A distinct decrease in temperature and humidity between 12 900 and 11 500 cal. yr BP led to a return of open vegetation, with patches of Betula, Larix, Salix, Pinus and Alnus and individuals of Picea. Macrofossils and pollen of aquatic plants indicate rising lake water temperatures and increased aquatic productivity already by ca. 11 800 cal. yr BP, 300 years earlier than documented by the terrestrial plant communities. At the onset of the Holocene, 11 500 cal. yr BP, forests dominated by Betula, Pinus and Larix expanded and were followed by dense Ulmus forests with Picea, Betula and Pinus at 11 250 cal. yr BP. Larix pollen was not found, but macrofossil evidence indicates that Larix was an important forest constituent at the onset of the Holocene. Moister conditions were followed by a dry period starting about 10 600 cal. yr BP, which was more pronounced between 8600 and 8200 cal. yr BP, as inferred from aquatic macrofossils. The maximum expansion of Tilia, Quercus, Fraxinus and Acer between 10 700 and 8600 cal. yr BP may reflect a more continental climate. A drier and/or cooler climate could have been responsible for the late expansion (10 300 cal. yr BP) and late maximum (9300 cal. yr BP) of Corylus. Increased water stress, and possibly cooler conditions around 8600 cal. yr BP, may have caused a reduction of Ulmus, Tilia, Quercus and Fraxinus. After 8200 cal. yr BP moisture increased and the forests included Picea, Tilia, Quercus and Fraxinus. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
A high-resolution macroscopic charcoal record from Lago Melli (42°46′S, 73°33′W) documents the occurrence of forest fires in the lowlands of Isla Grande de Chiloé, southern Chile, over the last 16,000 yr. Our data suggest that fire activity in this region was largely modulated by the position/intensity of the southern westerlies at multi-millennial time scales. Fire activity was infrequent or absent between 16,000-11,000 and 8500-7000 cal yr BP and was maximal between ∼ 11,000-8500 and 3000-0 cal yr BP. A mosaic of Valdivian/North Patagonian rainforest species started at ∼ 6000 cal yr BP, along with a moderate increase in fire activity which intensified subsequently at 3000 cal yr BP. The modern transition between these forest communities and the occurrence of fires are largely controlled by summer moisture stress and variability, suggesting the onset of high-frequency variability in summer precipitation regimes starting at ∼ 5500 cal yr BP. Because negative anomalies in summer precipitation in this region are teleconnected with modern El Niño events, we propose that the onset of El Niño-like variability at ∼ 5700-6200 cal yr BP led to a reshuffling of rainforest communities in the lowlands of Isla Grande de Chiloé and an increase in fire activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号