首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Venera 8 descent module measured pressure, temperature, winds and illumination as a function of altitude in its landing on July 22, 1972, just beyond the terminator in the illuminated hemisphere of Venus. The surface temperature and pressure is 741 ± 7°K and 93 ± 1.5kgcm?2, consistent with early Venera observations and showing either no diurnal variation or insignificant diurnal variation in temperature and pressure in the vicinity of the morning terminator. The atmosphere is adiabatic down to the surface. The horizontal wind speed is low near the surface, about 35m/sec between 20 and 40km altitude, and increasing rapidly above 48km altitude to 100–140m/sec, consistent with the 4-day retrograde rotation of the ultraviolet clouds. The illumination at the center of the day hemisphere of Venus is calculated to be about 1% of the solar flux at the top of the atmosphere, consistent with greenhouse models and high enough to permit photography of the Venus surface by future missions. The attenuation below 35km altitude is explained by Rayleigh scattering with no atmospheric aerosols; above 35km there must be substantial extinction of incident light.  相似文献   

2.
An infrared heterodyne spectrometer with a resolving power of 6 × 106 has been used to obtain detailed profiles of the 10-μm absorption lines of CO2 in the atmosphere of Mars. An analysis of the results with an empirical model atmosphere calculation indicates a nearly pure CO2 atmosphere with an average surface pressure of 5.2 ± 0.5 mbar in the observed regions, a subsolar surface temperature near 275°K, an atmospheric temperature of 235 to 240°K above the subsolar point, and a lapse rate of 2°K/km.  相似文献   

3.
Eighty-seven measurements of the thermal structure in the atmosphere of Venus between the altitudes of about 40 and 85 km were derived from Pioneer Venus Orbiter radio occultation data taken during four occultation seasons from December 1978 to October 1981. These measurements cover latitudes from ?68 to 88° and solar zenith angles of 8 to 166°. The results indicate that the characteristics of the thermal structure in both the troposphere and stratosphere regions are dependent predominantly on the latitude and only weakly on solar illumination conditions. In particular, the circumpolar collar cloud region in the northern hemisphere (latitude 55 to 77°) displays the most dramatic changes in structure, including the appearance of a large inversion, having an average magnitude of about 18°K and a maximum of about 33°K. Also in this region, the tropopause altitude rises by about 4.8 km above its value at low latitudes, the tropopause temperature drops by about 60°K, and the pressure at the tropopause decreases by an average of about 240 mbar. These changes in the collar region are correlated with observations of increased turbulence and greater amplitude of thermal waves in the region, which is located where the persistent circulation pattern in the Venus atmosphere changes from zonally symmetric retrograde rotation to a hemispherical circumpolar vortex. It was shown that the large zonal winds associated with this circulation pattern are not likely to produce distortions in the atmosphere of a magnitude that could lead to temperature errors of the order of the mesosphere inversions observed in the collar region, but under certain circumstances zonal wind distortion could cause errors of 3–4°K.  相似文献   

4.
《Planetary and Space Science》2006,54(13-14):1298-1314
The planetary fourier spectrometer (PFS) for the Venus Express mission is an infrared spectrometer optimized for atmospheric studies. This instrument has a short wavelength (SW) channel that covers the spectral range from 1700 to 11400 cm−1 (0.9–5.5 μm) and a long wavelength (LW) channel that covers 250–1700 cm−1 (5.5–45 μm). Both channels have a uniform spectral resolution of 1.3 cm−1. The instrument field of view FOV is about 1.6 ° (FWHM) for the short wavelength channel and 2.8 ° for the LW channel which corresponds to a spatial resolution of 7 and 12 km when Venus is observed from an altitude of 250 km. PFS can provide unique data necessary to improve our knowledge not only of the atmospheric properties but also surface properties (temperature) and the surface-atmosphere interaction (volcanic activity).PFS works primarily around the pericentre of the orbit, only occasionally observing Venus from larger distances. Each measurements takes 4.5 s, with a repetition time of 11.5 s. By working roughly 1.5 h around pericentre, a total of 460 measurements per orbit will be acquired plus 60 for calibrations. PFS is able to take measurements at all local times, enabling the retrieval of atmospheric vertical temperature profiles on both the day and the night side.The PFS measures a host of atmospheric and surface phenomena on Venus. These include the:(1) thermal surface flux at several wavelengths near 1 μm, with concurrent constraints on surface temperature and emissivity (indicative of composition); (2) the abundances of several highly-diagnostic trace molecular species; (3) atmospheric temperatures from 55 to 100 km altitude; (4) cloud opacities and cloud-tracked winds in the lower-level cloud layers near 50-km altitudes; (5) cloud top pressures of the uppermost haze/cloud region near 70–80 km altitude; and (6) oxygen airglow near the 100 km level. All of these will be observed repeatedly during the 500-day nominal mission of Venus Express to yield an increased understanding of meteorological, dynamical, photochemical, and thermo-chemical processes in the Venus atmosphere. Additionally, PFS will search for and characterize current volcanic activity through spatial and temporal anomalies in both the surface thermal flux and the abundances of volcanic trace species in the lower atmosphere.Measurement of the 15 μm CO2 band is very important. Its profile gives, by means of a complex temperature profile retrieval technique, the vertical pressure-temperature relation, basis of the global atmospheric study.PFS is made of four modules called O, E, P and S being, respectively, the interferometer and proximity electronics, the digital control unit, the power supply and the pointing device.  相似文献   

5.
The interpretation of unexpected characteristics of Pioneer Venus temperature measurements, and of the large difference between these and the Venera results, is aided by new Venus temperature profiles derived from engineering measurements of the Pioneer Venus Small-Probe Net Flux Radiometer (SNFR) instruments. To facilitate correction of a temperature-dependent radiometric response, these instruments monitored the temperatures of their deployed radiation detectors. The accurate calibration of the temperature sensors, and their strong thermal coupling to the atmosphere, make it possible to deduce atmospheric temperatures within 2°K (at most altitudes) using a simple two-component thermal model to account for lag effects. These independent temperature profiles generally confirm to high accuracy, the small-probe results of A. Seiff, D. B. Kirk, R. E. Young, R. C. Blanchard, J. T. Findlay, G. M. Kelly, and S. C. Sommer (1980a, J. Geophys. Res.85, pp. 7903–7933) concerning vertical structure and horizontal contrast in the lower atmosphere, although the stable layer below 25 km is found to be slightly more stable (by about 0.4°K/km) and absolute temperatures are an average of 2°K higher. The measured Day-Night thermal contrast is compatible with predicted responses to the diurnal variation in solar heating, except near the cloud base, where 3–5°K differences may be due to thermal radiative heating differences associated with different cloud opacities. Temperature contrasts between latitudes 30 and 60° are roughly consistent with cyclostrophic balance. But pressure and temperature measurements by the Pioneer Venus Sounder probe at 4° latitude, when compared to Small-probe results, imply unreasonably large equatorward accelerations of 100 (m/sec)/day. Poleward accelerations compatible with cyclostrophic balance can be obtained if Sounder-probe temperatures are increased by a scale-factor correction reaching 6–7°K at 13 km.  相似文献   

6.
A. Seiff  Donn B. Kirk 《Icarus》1982,49(1):49-70
Data on the thermal structure of the nightside middle atmosphere of Venus, from 84 to 137 km altitude, have been obtained from analysis of deceleration measurements from the third Pioneer Venus small probe, the night probe, which entered the atmosphere near the midnight meridian at 27°S latitude. Comparison of the midnight sounding with the morning sounding at 31°S latitude indicates that the temperature structure is essentially diurnally invariant up to 100 km, above which the nightside structure diverges sharply from the dayside toward lower temperatures. Very large diurnal pressure differences develop above 100 km with dayside pressure ten times that on the nightside at 126 km altitude. This has major implications for upper atmospheric dynamics. The data are compared with the measurements of G. M. Keating, J. Y. Nicholson, and L. R. Lake (1980, J. Geophys. Res., 85, 7941–7956) above 140 km with theoretical thermal structure models of Dickinson, and with data obtained by Russian Venera spacecraft below 100 km. Midnight temperatures are ~ 130°K, somewhat warmer than those reported by Keating et al.  相似文献   

7.
The abundance of HDO above the clouds in the dayside atmosphere of Venus was measured by ground-based 2.3 μm spectroscopy over 4 days. This is the first HDO observation above the clouds in this wavelength region corresponding to a new height region. The latitudinal distributions found show no clearly defined structure. The disk-averaged mixing ratio is 0.22 ± 0.03 ppm for a representative height region of 62–67 km. This is consistent with measurements found in previous studies. Based on previous H2O measurements, the HDO/H2O ratio is found to be 140 ± 20 times larger than the telluric ratio. This lies between the ratios of 120 ± 40 and 240 ± 25, respectively, reported for the 30–40 km region by ground-based nightside spectroscopy and for the 80–100 km region by solar occultation measurement on board the Venus Express.  相似文献   

8.
Submillimeter line observations of CO in the Venus middle atmosphere (mesosphere) were observed with the James Clerk Maxwell Telescope (JCMT, Mauna Kea) about the May 2000, February 2002 superior and July 1999, March 2001 inferior conjunctions of Venus. Combined 12CO and 13CO isotope spectral line measurements at 345 and 330 gHz frequencies, respectively, provided enhanced sensitivity and vertical coverage for simultaneous retrievals of atmospheric temperatures and CO mixing ratios over the altitude region 75-105 km with vertical resolution 4-5 km. Supporting millimeter 12CO spectral line observations with the Kitt Peak 12-m telescope (Steward Observatories) provide enhanced temporal coverage and CO mixing sensitivity. Implementation of CO/temperature profile retrievals for the 2000, 2002 dayside (superior conjunction) and 1999, 2001 nightside (inferior conjunction) periods yields a first-time definition of the vertical structure and diurnal variation of a low-to-mid-latitude mesopause within the Venus atmosphere. At the times of these 1999-2002 observations, the Venus mesopause was located at a slightly lower level in the nightside (0.5 mbar, ∼87 km) versus the dayside (0.2 mbar, ∼91 km) atmosphere. Average diurnal variation of Venus mesospheric temperatures appears to be ≤ 5 K at and below the mesopause. Diurnal variation of Venus thermospheric temperatures increases abruptly just above the mesopause, reaching 50 K by the 0.01-mbar pressure level (∼102 km). Atmospheric temperatures above and below the Venus mesopause exhibited global-scale (≥4000 km horizontal) variations of large amplitude (7-15 K) on surprisingly short timescales (daily to monthly) during the 2001 nightside and 2002 dayside observing periods. Venus dayside mesospheric temperatures observed during the 2002 superior conjunction were also 10-15 K warmer than observed during the 2000 superior conjunction. A characteristic timescale for these global temperature variations is not defined, but their magnitude is comparable to previous determinations of secular variability in nightside mesospheric temperatures (Clancy and Muhleman, 1991).  相似文献   

9.
Nonthermal emission occurs in the cores of the 9.4- and 10.4-μm CO2 bands on Mars, and has been recently identified as a natural atmospheric laser. This paper presents observations of the total flux and center-to-limb dependence of this emission for Mars and Venus. The emission is believed to be excited by absorption of solar flux in the near-ir CO2 bands, followed by collisional transfer to the 00°1 state of CO2. A comparison is made between the observations and a detailed theoretical model based on this mechanism. It is found that the theoretical model successfully reproduces the observed center-to-limb dependence of this emission, to within the limits imposed by the spatial resolution of the observations. A comparison is also made between the observed fluxes and the predictions of the theoretical models. The observed flux from Mars agrees closely with the prediction of the model; the flux observed from Venus is 74% of the flux predicted by the model. This emission is utilized to obtain the kinetic temperatures of the Martian and Venusian mesospheres. For Mars near 70 km altitude, a rotational temperature analysis using five lines gives T = 135 ± 20°K. The frequency width of the emission is also analyzed to derive a temperature of 126 ± 6°K. In the case of the Venusian mesosphere near 109 km, the frequency width of the emission gives T = 204 ± 10°K.  相似文献   

10.
The results of the investigation of two regions of Venus by bistatic radiolocation are presented. The experiments were carried out at wavelength λ0 = 32 cm. Maps of the distribution of reflectivity were obtained and characteristics of the relief, dielectric permittivity, soil density, and refraction attenuation in the atmosphere were measured. The value of the dispersion of small-scale slopes in the observed regions, γ, varies between 0.4 and 2.2°. There are some features on the reflectivity maps. Some of these features may correspond to mountain slopes with values in the range 2 to 8°. Corresponding changes of relief heights are contained in the interval 0.8 to 2.6 km. The features are found within the region (in the venerocentric IAU system): ?26.5 to 25.0° latitude and 220.0?239.2° longitude. One area was revealed with large values of permittivity in the range 6.5–7.5, and soil density between 2.7 and 2.9 g/cm3. The center of this area is located at ?23.5° latitude and 230.4° longitude. The extent of this region is 80 km. The results of measurements of the refraction angle and the refraction attenuation of radio waves are in good agreement with the parameters of the atmosphere of Venus received from the Soviet landers.  相似文献   

11.
《Planetary and Space Science》2007,55(12):1701-1711
The Venus Express mission will focus on a global investigation of the Venus atmosphere and plasma environment, while additionally measuring some surface properties from orbit. The instruments PFS and SPICAV inherited from the Mars Express mission and VIRTIS from Rosetta form a powerful spectrometric and spectro-imaging payload suite. Venus Monitoring Camera (VMC)—a miniature wide-angle camera with 17.5° field of view—was specifically designed and built to complement these experiments and provide imaging context for the whole mission. VMC will take images of Venus in four narrow band filters (365, 513, 965, and 1000 nm) all sharing one CCD. Spatial resolution on the cloud tops will range from 0.2 km/px at pericentre to 45 km/px at apocentre when the full Venus disc will be in the field of view. VMC will fulfill the following science goals: (1) study of the distribution and nature of the unknown UV absorber; (2) determination of the wind field at the cloud tops (70 km) by tracking the UV features; (3) thermal mapping of the surface in the 1 μm transparency “window” on the night side; (4) determination of the global wind field in the main cloud deck (50 km) by tracking near-IR features; (5) study of the lapse rate and H2O content in the lower 6–10 km; (6) mapping O2 night-glow and its variability.  相似文献   

12.
Data processing and interpretation of the nephelometer measurements made in the Venus atmosphere aboard the Venera 9, 10 and 11 landers in the sunlit hemisphere near the equator are discussed. These results were used to obtain the aerosol distribution and its microphysical properties from 62 km to the surface. The main aerosol content is found in the altitude range between 62 km (where measurements began) and 48 km, the location of the cloud region. Three prominent layers labeled as I (between 62 and 57 km), II (between 57 and 51 km) and III (between 51 and 48 km), each with different particle characteristics are discovered within the clouds. The measured light-scattering patterns can be intrepreted as having been produced by particles with effective radii from 1 to 2 μm depending on height and indices of refractivity from 1.45 in layer I to 1.42 in layer III. These values do not contradict the idea that the droplets are made of sulfuric acid. In layers II and III the particle size distribution is at least bimodal rather than uni-modal. The index of refraction is found to decrease to 1.33 in the lower part of layer II, suggesting a predominant abundance of larger particles of different chemical origin, and chlorine compounds are assumed to be relevant to this effect. In the entire heightrange of the Venera 9–11 craft descents, the clouds are rather rarefied and are characterized by a mean volume scattering coefficient σ ~ 2 × 10?5 cm?1 that corresponds to the mean meteorological range of visibility of about 2 km. The average mass content of condensate is estimated to be equal to 4 × 10?9 g/cm3, and the total optical depth of clouds to τ ~ 35. Near the bottom of layer III clouds are strongly variable. In the subcloud atmosphere a haze was observed between 48 and 32 km; that haze is mainly made of submicron particles, reff ~ 0.1μm. The atmosphere below that is totally transparent but separate (sometimes possibly disappearing) layers may be present up to a height of 8 km above the surface. A model of this region with a very low particle density (N ? 2–3 cm?3) strongly refractive large particles (reff ? 2.5 μm; 1.7 < n < 2.0) provided satisfactory agreement. The optical depth of aerosol in the atmosphere below the subcloud haze does not exceed 2.5.  相似文献   

13.
Andrew T. Young 《Icarus》1977,32(1):1-26
A simple radiative-transfer theory that allows for the change in the absorptions of sulfur and carbon dioxide with depth in the atmosphere of Venus can account simultaneously for (1) the spectral reflectance of Venus; (2) the wavelength dependence of contrast in uv cloud features; (3) the CO2 line profile; (4) the change in slope of the curve of growth from the 7820- to the 10488-Å CO2 bands; and (5) the rotational temperature near 246°K found for all CO2 bands. The model cloud consists of 1-μm sulfuric-acid particles, which are well mixed between about 64 km and the 49-km cloud base found by Veneras 9 and 10, plus an overlapping cloud of much larger sulfur particles that extends down to the 35-km cloud base found by Venera 8. The mixing ratios (by number of molecules) below about 64 km are: H2O, 2 × 10?4; H2SO4, 10?5; and sulfur, 10?4. Although the cloud contains an order of magnitude more sulfur than sulfuric acid, the sulfur particles are an order of magnitude larger, and so have only about 1% of the number density of the acid droplets. The “black-white” radiative-transfer model assumes perfectly conservative scattering above the level (which depends on wavelength) where an absorber becomes “black” due to the local temperature and pressure. So-called homogeneous scattering models are inherently self-contradictory, and are inapplicable to planetary atmospheres; the vertical inhomogeneity is an essential feature that must be modeled correctly. The pressure of CO2 line formation is about half the pressure in the region where uv markings occur.  相似文献   

14.
A one-dimensional radiative-convective model is used to compute temperature and water vapor profiles as functions of solar flux for an Earth-like atmosphere. The troposphere is assumed to be fully saturated, with a moist adiabatic lapse rate, and changes in cloudiness are neglected. Predicted surface temperatures increase monotonically from ?1 to 111°C as the solar flux increased from 0.81 to 1.45 times its present value. Surface temperatures corresponding to high solar fluxes may be underestimated, however, owing to neglect of H2O continuum absorption outside of the 8- to 12-μm window region. These results imply that the surface temperature of a primitive water-rich Venus should have been at least 80–100°C and may have been much higher. The existence of liquid water at the surface depends on poorly known aspects of H2O continuum absorption and on uncertainties concerning relative humidity and cloudiness. In any case, water vapor should have been a major atmospheric constituent at all altitudes, leading to the rapid hydrodynamic escape of hydrogen. The oxygen left behind by this process was presumably consumed by reactions with reduced minerals in the crust. Both the loss of oxygen and the presently observed enrichment of the deuterium-to-hydrogen ratio are most easily explained if oceans of liquid water were initially present.  相似文献   

15.
Two coherently related radio signals transmitted from Voyager 1 at wavelengths of 13 cm (S-band) and 3.6 cm (X-band) were used to probe the equatorial atmosphere of Titan. The measurements were conducted during the occultation of the spacecraft by the satellite on November 12, 1980. An analysis of the differential dispersive frequency measurements did not reveal any ionization layers in the upper atmosphere of Titan. The resolution was approximately 3 × 103 and 5 × 103 electrons/cm3 near the evening and morning terminators, respectively. Abrupt signal changes observed at ingress and egress indicated a surface radius of 2575.0 ± 0.5 km, leading to a mean density of 1.881 ± 0.002 g cm?3 for the satellite. The nondispersive data were used to derive profiles in height of the gas refractivity and microwave absorption in Titan's troposphere and stratosphere. No absorption was detected; the resolution was about 0.01 dB/km at the 13-cm wavelength. The gas refractivity data, which extend from the surface to about 200 km altitude, were interpreted in two different ways. In the first, it is assumed that N2 makes up essentially all of the atmosphere, but with very small amounts of CH4 and other hydrocarbons also present. This approach yielded a temperature and pressure at the surface of 94.0 ± 0.7°K and 1496 ± 20 mbar, respectively. The tropopause, which was detected near 42 km altitude, had a temperature of 71.4 ± 0.5°K and a pressure of about 130 mbar. Above the tropopause, the temperature increased with height, reaching 170 ± 15°K near the 200-km level. The maximum temperature lapse rate observed near the surface (1.38 ± 0.10°K/km) corresponds to the adiabatic value expected for a dry N2 atmosphere—indicating that methane saturation did not occur in tbis region. Above the 3.5-km altitude level the lapse rate dropped abruptly to 0.9 ± 0.1°K/km and then decreased slowly with increasing altitude, crossing zero at the tropopause. For the N2 atmospheric model, the lapse rate transition at the 3.5-km level appears to mark the boundary between a convective region near the surface having the dry adiabatic lapse rate, and a higher stable region in radiative equilibrium. In the second interpretation of the refractivity data, it is assumed, instead, that the 3.5 km altitude level corresponds to the bottom of a CH4 cloud layer, and that N2 and CH4 are perfectly mixed below this level. These assumptions lead to an atmospheric model which below the clouds contains about 10% CH4 by number density. The temperature near the surface is about 95°K. Arguments concerning the temperature lapse rates computed from the radio measurements appear to favor models in which methane forms at most a limited haze layer high in the troposphere.  相似文献   

16.
R.T. Clancy  D.O. Muhleman 《Icarus》1985,64(2):157-182
Microwave spectra of carbon monoxide (12CO) in the mesosphere of Venus were measured in December 1978, May and December 1980, and January, September, and November 1982. These spectra are analyzed to provide mixing profiles of CO in the Venus mesosphere and best constrain the mixing profile of CO between ~ 100 and 80 km altitude. From the January 1982 measurement (which, of all our spectra, best constrains the abundance of CO below 80 km altitude) we find an upper limit for the CO mixing ratio below 80 km altitude that is two to three times smaller than the stratospheric (~65 km) value of 4.5 ± 1.0 × 10?5 determined by P. Connes, J. Connes, L.D. Kaplan, and W. S. Benedict (1968, Astrophys. J.152, 731–743) in 1967, indicating a possible long-term change in the lower atmospheric concentration of CO. Intercomparison among the individual CO profiles derived from our spectra indicates considerable short-term temporal and/or spatial variation in the profile of CO mixing in the Venus mesosphere above 80 km. A more complete comparison with previously published CO microwave spectra from a number of authors specifies the basic diurnal nature of mesospheric CO variability. CO abundance above ~ 95 km in the Venus atmosphere shows approximately a factor of 2–4 enhancement on the nightside relative to the dayside of Venus. Peak nightside CO abundance above ~95 km occurs very near to the antisolar point on Venus (local time of peak CO abundance above ~95 km occurs at 0.6?0.6+0.7 hr after midnight on Venus), strongly suggesting that retrograde zonal flow is substantially reduced at an altitude of 100 km in the Venus mesosphere. In contrast, CO abundances between 80 and 90 km altitude show a maximum that is shifted from the antisolar point toward the morningside of Venus (local time of peak CO abundance between 80 and 90 km occurs at 8.5 ± 1.0 hr past midnight on Venus). The magnitude of the diurnal variation of CO abundance between 80 and 90 km is again, approximately a factor of 2–4. Disk-averaged spectra of Venus do not determine the exact form for the diurnal distribution of CO in the Venus mesosphere as indicated by comparison of synthetic spectra, based upon model distributions, and the measured spectra. However, the offset in phase for the diurnal variation for the >95 km and 80–90-km-altitude regions requires an asymmetric (in solar zenith angle) distribution.  相似文献   

17.
New data about the top clouds of Venus were obtained during the radiometric experiment on-board the Venera 9 and Venera 10 orbiters. A diurnal component of the ir thermal radiation was determined for the latitude range ?40, +50°. The brightness temperature of radiation referred to the normal was measured; it was 244°K at night and 239°K at the subsolar point for the 7- to 13-, 17- to 30-μm bands. Minimum temperatures correspond to the meridian of local time 16.00h and are 232°K. There is also a zone of lower temperatures in the region of local time 7.5h. Absolute temperatures were measured with an accuracy of ?1.9°+1.2°. Thermal radiation has no distinct latitudinal dependence but has a day-night asymmetry, with the night radiation flux exceeding that on the day side by 17%. The limb-darkening law for thermal radiation is rather complicated, depending on the time of day. There are at least two states of the radiating cloud cover: day and night. The extinction coefficient is close to 0.24 km?1. The analysis shows that the source function of the medium is close to Planck's function. During the day the flux of thermal radiation is assumed to be weakened by an aerosol medium forming by photochemical processes. Comparison of experimental and calculated data yields a particle concentration in the radiating cloud cover of about 95 cm?3. Experimental data and the results of ground-based measurements were used to determine the radiometric albedo of Venus, 0.79?0.01+0.02.  相似文献   

18.
A. Seiff 《Icarus》1982,51(3):574-592
The state properties observed by Pioneer Venus experiments in Venus' mesosphere and thermosphere impose constraints on the dynamics at those altitudes and, in fact, suggest a very vigorous dynamics, by virtue of the extremely large day-night pressure contrasts. At both the morning and evening terminators, these are directed to accelerate the flow from the day hemisphere to the night, and are thus consistent with subsolar to antisolar circulation, possibly somewhat unsymmetrical. There is a major vertical contraction of the atmosphere above 100 km as it crosses the terminators, associated with the nightside cooling. Flow across both terminators is thus descending, but at rather gentle angles (~0.003 rad), and there is a consequent downward transport of composition from the dayside to the nightside. The pressure differences and gravitational acceleration in the descending flow are sufficient to generate supersonic speeds in the flow crossing the terminator in the absence of viscosity. However, the equation of continuity cannot be satisfied with such high velocities, given the measured state properties. This is interpreted to be evidence for strong viscous deceleration and dissipation at the 110 to 120-km level, and possibly extending above 120 km. The viscosity required is that of turbulent motion, rather than laminar. It is noteworthy that the basic dynamic models of Dickinson and Ridley are for laminar viscosity. With moderate flow velocities approaching the terminator (~65 m/sec), as measured by A.L. Betz et al. (1977, Proceedings, Symposium on Planetary Atmospheres, pp. 29–33), and for an essentially unaccelerated flow crossing the terminator in the presence of viscous dissipation, as indicated by the continuity equation applied to the data, the observed nightside cooling below 140 km was found to be approximately that given by the 15-μm CO2 band radiative cooling model of R.E. Dickinson (1976, Icarus27, 479–493). This may be an indirect indication that the velocities are indeed low (i.e., less than 100 m/sec) in the subsolar-antisolar circulation, and are kept low by viscous forces. Calculations based on R.E. Dickinson and E.C. Ridley's equations (1977, Icarus30, 163–178) indicate that the radiative cooling continues into the nightside at a level sufficient to approximate the observed cooling zone width. Above 140 km, where CO2 becomes a minor constituent, another cooling mechanism is needed. It is suggested that this could be vertical diffusion with long mean free path, accompanied by exchange of thermal for potential energy. This could become important on the nightside above 140 km, where the mean free path λ ~ 0.5 km, and λg/cp ~ 5°K. Below 100 km, pressures depend primarily on latitude, which, on the basis of similar conditions in the deeper atmosphere, suggests zonal flow in cyclostrophic balance. Under this assumption, pressure differences between 30 and 60° latitude indicate a peak zonal velocity of ~130 m/sec at the cloud tops. The veocity decreases above this level toward zero near 90 km. The wind profile from the north and night probes is generally similar to that obtained earlier from north-day probe pressure differences. The pressure data thus suggest the existence of two dynamical regimes, a primarily subsolar-antisolar regime above 100 km, and a cyclostrophically balanced zonal regime below 100 km, which is an upward continuation of the circulation regime of the atmosphere below the clouds.  相似文献   

19.
The interplanetary mission, Venera-D, which is currently being planned, includes a lander. For a successful landing, it is necessary to estimate the frequency distributions of slopes of the Venusian surface at baselines that are comparable with the horizontal dimensions of lander (1–3 m). The available data on the topographic variations on Venus preclude estimates of the frequency of the short-wavelength slopes. In our study, we applied high-resolution digital terrain models (DTM) for specific areas in Iceland to estimate the slopes on Venus. The Iceland DTMs have 0.5 m spatial and 0.1 m vertical resolution. From the set of these DTMs, we have selected those that morphologically resemble typical landscapes on Venus such as tessera, shield, regional, lobate, and smooth plains. The mode of the frequency distribution of slopes on the model tessera terrain is within a 30°–40° range and a fraction of the surface has slopes <7°, which is considered as the upper safety limit. This is the primary interest. The frequency distribution of slopes on the model tessera is not changed significantly as the baseline is changed from 1 m to 3 m. The terrestrial surfaces that model shield and regional plains on Venus have a prominent slope distribution mode between 8°–20° and the fraction of the surfaces with slopes <7° is less than 30% on both 1 m and 3 m baselines. A narrow, left-shifted histogram characterizes the model smooth plains surfaces. The fraction of surfaces with slopes <7° is about 65–75% for the shorter baseline (1 m). At the longer baseline, the fraction of the shallow-sloped surfaces is increased and fraction of the steep slopes is decreased significantly. The fraction of surfaces with slopes <7° for the 3-m baseline is about 75–88% for the terrains that model both lobate and smooth plains.  相似文献   

20.
Properties of acoustic-gravity waves in the upper atmosphere of Venus are studied using a two-fluid model which includes the effects of wave-induced diffusion in a diffusively separated atmosphere. In conjunction with neutral mass spectrometer data from the Pioneer Venus orbiter, the theory should provide information on the distribution of wave sources in the Venus upper atmosphere. Observed wave structure in species density measurements should generally have periods ?30–35 min, small N2, CO, and O amplitudes, and highly variable phase shifts relative to CO2. A near resonance may exist between downward phase-propagating internal gravity and diffusion waves near the 165-km level at periods near 29 min. As a result, if very large He wave amplitudes are observed near this level, it will indicate that the wave source is below the 150- to 175-km level and that the exospheric temperature is close to 350°K. Wave energy dissipation may be an important mechanism for heating of the nightside Venus thermosphere. Large-density oscillations in stratospheric cloud layer constituents are also possible and may be detectable by the Pioneer Venus large probe neutral mass spectrometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号