首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
T. Gold 《Icarus》1975,25(3):489-491
Grains, an abundant constituent of the former solar system, will have had a high probability of being driven into orbits resonant with major bodies already formed. This arises because of the presence of gas drag and Poynting-Robertson drag on small grains, providing the dissipation necessary to concentrate matter into special orbits. Since the mean density in resonant orbits can be built up by such a process without limit, these may become the favored orbits for gravitational contraction to gather material into major bodies. Satellite formation processes may therefore depend upon the buildup of resonant lanes of dust grains around the parent body. Saturn's rings are possibly one example of such lanes, though an unsuitable one for the final step of satellite formation on account of their being too close to Saturn.  相似文献   

2.
The origin of Phobos and Deimos is considered with a view to accounting for the existence of very small satellites with circular orbits in the Martian equatorial plane, and simultaneously for the suspected angular momentum deficiency of the Mars system. All models considered failed to satisfy at least one requirement, and the problem is considered more puzzling than is at first apparent. The Martian angular momentum deficiency, if physically significant, may be unrelated to the present satellites' origin, but might relate to a large ancient satellite, long ago destroyed. Accretion onto Mars of large amounts of asteroidal dust brought in by Poynting-Robertson drag may have some bearing on the angular momentum problem.  相似文献   

3.
The dynamical evolution of dust particles forming a circumstellar disk around Pictoris is followed by numerical simulations on a Connection Machine. The disk appears to be cleared inside a radius of about 20 AU. We integrate simultaneously the orbits of 8,000 dust particles subjected to Poynting-Robertson drag and perturbed by one alleged planet. The simulations show that a planet revolving about Pictoris at a mean distance of 20 AU with a mass of at least 2 * 10–5 central stellar mass can confine the disk by outer resonance trapping. The azimuthal density distribution of particles which shows very strong variations. appears to be stationary in a frame rotating with the planet.  相似文献   

4.
Francois Mignard 《Icarus》1982,49(3):347-366
The dynamics of small dust grains orbiting a planet are investigated when solar radiation pressure forces are added to the planet's gravitational central field. In the first part a set of differential equations is derived in a reference frame linked to the solar motion. The complete solution of these equations is given for particles lying in the planet's orbital plane, and we show that the orbital eccentricity may undergo considerable variation. At the same time the pericenter longitude librates or circulates according to initial conditions. With this result we establish a criterion for any orbiting particle (because of its highly eccentric orbit) to collide with its planet's atmosphere. The case of inclined orbit is studied through a numerical integration and allows us to draw conclusions related to the stability of the orbital plane. All solutions are periodic, with the period being independent of the initial conditions. This last point permits us to investigate the different time scales involved in that problem. Finally, the Poynting-Robertson drag is included, along with the radial radiation pressure forces, and the secular trend is considered. A coupling effect between the two components is ascertained, yielding a systematic behavior in the eccentricity and thus in the pericenter distance. Our solutions generalize the results of S. J. Peale (1966, J. Geophys. Res.71, 911–933) and J. A. Burns, P. Lamy, and S. Soter (1979, Icarus40, 1–48) by allowing eccentricities to be large (of order 1) and inclinations to be nonzero and by considering Poynting-Robertson drag.  相似文献   

5.
For both asteroids and meteor streams, and also for comets, resonances play a major role for their orbital evolutions but on different time scales. For asteroids both mean motion resonances and secular resonances not only structure the phase space of regular orbits but are mainly at the origin for the inherent chaos of planet crosser objects.For comets and their chaotic routes temporary trapping into orbital resonances is a well known phenomenon. In addition for slow diffusion through the Kuiper belt resonances are the only candidates for originating a slow chaos.Like for asteroids, resonances with Jupiter play a major role for the orbital evolution of meteor streams. Crossing of separatrix like zones appears to be crucial for the formation of arcs and for the dissolution of streams. In particular the orbital inclination of a meteor stream appears to be a critical parameter for arc formation. Numerical results obtained in an other context show that the competition between the Poynting-Robertson drag and the gravitational interaction of grains near the 2/1 resonance might be very important in the long run for the structure of meteor streams.  相似文献   

6.
We review here some relevant problems connected to the evolution of circumstellar dust grains, subjected to Poynting-Robertson (PR) drag, and perturbed by first-order resonances with a planet on a circular orbit. We show that only outer mean motion resonances are able to counteract the damping effect of PR drag. However, the high orbital eccentricities reached by the particle lead to orbit crossings with the planet. This is a serious difficulty for a permanent trapping to be achieved. In any case, we show that the time spent in the resonance is long enough for statistical effects (accumulation at the resonant radius) to be significant. We underline some difficulties associated with this problem, namely, the non-adiabaticity of motion in the resonance phase space and the existence of close encounters with the planet at high eccentricities.  相似文献   

7.
Some natural satellites may have been captured due to the gas drag they experienced in passing through primordial circumplanetary nebulas. This paper models such an encounter and derives the testable parameters from the known properties of current solar system objects and Bodenheimer's (1977, Icarus 31) model of the earliest phases of Jupiter's evolution. We propose that the clusters of prograde and retrograde irregular satellites of Jupiter originated when two parent bodies were decelerated and fragmented as they passed through an extended primordial Jovian nebula. Fragmentation occured because the gas dynamic pressure exceeded the parent bodies' strengths. These events must have occurred only shortly before the primordial nebula experienced hydrodynamical collapse so that subsequently the fragments underwent only limited orbital evolution. Because self-gravity exceeded the relative drag force, the fragments initially remained together, only to be dispersed at a later time by a collision with a stray body. Predictions of this hypothesis, such as orbital distance of the irregular satellites and size of the parent bodies, are found to be consistent with the observed properties of Jupiter's irregular satellites. In addition nebular drag at a later time may have caused the inner three Galilean satellites to undergo a modest amount of orbital evolution, accounting for their present orbital resonance. Gas drag capture of Saturn's Phoebe and Iapetus and Neptune's Nereid and Triton may also be possible. Reasonable differences in properties could explain why these satellites, in contrast to the Jovian ones, did not fracture upon capture. The current irregular satellites represent only a tiny fraction of the bodies captured by primordial nebulas. The dominant fraction would have spiraled into the center of the nebula as a result of continued gas drag and thus offer one source for the heavy element cores of the outer planets. If one is willing to postulate the presence of a massive gaseous nebula around primordial Mars, then gas drag capture could account for the origin of the Martian moons. We hypothesize that a single parent body was captured in a region of the nebula where the gas velocity approached the Keplerian value, that it fragmented upon deceleration into at least two bodies, Phobos and Deimos, and that continued nebular drag led to the low eccentricity and inclination that characterize the satellites' current orbits. Following the dissipation of this nebula, the more massive Phobos tidally evolved to its current position.  相似文献   

8.
The Kelperian motion of dust particles in the solar system is mainly influenced by the electromagnetic and plasma Poynting-Robertson drag. The first force is isotropic while the second one shows latitudinal variations due to the observed differences of the solar wind parameters in the ecliptic plane and over the solar poles. Close to the Sun other effects become important, e.g. sublimation and sputtering, as well as for submicron particles Lorentz scattering has to be taken into account. These forces are very weak for dust grains of moderate size (10–100 µ) not too close (>0.03 AU) to the Sun and are neglected here. Assuming that the general form of the latidudinally dependent force is a series expansion in Legendre polynomials, we have studied the averaged equations of motion for the classical elements and found the first integral of them. The general character of motion is the same as for the classical Poynting-Robertson drag: particles spiral towards the Sun. The new features in the orbital evolution under the latitudinally dependent force as compared with the isotropic Poynting-Robertson drag are:
  1. not only the semimajor axisa and the eccentricity ε but also the argument of the perihelion ω varies with time,
  2. the rate of change ofa, ε, ω depends on the inclination.
An example of particle trajectories in the phase space of elements is presented.  相似文献   

9.
The semimajor axis of the Lageos satellite's orbit is decreasing secularly at the rate of 1.1 mm day–1. Ten possible mechanisms are investigated to discover which one (s), if any, might be causing the orbit to decay. Six of the mechanisms, resonance with the Earth's gravitational field, gravitational radiation, the Poynting-Robertson effect, transfer of spin angular momentum to the orbital angular momentum, drag from near-earth dust, and atmospheric drag by neutral hydrogen are ruled out because they are too small or require unacceptable assumptions to account for the observed rate of decay. Three other mechanisms, the Yarkovsky effect, the Schach effect, and terrestrial radiation pressure give perturbations whose characteristic signatures do not agree with the observed secular decrease (terrestrial radiation pressure appears to be too small in any case); hence they are also ruled out. Charged particle drag with the ions at Lageos's altitude is probably the principal cause of the orbital decay. An estimate of charged particle drag based upon laboratory experiments and satellite measurements of ion number densities accounts for 60 percent of the observed rate of decrease in the semimajor axis, assuming a satellite potential of –1V. This figure is in good agreement with other estimates based on charge drag theory. A satellite potential of –1.5V will explain the entire decay rate. Atmospheric drag from neutral hydrogen appears to be the next largest effect, explaining about 10 percent of the observed orbital decay rate.  相似文献   

10.
Guy Consolmagno 《Icarus》1979,38(3):398-410
Charged dust grains in a turbulent magnetic field will see a Lorentz force due to the convection of the solar magnetic field past them at the solar wind velocity. Since the sign of this magnetic field is randomly varying, the direction of the force will be random, and the net effect will be to randomly scatter the orbital elements of these particles. The square roots of the mean square change in semimajor axis, inclination, and eccentricity are determined as a function of the particles' original orbital elements. Particles 3 μm in radius and smaller will have their motions strongly perturbed or dominated by Lorentz scattering. This scattering will have an effect comparable to, or greater than, the Poynting-Robertson effect on these particles for time scales comparable to their Poynting-Robertson lifetimes.  相似文献   

11.
The temporary capture of the dust grains in the exterior resonances with planets is studied in the frames of the planar circular three-body problem with Poynting-Robertson (PR) drag. For the Earth and particles ~ 10 Μm the resonances 4/5, 5/6, 6/7, 7/8 are shown to be most effective. The capture is only temporary (of order 105 years) and the position of resonance may be calculated from semi-analytical model using averaged disturbing function. These semi-analytical results are confirmed by numerical integration. For various planet this picture changes as with increasing planetary mass the more exterior resonances become more important. We showed that for Jupiter (at least in the space between Jupiter and Saturn) the resonance 1/2 plays the dominant role. The capture time is here several myr but again eccentricity is evolving to eccentricity e 0 ~ 0.48 of libration point for this resonance.  相似文献   

12.
The problem of resonance trapping for particles subject to Poynting-Robertson drag is approached initially from an adiabatic regime theory. A simplified Hamiltonian system is presented for simple eccentricity-type resonances up to order 3, and expressions related to the trapping process are deduced. The fast dissipation provoked by Poynting-Robertson leads to the employment of a numerical approach for the computation of resonance capture probabilities, for particles in the size range of practical importance. Some aspects of the dynamical evolution of a particle after capture are noticed from results of numerical integrations. Analytical methods are used in order to confirm the numerical results.  相似文献   

13.
The effect of the radiation pressure and Poynting-Robertson effect on the evolution of the orbits of geosynchronous satellites is studied, depending on their area to mass ratio. The qualitative changes of the orbital evolution caused by these disturbances are considered. The reflection coefficient of the satellite’s surface was assumed to be 1.44. In the vicinity of the stable point with the longitude of 75° the exit from the libration resonance mode was registered when the area to mass ratio value changed from 5.9 to 6.0 m2/kg; in the vicinity of the unstable point at 345° with the area to mass ratio of 1.4 it occurred at 1.5 m2/kg. Re-entry to Earth occurs at values of the area to mass ratio above 32.2 m2/kg, and hyperbolic exit from the low-Earth orbit occurs at values of the area to mass ratio over 5267 m2/kg. At high values of the area to mass ratio, slopes of initially equatorial orbits can reach 49°. It is shown that due to the Poynting-Robertson effect the secular decrease in the semimajor axis of orbit in libration resonance region is 3–4 orders of magnitude less than outside of it.  相似文献   

14.
Variations of luminosity of the protosun during its Hayashi stage produced variations of its repulsive radiative action on small particles in its vicinity — or, in other words, variations of the effective mass of the protosun. Changes of the effective mass produced changes of size of orbits for particles circling around the protosun. When the luminosity increased, the effect of variable luminosity (EVL) diminished or overbalanced the Poynting-Robertson effect (PRE), hindering the small particles in their drift toward the protosun, and reinforced PRE when the luminosity decreased. An analysis of quasicircular motion of small uncharged particles moving in transparent circumsolar space under both effects — EVL and PRE — is given.  相似文献   

15.
The temporary capture of the dust grains in the exterior resonances with planets is studied in the frames of the planar circular three-body problem with Poynting-Robertson (PR) drag. For the Earth and particles ~ 10 m the resonances 4/5, 5/6, 6/7, 7/8 are shown to be most effective. The capture is only temporary (of order 105 years) and the position of resonance may be calculated from semi-analytical model using averaged disturbing function. These semi-analytical results are confirmed by numerical integration. For various planet this picture changes as with increasing planetary mass the more exterior resonances become more important. We showed that for Jupiter (at least in the space between Jupiter and Saturn) the resonance 1/2 plays the dominant role. The capture time is here several myr but again eccentricity is evolving to eccentricity e 0 ~ 0.48 of libration point for this resonance.  相似文献   

16.
The influence of gas drag and gravitational perturbations by a planetary embryo on the orbit of a planetesimal in the solar nebula was examined. Non-Keplerian rotation of the gas causes secular decay of the orbit. If the planetesimal's orbit is exterior to the perturber's, resonant perturbations oppose this drag and can cause it to be trapped in a stable orbit at a commensurability of order j/(j + 1), where j is an integer. Numerical and analytical demonstrations show that resonant trapping occurs for wide ranges of perturbing mass, planetesimal size, and j. Induced eccentricities are large, causing overlap of orbits for bodies in different resonances with j > 2. Collisions between planetesimals in different resonances, or between resonant and nonresonant bodies, result in their disruption. Fragments smaller than a critical size can pass through resonances under the influence of drag and be accreted by the embryo. This effect speeds accretion and tends to prevent dynamical isolation of planetary embryos, making gas-rich scenarios for planetary formation more plausible.  相似文献   

17.
Asteroidal dust particles resulting from family-forming events migrate from their source locations in the asteroid belt inwards towards the Sun under the effect of Poynting-Robertson (PR) drag. Understanding the distribution of these dust particle orbits in the inner solar system is of great importance to determining the asteroidal contribution to the zodiacal cloud, the accretion rate by the Earth, and the threat that these particles pose to spacecraft and satellites in near-Earth space. In order to correctly describe this distribution of orbits in the inner solar system, we must track the dynamical perturbations that the dust particle orbits experience as they migrate inwards. In a seminal paper Öpik (1951) determines that very few of the μm-cm sized dust particles suffer a collision with the planet face as they decay inwards past Mars. Here we re-analyze this problem, considering additionally the likelihood that the dust particle orbits pass through the Hill sphere of Mars (to various depths) and experience potentially significant perturbations to their orbits. We find that a considerable fraction of dust particle orbits will enter the Hill sphere of Mars. Furthermore, we find that there is a bias with inclination, particle size, and eccentricity of the particle orbits that enter the Martian Hill sphere. In particular the bias with inclination may create a bias towards higher-inclination sources in the proportions of asteroid family particles that reach near-Earth space.  相似文献   

18.
In analysing the orbit of Ariel 1 to determine upper-atmosphere winds, it was observed that the orbital inclination underwent a noticeable perturbation in November 1969 at the 29:2 resonance with the Earth's gravitational field, when the satellite track over the Earth repeats every 2 days after 29 revolutions. The variations in the inclination and eccentricity of the orbit between July 1969 and February 1970 have now been analysed, using 35 US Navy orbits, and fitted with theoretical curves to obtain lumped values of 29th-order harmonic coefficients in the geopotential.  相似文献   

19.
Compared with the other terrestrial planets, Mercury has anomalously low mass and high iron content. Equilibrium condensation and inhomogeneous accretional models are not compatible with these properties, unless the solar nebula's thermal structure and history meet stringent conditions. Also, such models predict a composition which does not allow a presently molten core. It appears that most of the solid matter which originally condensed in Mercury's zone has been removed. The planet's composition may be explained if the removal process was only slightly more effective for silicates than for iron. It is proposed that planetesimal orbits in the inner solar nebula decayed because of gas drag. This process is a natural consequence of the non-Keplerian rotation of a centrally condensed nebula. A simple quantitative model shows good agreement with the observed mass distribution of the terrestrial planets. The rate of orbital decay is slower for larger and/or denser bodies, because of their smaller area-to-mass ratios. With plausible assumptions as to planetesimal sizes and compositions, this process can produce fractionation of the sense required to produce an iron-rich planet. Cosmogonical implications are discussed.  相似文献   

20.
We present a comprehensive examination of Jupiter's “gossamer” rings based on images from Voyager, Galileo, the Hubble Space Telescope and the W.M. Keck Telescope. We compare our results to the simple dynamical model of Burns et al. [Burns, J.A., Showalter, M.R., Hamilton, D.P., Nicholson, P.D., de Pater, I., Ockert-Bell, M., Thomas, P., 1999. Science 284, 1146-1150] in which dust is ejected from Amalthea and Thebe and then evolves inward under Poynting-Robertson drag. The ring follows many predictions of the model rather well, including a linear reduction in thickness with decreasing radius. However, some deviations from the model are noted. For example, additional material appears to be concentrated just interior to the orbits of the two moons. At least in the case of Amalthea's ring, that material is in the same orbital plane as Amalthea's inclined orbit and may be trapped at the Lagrange points. Thebe's ring shows much larger vertical excursions from the model, which may be related to perturbations by several strong Lorentz resonances. Photometry is consistent with the dust obeying a relatively flat power-law size distribution, very similar to dust in the main ring. However, the very low backscatter reflectivity of the ring, and the flat phase curve of the ring at low phase angles, require that the ring be composed of distinctly non-spherical particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号