首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 4th IPCC report highlights the increased vulnerability of the coastal areas from floods due to sea-level rise (SLR). The existing coastal flood control structures in Bangladesh are not adequate to adapt these changes and new measures are urgently necessary. It is important to determine the impacts of SLR on flooding to analyse the performance of the existing structures and corresponding impact to plan for suitable adaptation and mitigation measures to reduce the impacts of floods on coastal zone. The study aims to develop a comprehensive understanding of the possible effects of SLR on floods in the coastal zone of Bangladesh. A hydrodynamic model, which is a combination of surface and river parts, was utilized for flood simulation. The tool was applied under a range of future scenarios, and results indicate both spatial variability of risk and changes in flood characteristics between now and under SLR. Estimated impact on population, infrastructure and transportation is also exposed. These types of impact estimation would be of value to flood plain management authorities to minimize the socio-economic impact.  相似文献   

2.
Forest fire can modify and accelerate the hydrological response of Mediterranean basins submitted to intense rainfall: during the years following a fire, the effects on the hydrological response may be similar to those produced by the growth of impervious areas. Moreover, climate change and global warming in Mediterranean areas can imply consequences on both flash flood and fire hazards, by amplifying these phenomena. Based on historical events and post-fire experience, a methodology to interpret the impacts of forest fire in terms of rainfall-runoff model parameters has been proposed. It allows to estimate the consequences of forest fire at the watershed scale depending on the considered burned area. In a second stage, the combined effect of forest fire and climate change has been analysed to map the future risk of forest fire and their consequence on flood occurrence. This study has been conducted on the Llobregat river basin (Spain), a catchment of approximately 5,000 km2 frequently affected by flash floods and forest fires. The results show that forest fire can modify the hydrological response at the watershed scale when the burned area is significant. Moreover, it has been shown that climate change may increase the occurrence of both hazards, and hence, more frequent severe flash floods may appear.  相似文献   

3.
Floods are a major natural hazard, with vast implications over a wide range of socio-economic activities. A harmonized post-flood classification is critical for a better understanding of this hazard, by providing homogeneous flood catalogues for future research on triggering mechanisms. We apply a flood severity index (FSI) to damaging floods in Northern Portugal over a 152-year period (1865–2016) and identify the most critical areas to flood occurrences. The index is a damage-based post-event assessment tool, which includes five categories ranging from minor flooding (1) to catastrophic flooding (5). FSI is applied to a historical damaging flood database with 2318 occurrences. In Northern Portugal, serious floods (3) are the most frequent typology, while catastrophic floods are typically river floods occurring in the Douro basin. Overall, damaging flood occurrences are favoured by the positive phase of the East Atlantic pattern and by the negative phase of the North Atlantic Oscillation. Furthermore, the north-western areas reveal higher concentrations of damaging flood occurrences, mainly due to higher population density, higher precipitation values and more flood plain areas. In particular, 48% of all occurrences are concentrated in the Porto Metropolitan Area, mainly the Porto city centre and nearby riverside areas of the Douro River. High-population density and heavily urbanized areas lead to greater exposure to flood risk, whereas the most peripheral municipalities, with large agricultural/forested areas, show much lower numbers of damaging floods. FSI is tool to communicate the magnitude of the flood risk and is, therefore, of foremost relevance to civil protection and risk management.  相似文献   

4.
Flood hazard in Hungary: a re-assessment   总被引:1,自引:0,他引:1  
Some decades ago the concept of flood hazard in the Carpathian Basin was interpreted solely as riverine flood hazard, mostly restricted to the Tisza and Danube Rivers, and was closely associated with the impacts of river flow regulation in the second half of the 19th century. Recent assessments, however, allow us to outline a more diverse picture. Climate change is predicted to bring about both an increase in the frequency of droughts and excessive rainfall events, resulting in irregulaties in the water regimes of rivers in Hungary. Excess water hazard from raised groundwater levels is found to affect much larger areas than previously thought. Recent strongly localized cloudbursts, point to the increasing significance of flash floods.Riverine flooding and excess water hazard are more common in lowlands, whereas flash flood hazards are primarily, but not exclusively, affect the mountainous and hilly regions of the country. This paper intends to assess the relative importance of the three types of inundation hazard analyzed and to illustrate their overall spatial occurrences by microregions on a map series.  相似文献   

5.

Many coastal urban areas and many coastal facilities must be protected against pluvial and marine floods, as their location near the sea is necessary. As part of the development of a Probabilistic Flood Hazard Approach (PFHA), several flood phenomena have to be modelled at the same time (or with an offset time) to estimate the contribution of each one. Modelling the combination and the dependence of several flooding sources is a key issue in the context of a PFHA. As coastal zones in France are densely populated, marine flooding represents a natural hazard threatening the coastal populations and facilities in several areas along the shore. Indeed, marine flooding is the most important source of coastal lowlands inundations. It is mainly generated by storm action that makes sea level rise above the tide. Furthermore, when combined with rainfall, coastal flooding can be more consequent. While there are several approaches to analyse and characterize marine flooding hazard with either extreme sea levels or intense rainfall, only few studies combine these two phenomena in a PFHA framework. Thus this study aims to develop a method for the analysis of a combined action of rainfall and sea level. This analysis is performed on the city of Le Havre, a French urban city on the English Channel coast, as a case study. In this work, we have used deterministic materials for rainfall and sea level modelling and proposed a new approach for estimating the probabilities of flooding.

  相似文献   

6.
Turkey often suffers from flood-related damages and causalities as a result of intense and prolonged storms that are usually convective or cyclonic in origin. The impact is more distinctive in Aegean and Mediterranean coasts of the country where quantity and distribution of rainfall is influenced by Mediterranean cyclones, especially in late autumn and early winter. The floods sometimes became very hazardous when combined with urbanization effects, especially in the densely populated coastal communities and major cities. Severe weather was marked in the early parts of September 2009 that produced record-setting rainfall amounts across the Marmara region of Turkey and led a series of flash floods which affected ?stanbul and Tekirda? provinces especially. The overall flooding was the result of successive and persistent intense rainfall episodes over a 3-day period which produced more than 250-mm rainfall over portions of the region. The floods resulted in death of 32 people and caused extensive environmental and infrastructural damage in the region. This study provides in-depth analysis of hydrometeorological conditions that led to the occurrence of flash floods in Marmara region during 7–10 September 2009 period and also discusses non-meteorological factors that exacerbated the flooding conditions. Main meteorological settings that led to intense storms were presence of cold air in the upper atmosphere, a slow-moving quasi-stationary trough, and continuous resupply of moisture to the surface low from the warm Aegean Sea. Radar images showed the development of clusters of convective cells that remained quasi-stationary over portions of the region. The 24-h rainfall amounts varied between 100 and 253 mm in most parts of the region during the flooding period with diverse spatial patterns. The southern locations received the highest amount of the rainfall as compared to stations located in northern slopes of the region. Typical effects of orography that enhance rainfall in the coastal areas, however, were not observed during the Marmara flood. Some features of the synoptic pattern observed prior and during the flooding period, supported the back door cold front concept. This is characterized with easterly to northeasterly surface flows forced by an anticyclone, advection of cold continental air over the warm Black Sea which provided anomalous moisture to trigger cyclogenesis over the Marmara region, and falling of core of the intense rainfall over the Marmara Sea. The study concluded that although the meteorological settings were favorable for the convective rainfalls, urbanization factors, such as land use changes and occupation of flood plains, played major role in aggravating the worst flood observed in the region in recent decades.  相似文献   

7.
8.
This study investigated contributory factors to flood hazard around Scotland. There is a need to develop preliminary assessments of areas potentially vulnerable to flooding for compliance with the European Union Directive on the Assessment and Management of Flood Risks (2007/60/EC). Historical accounts of coastal flood events in Scotland, notably in a storm in January 2005, had shown that estimates of risk based on still water levels required further information to identify sites at which waves and surges could combine. Additionally, it was important to add the effect of future sea-level rise and other drivers from published sources. Analysis of multiple years’ tidal data at seven sites, including estuaries, compared recorded water levels at high-return periods to those derived from a spatially interpolated numerical model contained within a publicly available flood risk map. For gauges with the longest records, increases were seen over time that reflected rises in mean sea level. Exposure to wave energy was computed from prevailing wind strength and direction at 36 stations, related to wave fetch and incident wind direction. Although the highest wave exposure was at open coast locations exposed to the long Atlantic fetch, GIS analysis of coastal rasters identified other areas in or close to estuaries that also had high exposure. Projected sea-level change, when added to the surge and wave analyses, gives a spatially extensive structured variable flood risk assessment for future coastal flood hazard to complement the public flood risk map. Such tools can help fulfil the requirements of the EC Directive and may be a useful approach in other regions with high spatial variability in coastal flood risk related to exposure to waves and wind.  相似文献   

9.
Coastal cities are more vulnerable to floods due to the joint impact of rainfall and tide level. Quantitative risk assessment of disaster-causing factors is critical to urban flood management. This paper presents an integrated method to quantify the hazard degree of disaster-causing factors, rainfall and tide level, and to investigate the optimal management of flooding risk in different disaster-causing factor areas. First, an urban flood inundation model is used to simulate inundated extents in different drainage districts. Then, formulas are put forward to calculate the hazard degree of rainfall and tide level based on inundated extents in different combinations of rainfall and tide level. According to the hazard degree, the main disaster-causing factor could be identified in each drainage district. Finally, the optimal management of flooding risk in different disaster-causing factor areas is selected by disaster reduction analysis and cost–benefit analysis. Furthermore, the coastal city, Haikou of China, is taken as a case study. The results indicate that the hazard degree increases with the increasing distance between the drainage district and the Qiongzhou Strait or the Nandu River in the eastern of Haikou. Heavy rain is the main disaster-causing factor in inland areas, while high tide level is the main disaster-causing factor in island areas. For the area whose main disaster-causing factor is heavy rain, water storage projects could effectively reduce flooding. Meanwhile, pumps are economical choices for the area where tide level is the main disaster-causing factor. The results can provide reference for drainage planning in other coastal areas.  相似文献   

10.
The January 2010 earthquake that devastated Haiti left its population ever more vulnerable to rainfall-induced flash floods. A flash flood guidance system has been implemented to provide real-time information on the potential of small (~70 km2) basins for flash flooding throughout Haiti. This system has components for satellite rainfall ingest and adjustment on the basis of rain gauge information, dynamic soil water deficit estimation, ingest of operational mesoscale model quantitative precipitation forecasts, and estimation of the times of channel flow at bankfull. The result of the system integration is the estimation of the flash flood guidance (FFG) for a given basin and for a given duration. FFG is the amount of rain of a given duration over a small basin that causes minor flooding in the outlet of the basin. Amounts predicted or nowcasted that are higher than the FFG indicate basins with potential for flash flooding. In preparation for Hurricane Tomas’ landfall in early November 2010, the FFG system was used to generate 36-h forecasts of flash flood occurrence based on rainfall forecasts of the nested high-resolution North American Model of the National Centers for Environmental Prediction. Assessment of the forecast flood maps and forecast precipitation indicates the utility and value of the forecasts in understanding the spatial distribution of the expected flooding for mitigation and disaster management. It also highlights the need for explicit uncertainty characterization of forecast risk products due to large uncertainties in quantitative precipitation forecasts on hydrologic basin scales.  相似文献   

11.
The Mediterranean coastal region is prone to high-intensity rainfall events that are frequently associated with devastating flash floods. This paper discusses the role of a karst aquifer system in the flash floods of a Mediterranean river, the Lez river. Most of the Lez river watershed is located on karst terrains where interactions between surface water and groundwater take place. During extreme rainfall events, the presence of fractures and well-developed karst features in carbonate terrains enhances the infiltration processes and involves the concentration of the recharge into highly organized and permeable flow paths. The groundwater, therefore, quickly moves towards the natural outlets of the karst system. The influence of the Lez karst aquifer system on the associated river floods dynamics is analysed while considering the spatially distributed rainfall, as well as the time series of the groundwater level within the aquifer and of the Lez river discharge measured at various gauging stations. Special attention is given to the relative importance of the surface and underground processes involved in flash flood genesis. It is shown that the karst groundwater contributes to flash floods under certain conditions, while high-rate pumping within the karst aquifer, which generates significant drawdown, may mitigate flash floods under other conditions.  相似文献   

12.
Coastal towns along the coast of Africa are among the most vulnerable to climate change impacts such as flooding and sea level rise. Yet, because coastal conditions in many parts of the region are poorly understood, knowledge on which population groups are at the most risk is less known, particularly in the Greater Accra Metropolitan Area (GAMA) of Ghana, where the capital city Accra is located. Without adequate information about the risk levels and why, the implementation of locally appropriate adaptation plans may be less effective. This study enriches our understanding of the levels of flood risks along the coast of GAMA and contributes knowledge to improve understanding of place-specific adaptation plans. The study uses data from a 300-household survey, stakeholder meetings, and interviews with local community leaders to construct an integrated vulnerability index. The index includes seven components made up of: dwelling type; house and house environment; household socioeconomic characteristics; experience and perception of flood risk; household and community flood adaptation strategies; house location, and physical characteristics. Our findings show that exposure to floods, particularly from local flash floods is relatively high in all communities. However, significant differences in sensitivity and adaptive capacity of the communities were observed due to differences in location, socioeconomic characteristics, and perception of risks to flooding and sea level rise. The complexity of factors involved in the determination of local-level vulnerability requires that the implementation of adaptation strategies needs to involve cross-sectorial partnerships, involving local communities, in building a comprehensive multi-risk adaptation strategy.  相似文献   

13.
Basin morphometric parameters play an important role in hydrological processes, as they largely control a catchment’s hydrologic response. Their analysis becomes even more significant when studying runoff reaction to intense rainfall, especially in the case of ungauged, flash flood prone basins. Unit hydrographs are one of the useful tools for estimating runoff when instrumental data are inadequate. In this work, instantaneous unit hydrographs based on the time-area method have been compiled along the drainage networks of two small rural catchments in Greece, situated approximately 25 km northeast of its capital, Athens. The two catchments drained by ephemeral torrents, namely Rapentosa and Charadros, have been subject to flash flooding during the last decades, which caused extensive damages at the local small towns of Marathon and Vranas. Hydrograph compilation in numerous locations along the catchments’ drainage networks directly reflected the runoff conditions across each basin against a given rainfall. This gave a holistic assessment of their hydrologic response, allowing the detection of areas where peak flow rates were elevated and therefore, there was higher flood potential. The resulting flood hazard zonation showed good correlation with locations of damages induced by past flood events, indicating that the method can successfully predict flood hazard spatial distribution. The whole methodology was based on geographic information software due to its excellent capabilities on storing and processing spatial data.  相似文献   

14.
This paper aims to analyse and compare the loss of life that occurred during two recent floods in France. The first flood was due to a sea surge triggered by the storm called Xynthia that hit the Atlantic coast on 28 February 2010 (41 flood-related deaths). The second was a flash flood that struck the Var Department in the French Mediterranean region on 15 June 2010 (26 fatalities). After detailing the assumptions and expected outcomes of the study of disaster-related fatalities, the paper focuses on the characteristics of the victims and the circumstances of their deaths. In the first case, 71% of the victims were people aged over 60 (mainly women) who were surprised while they were sleeping and who died in or near their homes. In the case of the flash flood, the profiles of the victims were diverse as the flooding occurred in the afternoon and many people were trapped in open. The paper also highlights the factors that explain mortality. Physical factors such as water depth were determined. The relationship between the water depth and the age of victims was found to be relevant. In the case of the storm surge Xynthia, the correlation between age and water depth is positive. For the flash flood, the correlation between age and water depth was negative as male adults died in open. In the first case, the vulnerability of people was closely linked to human features such as type of housing and age that people are not directly responsible for. During flash floods, dangerous behaviour by people highlighted the role of risk-taking in loss of life. We also examined the particular case of the deaths of the children. The paper concludes by discussing the factors of vulnerability on frail population such as elderly people or marginalized. The lack of risk awareness and crisis preparedness were clearly a major factor of vulnerability.  相似文献   

15.
This paper examines flood frequencies in three coastal sectors of Britain and analyses the associated storm tracks and their principal pathways. The results indicate that the east coast of Britain has suffered most floods over the last 200 years. The frequencies of flood incidents in the south and southwest coast of Britain have increased, particularly during the 20th century, whereas on the west coast flood frequencies have declined. Three distinctive pathways of storm track are identified, related to flood incidents in each coastal sector. A southern pathway in a corridor along the 55° N parallel is associated with flood incidents recorded on the south and southwest coast, whilst storms that are associated with floods on the west coast concentrate along the 60° N parallel. The relationship between the frequencies of floods and climatic variations needs to be explored further. However, the development of coastal settlements has certainly increased vulnerability, and hence the risk of flood disasters.  相似文献   

16.
Floods have profound impacts on populations worldwide in terms of both loss of life and property. A global inventory of floods is an important tool for quantifying the spatial and temporal distribution of floods and for evaluating global flood prediction models. Several global hazard inventories currently exist; however, their utility for spatiotemporal analysis of global floods is limited. The existing flood catalogs either fail to record the geospatial area over which the flood impacted or restrict the types of flood events included in the database according to a set of criteria, limiting the scope of the inventory. To improve upon existing databases, and make it more comprehensive, we have compiled a digitized Global Flood Inventory (GFI) for the period 1998–2008 which also geo-references each flood event by latitude and longitude. This technical report presents the methodology used to compile the GFI and preliminary findings on the spatial and temporal distributions of the flooding events that are contained in the inventory.  相似文献   

17.
王雪梅  翟晓燕  郭良 《水文》2023,43(4):45-52
流域暴雨山洪过程时空异质性强,准确评估雨洪变化特性和洪水危险性对山洪灾害防治具有重要意义。以7个降雨特征指标和6个洪水特征指标刻画流域场次雨洪特性,采用中国山洪水文模型和洪水频率指标相结合,模拟和评估口前流域洪水过程及其危险性。结果表明:场次洪水洪峰模数、洪峰时间偏度、高脉冲历时占比、涨落洪速率与降雨总量、平均雨量、最大雨强、雨峰位置系数、基尼系数等降雨特征指标显著相关,三场致灾洪水过程的降雨均呈现量级大、强度大、历时短、暴雨中心偏中下游的特点;率定期和验证期的平均径流深相对误差均在9%以内,平均洪峰流量相对误差均在11%以内,平均峰现时间误差均在1.7 h以内,平均Nash-Sutcliffe系数为0.80和0.76;各场次洪水有0.0%~93.3%的河段流量达到一般危险及以上等级,三场致灾洪水过程的危险性等级最高,分别有80.0%、35.0%和1.7%的小流域河段流量达到高危险及以上等级。研究可为山区小流域暴雨洪水危险性评估、灾害响应和复盘等提供技术支撑。  相似文献   

18.
This paper assesses the socioeconomic consequences of extreme coastal flooding events. Wealth and income impacts associated with different social groups in coastal communities in Israel are estimated. A range of coastal flood hazard zones based on different scenarios are identified. These are superimposed on a composite social vulnerability index to highlight the spatial variation in the socioeconomic structure of those areas exposed to flooding. Economic vulnerability is captured by the exposure of wealth and income. For the former, we correlate the distribution of housing stock at risk with the socioeconomic characteristics of threatened populations. We also estimate the value of residential assets exposed under the different scenarios. For the latter, we calculate the observed change in income distribution of the population under threat of inundation. We interpret the change in income distribution as an indicator of recovery potential.  相似文献   

19.
Basins across Mediterranean coast are often subject to rapid inundation phenomena caused by intense rainfall events. In this flash flooding regime, common practices for risk mitigation involve hydraulic modeling, geomorphic, and hydrologic analysis. However, apart from examining the intrinsic characteristics of a basin, realistic flood hazard assessment requires good understanding of the role of climatic forcing. In this work, peak rainfall intensities, total storm accumulation, average intensity, and antecedent moisture conditions of the 52 most important storms in record, during the period from 1993 to 2008, in northeast Attica, in Greece, are examined to investigate whether there is a correlation between specific rainfall conditions and flood triggering in the area. For this purpose, precipitation data from a network of five rain gauges installed across the study area were collected and analyzed. Storms totals, average intensity, antecedent moisture conditions, and peak intensities variations were calculated and compared with local flooding history. Results showed that among these rainfall measures, only peak storm intensity presents a significant correlation with flood triggering, and a rainfall threshold above which flooding becomes highly probable can be defined.  相似文献   

20.
Global Perspectives on Loss of Human Life Caused by Floods   总被引:14,自引:4,他引:10  
Every year floods cause enormous damage all over the world. This study investigates loss of human life statistics for different types of floods and different regions on a global scale. The OFDA/CRED Database contains data on international disasters and is maintained by the Centre for Research on the Epidemiology of Disasters in Brussels (CRED) in cooperation with United States Office for Foreign Disaster Assistance (OFDA). Information from this source on a large number of flood events, which occurred between January 1975 and June 2002, is evaluated with respect to flood location and flood type. Due to the limited availability of information on coastal flood events, the scope of this study is limited to three types of freshwater flooding: river floods, flash floods and drainage problems. First, the development of loss of life statistics over time is discussed. Second, the dataset is analysed by region, by flood type and by the combination of type and region. The study shows that flash floods result in the highest average mortality per event (the number of fatalities divided by the number of affected persons). A cross analysis by flood type and location shows that average mortality is relatively constant for the different types over various continents, while the magnitude of the impacts (numbers of killed) and affected for a certain type varies between the different continents. On a worldwide scale Asian river floods are most significant in terms of number of persons killed and affected. Finally, a comparison with figures for other types of natural disasters shows that floods are the most significant disaster type in terms of the number of persons affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号