首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Molecular R -matrix calculations are performed to give rotational excitation rates for electron collisions with linear molecular ions. Results are presented for CO+, HCO+, NO+ and H2+ up to electron temperatures of 10 000 K. De-excitation rates and critical electron densities are also given. It is shown that the widely used Coulomb–Born approximation is valid for Δ j =1 transitions when the molecular ion has a dipole greater than about 2D, but otherwise is not reliable for studying electron-impact rotational excitation. In particular, transitions with Δ j >1 are found to have appreciable rates and are found to be entirely dominated by short-range effects.  相似文献   

2.
The wavelength and Einstein A coefficient are calculated for all rotation–vibration transitions of  4He1H+, 3He1H+, 4He2H+  and  3 He2H+  , giving a complete line list and the partition function for  4HeH+  and its isotopologues. This opacity is included in the calculation of the total opacity of low-metallicity stars and its effect is analysed for different conditions of temperature, density and hydrogen number fraction. For a low helium number fraction (as in the Sun), it is found that HeH+ has a visible but small effect for very low densities  (ρ≤ 10−10 g cm−3)  , at temperatures around 3500 K. However, for high helium number fraction, the effect of HeH+ becomes important for higher densities  (ρ≤ 10−6 g cm−3)  , its effect being most important for a temperature around 3500 K. Synthetic spectra for a variety of different conditions are presented.  相似文献   

3.
The rates of rotational transitions for HCO+, the most abundant ion in interstellar space, induced by collision with helium are obtained for temperatures ranging from 10 to 80 K. The calculations are based on a new potential energy surface for the He–HCO+ interaction and on a scattering matrix whose accuracy was checked by pressure broadening and shift measurements. The rates     decrease for increasing values of j and  Δ j   , with a temperature trend depending on the energy involved in the transitions: if it is small, the rates are almost constant, while an increase with T is found for other cases. Comparison with previous and less accurate results shows an agreement within 50 per cent. Comparison between state-to-state and pressure broadening cross-sections allows us to discuss importance and influence of elastic and inelastic collisions.  相似文献   

4.
We have detected the   v = 1 → 0 S(1) (λ= 2.1218 μm)  and   v = 2 → 1 S(1) (λ= 2.2477 μm)  lines of H2 in the Galactic Centre, in a  90 × 27 arcsec2  region between the north-eastern boundary of the non-thermal source Sgr A East, and the giant molecular cloud (GMC)  M−0.02 − 0.07  . The detected  H2 v = 1 → 0  S(1) emission has an intensity of  1.6–21 × 10−18 W m−2 arcsec−2  and is present over most of the region. Along with the high intensity, the large linewidths  (FWHM = 40–70 km s−1)  and the  H2 v = 2 → 1 S(1)  to   v = 1 → 0 S(1)  line ratios (0.3–0.5) can be best explained by a combination of C-type shocks and fluorescence. The detection of shocked H2 is clear evidence that Sgr A East is driving material into the surrounding adjacent cool molecular gas. The H2 emission lines have two velocity components at ∼+50 and  ∼0 km s−1  , which are also present in the NH3(3, 3) emission mapped by McGary, Coil & Ho. This two-velocity structure can be explained if Sgr A East is driving C-type shocks into both the  GMC M−0.02 − 0.07  and the northern ridge of McGary et al.  相似文献   

5.
We have computed cross-sections and rate coefficients for rovibrational transitions in HD, induced by collisions with atomic and molecular hydrogen. We employed fully quantum-mechanical methods and the potential of Boothroyd et al. for H–HD, and that of Schwenke for H2–HD. The rate coefficients for vibrational relaxation v =1→0 of HD are compared with the corresponding values for H2. The influence of vibrationally excited channels on the rate coefficients for rotational transitions within the v =0 vibrational ground state of HD is shown to be small at T =500 K, where T is the kinetic temperature. The rate coefficients, for 100 T 2000 K, are available from http://ccp7.dur.ac.uk/.  相似文献   

6.
7.
We report the discovery of high-velocity dense gas from a bipolar outflow source near NGC 2068 in the L1630 giant molecular cloud. CO and HCO+ J =3→2 line wings have a bipolar distribution in the vicinity of LBS 17-H with the flow orientated roughly east–west and perpendicular to the elongation of the submillimetre dust continuum emission. The flow is compact (total extent ∼0.2 pc) and contains of the order of 0.1 M of swept-up gas. The high-velocity HCO+ emission is distributed over a somewhat smaller area <0.1 pc in extent.
A map of C18O J =2→1 emission traces the LBS 17 core and follows the ambient HCO+ emission reasonably well, with the exception of the direction towards LBS 17-H where there is a significant anticorrelation between the C18O and HCO+. A comparison of beam-matched C18O and dust-derived H2 column densities suggests that CO is depleted by up to a factor of ∼50 at this position if the temperature is as low as 9 K, although the difference is substantially reduced if the temperature is as high as 20 K. Chemical models of collapsing clouds can account for this discrepancy in terms of different rates of depletion on to dust grains for CO and HCO+.
LBS 17-H has a previously known water maser coincident with it but there are no known near-infrared, IRAS or radio continuum sources associated with this object, leading to the conclusion that it is probably very young. A greybody fit to the continuum data gives a luminosity of only 1.7 L and a submillimetre-to-bolometric luminosity ratio of 0.1, comfortably satisfying the criteria for classification as a class 0 protostar candidate.  相似文献   

8.
We report new calculations of the cooling rate of primordial gas by the HD molecule, taking into account its ro-vibrational structure. The HD cooling function is calculated including radiative and collisional transitions for   J ≤ 8  rotational levels, and for the vibrational levels v = 0, 1, 2 and 3. The ro-vibrational level population is calculated from the balance equation assuming steady state. The cooling function is evaluated in the ranges of the kinetic temperatures, T k, from 102 to  2 × 104 K  and the number densities, n H, from 1 to  108 cm−3  . We find that the inclusion of collisional ro-vibrational transitions increases significantly the HD cooling efficiency, in particular for high densities and temperatures. For   n H≳ 105  and   T k∼ 104 K  the cooling function becomes more than an order of magnitude higher than previously reported. We give also the HD cooling rate in the presence of the cosmic microwave radiation field for radiation temperatures of 30, 85 and 276 K (redshifts of 10, 30 and 100). The tabulated cooling functions are available at http://www.cifus.uson.mx/Personal_Pages/anton/DATA/HD_cooling/HD_cool.html . We discuss the relevance to explore the effects of including our results into models and simulations of galaxy formation, especially in the regime when gas cools down from temperatures above ∼3000 K.  相似文献   

9.
We study the prospects for observing H2 emission during the assembly of primordial molecular cloud kernels. The primordial molecular cloud cores, which resemble those at the present epoch, can emerge around  1+ z ∼20  according to recent numerical simulations. The kernels form inside the cores, and the first stars will appear inside the kernels. A kernel typically contracts to form one of the first generation stars with an accretion rate that is as large as ∼0.01 M yr−1. This occurs owing to the primordial abundances, which result in a kernel temperature of order 1000 K, and the collapsing kernel emits H2 line radiation at a rate ∼1035 erg s−1. Predominantly   J =5-3   ( v =0)  rotational emission of H2 is expected. At redshift  1+ z ∼20  , the expected flux is ∼0.01 μJy for a single kernel. While an individual object is not observable by any facilities available in the near future, the expected assembly of primordial star clusters on subgalactic scales can result in fluxes at the sub-mJy level. This is marginally observable with ASTRO-F and ALMA. We also examine the rotational   J =2-0   ( v =0)  and vibrational   δv =1  emission lines. The former may possibly be detectable with ALMA.  相似文献   

10.
Determining temperatures in molecular clouds from ratios of CO rotational lines or from ratios of continuum emission in different wavelength bands suffers from reduced temperature sensitivity in the high-temperature limit. In theory, the ratio of far-infrared (FIR), submillimetre or millimetre continuum to that of a 13CO (or C18O) rotational line can place reliable upper limits on the temperature of the dust and molecular gas. Consequently, FIR continuum data from the COBE /Diffuse Infrared Background Experiment (DIRBE) instrument and Nagoya 4-m  13CO  J = 1 → 0  spectral line data were used to plot  240 μm/13CO  J = 1 → 0  intensity ratios against 140/240 μm dust colour temperatures, allowing us to constrain the multiparsec-scale physical conditions in the Orion A and B molecular clouds.
The best-fitting models to the Orion clouds consist of two components: a component near the surface of the clouds that is heated primarily by a very large scale (i.e. ∼1 kpc) interstellar radiation field and a component deeper within the clouds. The former has a fixed temperature and the latter has a range of temperatures that vary from one sightline to another. The models require a dust–gas temperature difference of 0 ± 2 K and suggest that 40–50 per cent of the Orion clouds are in the form of dust and gas with temperatures between 3 and 10 K. The implications are discussed in detail in later papers and include stronger dust–gas thermal coupling and higher Galactic-scale molecular gas temperatures than are usually accepted, and an improved explanation for the N (H2)/ I (CO) conversion factor. It is emphasized that these results are preliminary and require confirmation by independent observations and methods.  相似文献   

11.
We present rate coefficients for rotational transitions induced in collisions between H2 molecules. Rotational levels J  ≤ 8 and kinetic temperatures T  ≤ 1000 K are considered. The interaction potential computed by Schwenke has been used, together with the quantal coupled channels method of calculating the cross-sections. Comparison is made with the more recent of previous results.  相似文献   

12.
A multitransition 3-mm molecular line single pointing and mapping survey was carried out towards 29 massive star-forming cores in order to search for the signature of inward motions. Up to seven different transitions, optically thick lines HCO+(1-0), CS(2-1), HNC(1-0), HCN(1-0) and 12CO(1-0), and optically thin lines C18O(1-0) and 13CO(1-0) were observed towards each source. The normalized velocity differences (     ) between the peak velocities of optically thick lines and optically thin line C18O(1-0) for each source were derived. Prominent inward motions are probably present in either HCO+(1-0) or CS(2-1) or HNC(1-0) observations in most sources. Our observations show that there is a significant difference in the incidence of blueshifted asymmetric line profiles between CS(2-1) and HCO+(1-0). The HCO+(1-0) shows the highest occurrence of obvious asymmetric features, perhaps owing to different optical depth between CS(2-1) and HCO+(1-0). HCO+(1-0) appears to be the best inward motion tracer. The mapping observations of multiple line transitions enable us to identify six strong infall candidates: G123.07-6.31, W75(OH), S235N, CEP-A, W3(OH) and NGC 7538. The infall signature is extended up to a linear scale  >0.2 pc  .  相似文献   

13.
Effective collision strengths for electron-impact excitation of the N-like ion Ne  iv are calculated in the close-coupling approximation using the multichannel R-matrix method. Specific attention is given to the 10 astrophysically important fine-structure forbidden transitions among the 4So, 2Do and 2Po levels in the 2s22p3 ground-state configuration. The expansion of the total wavefunction incorporates the lowest 11 LS eigenstates of Ne  iv , consisting of eight n  = 2 terms with configurations 2s22p3, 2s2p4 and 2p5, together with three n  = 3 states of configuration 2s22p23s. We present in graphical form the effective collision strengths obtained by thermally averaging the collision strengths over a Maxwellian distribution of velocities, for all 10 fine-structure transitions, over the range of electron temperatures log T (K) = 3.6 to log T (K) = 6.1 (the range appropriate for astrophysical applications). Comparisons are made with the earlier, less sophisticated close-coupling calculation of Giles, and excellent agreement is found in the limited temperature region where a comparison is possible [log T (K) = 3.7 to log T (K) = 4.3]. At higher temperatures the present data are the only reliable results currently available.  相似文献   

14.
We report on the discovery of a narrow-emission-line object at z  = 0.672 detected in a deep ASCA survey. The object, AXJ 0341.4–4453, has a flux in the 2–10 keV band of 1.1 ± 0.27 × 10−13 erg s−1 cm−2, corresponding to a luminosity of 1.8 × 1044 erg s−1 ( q 0 = 0.5, H 0 = 50 km s−1 Mpc−1). It is also marginally detected in the ROSAT 0.5–2 keV band with a flux 5.8 × 10−15 erg s−1 cm−2. Both the ASCA data alone and the combined ROSAT/ASCA data show a very hard X-ray spectrum, consistent with either a flat power law (α < 0.1) or photoelectric absorption with a column of n H > 4 × 1022 cm−2 (α = 1). The optical spectrum shows the high-ionization, narrow emission lines typical of a Seyfert 2 galaxy. We suggest that this object may be typical of the hard sources required to explain the remainder of the X-ray background at hard energies.  相似文献   

15.
A 25-state R -matrix calculation is performed to obtain photoionization cross-sections for transitions from the 1s22s22p23P ground state of the O  iii ion. Results are obtained for a range of photon energies, including those at which K-shell photoionization processes take place. We compare our results with those from previous calculations. Excellent agreement is obtained. We also consider resonances owing to transitions of a 1s electron excited into the 2p orbital and compare with a recent calculation.  相似文献   

16.
We have used the Ultra-High-Resolution Facility (UHRF) at the AAT, operating at a resolution of 0.35 km s−1 (FWHM), to observe K  i and C2 absorption lines arising in the circumstellar environment of the post-AGB star HD 56126. We find three narrow circumstellar absorption components in K  i , two of which are also present in C2. We attribute this velocity structure to discrete shells resulting from multiple mass-loss events from the star. The very high spectral resolution has enabled us to resolve the intrinsic linewidths of these narrow lines for the first time, and we obtain velocity dispersions ( b -values) of 0.2–0.3 km s−1 for the K  i components, and 0.54±0.03 km s−1 for the strongest (and best defined) C2 component. These correspond to rigorous kinetic temperature upper limits of 211 K for K  i and 420 K for C2, although the b -value ratio implies that these two species do not co-exist spatially. The observed degree of rotational excitation of C2 implies low kinetic temperatures ( T k≈10 K) and high densities ( n ≈106 to 107 cm−3) within the shell responsible for the main C2 component. Given this low temperature, the line profiles then imply either mildly supersonic turbulence or an unresolved velocity gradient through the shell.  相似文献   

17.
The evolution of the abundance of galaxy clusters depends sensitively on the value of the cosmological density parameter, Ω0. Recent ASCA data are used to quantify this evolution as measured by the cluster X-ray temperature function. A χ2 minimization fit to the cumulative temperature function, as well as a maximum-likelihood estimate (which requires additional assumptions about cluster luminosities), leads to the estimate Ω0 ≈ 0.45 ± 0.25 (1σ statistical error). Various systematic uncertainties are considered, none of which significantly enhances the probability that Ω0 = 1. These conclusions hold for models with or without a cosmological constant, i.e., with Λ0 = 0 or Λ0 = 1 − Ω0. The statistical uncertainties are at least as large as any of the individual systematic errors that have been considered here, suggesting that additional temperature measurements of distant clusters will allow an improvement in this estimate. An alternative method that uses the highest redshift clusters to place an upper limit on Ω0 is also presented and tentatively applied, with the result that Ω0  1 can be ruled out at the 98 per cent confidence level. Whilst this method does not require a well-defined statistical sample of distant clusters, there are still modelling uncertainties that preclude a firmer conclusion at this time.  相似文献   

18.
The results of recent quantum mechanical calculations of cross-sections for rotational transitions within the vibrational ground state of HD are used to evaluate the rate of radiative energy loss from gas containing HD, in addition to H, He and H2. The cooling function for HD (i.e. the rate of cooling per HD molecule) is evaluated in steady state on a grid of values of the relevant parameters of the gas, namely the gas density and temperature, the atomic to molecular hydrogen abundance ratio and the ortho:para-H2 density ratio. The corresponding cooling function for H2, previously computed by Le Bourlot et al., is slightly revised to take account of transitions induced by collisions with ground-state ortho-H2 ( J =1). The cooling functions and the data required for their calculation are available from http://ccp7.dur.ac.uk/. We then make a study of the rate of cooling of the primordial gas through collisions with H2 and HD molecules. In this case, radiative transitions induced by the cosmic background radiation field and, in the case of H2, collisional transitions induced by H+ ions should additionally be included.  相似文献   

19.
The spin temperature of neutral hydrogen, which determines the optical depth and brightness of the 21-cm line, is determined by the competition between radiative and collisional processes. Here, we examine the role of proton–hydrogen collisions in setting the spin temperature. We use recent fully quantum-mechanical calculations of the relevant cross-sections, which allow us to present accurate results over the entire physically relevant temperature range  1–104  K  . For kinetic temperatures   T K≳ 100 K  , the proton–hydrogen rate coefficient exceeds that for hydrogen–hydrogen collisions by about a factor of 2. However, at low temperatures  ( T K≲ 5 K)  H–H+ collisions become several thousand times more efficient than H–H and even more important than H–e collisions.  相似文献   

20.
We have used the Swedish ESO Submillimeter Telescope to observe the molecular gas in the Circinus galaxy using the CO(1 → 0) transition as a tracer. The central region and major axis have been mapped and several other points were also observed. The gas in the galaxy is concentrated towards the nucleus, the peak being coincident with the radio/optical core. The inclination of the molecular galactic disc is more comparable to that of the radio continuum than to that of the large-scale H  i emission. Evidence for an anomalous spur structure pointing radially away from the galactic centre is presented, and may indicate a causal link between it and similar features seen in optical lines and radio continuum. Our data suggest the presence of a central molecular ring or disc with radius 300 ± 50 pc and a rotation velocity of about 200 km s−1 (assuming i  = 73°). The dynamical mass of the nucleus is estimated to be no greater than 3.9 × 109 M. Assuming that the distribution of gas varies smoothly in the outer regions, we calculate the mass of molecular gas in the galaxy to be at least M mol = 1.1 × 109 M, and the star-forming efficiency to be 11 ± 2 L M−1. These results imply that Circinus is undergoing a massive central starburst which may be, at least partially, responsible for its extended minor axis emission seen in several wavebands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号