首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
Probabilistic seismic hazard analysis (PSHA) is carried out for the archaeological site of Vijayapura in south India in order to obtain hazard consistent seismic input ground-motions for seismic risk assessment and design of seismic protection measures for monuments, where warranted. For this purpose the standard Cornell-McGuire approach, based on seismogenic zones with uniformly distributed seismicity is employed. The main features of this study are the usage of an updated and unified seismic catalogue based on moment magnitude, new seismogenic source models and recent ground motion prediction equations (GMPEs) in logic tree framework. Seismic hazard at the site is evaluated for level and rock site condition with 10% and 2% probabilities of exceedance in 50 years, and the corresponding peak ground accelerations (PGAs) are 0.074 and 0.142 g, respectively. In addition, the uniform hazard spectra (UHS) of the site are compared to the Indian code-defined spectrum. Comparisons are also made with results from National Disaster Management Authority (NDMA 2010), in terms of PGA and pseudo spectral accelerations (PSAs) at T = 0.2, 0.5, 1.0 and 1.25 s for 475- and 2475-yr return periods. Results of the present study are in good agreement with the PGA calculated from isoseismal map of the Killari earthquake, \({\hbox {M}}_{\mathrm{w}} = 6.4\) (1993). Disaggregation of PSHA results for the PGA and spectral acceleration (\({\hbox {S}}_{\mathrm{a}}\)) at 0.5 s, displays the controlling scenario earthquake for the study region as low to moderate magnitude with the source being at a short distance from the study site. Deterministic seismic hazard (DSHA) is also carried out by taking into account three scenario earthquakes. The UHS corresponding to 475-yr return period (RP) is used to define the target spectrum and accordingly, the spectrum-compatible natural accelerograms are selected from the suite of recorded accelerograms.  相似文献   

2.
A probabilistic method is used to evaluate the seismichazard of Adassiya dam site on the Yarmouk river in Jordan. A line source model developedby McGuire (1978) is used in this study. An updated earthquake catalogue coveringthe period from 1 A.D. to 1996 A.D. is used for this purpose. This catalogue includesall earthquakes that occurred in Jordan and adjacent areas, more specifically between latitudes27.0°–35.5°N and longitudes 32.0°–39.0°E.Nine distinct seismic sources of potential seismic activitiesare identified. The seismic hazard parameters are determined using the method suggested by Kijko and Sellevoll (1989).The Peak Ground Acceleration (PGA) is selected as a measure of ground motion severity. Esteva (1974) attenuation relationship is used in evaluating PGA values at each dam site. Analysis is carried out for 50%, 90%, and 95% probability that is not being exceeded in a life time of 50, 100, and 200 years.Results of analysis indicate that PGA values at the dam site are as follows:[] Operating Basis Earthquake (OBE) (50% probabilityof non-exceedance for a design life of 100 years – corresponding to a return period of 145 years) is 133.6 cm/sec2.[] An earthquake with 90% probability of non-exceedancefor a design life of 50 years – corresponding to a return period of 475 years is 214.9 cm/sec2.[] Maximum Credible Earthquake (MCE) (Return period of900 years) is 283.0 cm/sec2.Strong motion acceleration time history of these earthquakes are givenbased on strong motion records of the November 1995 Gulf of Aqaba earthquake.Local site effect analysis for Adassiya Dam site using SHAKE program showed no amplification. Normalized site-specific acceleration response spectra for OBE and MCE design earthquakes is also given.  相似文献   

3.
We test the sensitivity of seismic hazard to three fault source models for the northwestern portion of Gujarat, India. The models incorporate different characteristic earthquake magnitudes on three faults with individual recurrence intervals of either 800 or 1600 years. These recurrence intervals imply that large earthquakes occur on one of these faults every 266–533 years, similar to the rate of historic large earthquakes in this region during the past two centuries and for earthquakes in intraplate environments like the New Madrid region in the central United States. If one assumes a recurrence interval of 800 years for large earthquakes on each of three local faults, the peak ground accelerations (PGA; horizontal) and 1-Hz spectral acceleration ground motions (5% damping) are greater than 1 g over a broad region for a 2% probability of exceedance in 50 years' hazard level. These probabilistic PGAs at this hazard level are similar to median deterministic ground motions. The PGAs for 10% in 50 years' hazard level are considerably lower, generally ranging between 0.2 g and 0.7 g across northwestern Gujarat. Ground motions calculated from our models that consider fault interevent times of 800 years are considerably higher than other published models even though they imply similar recurrence intervals. These higher ground motions are mainly caused by the application of intraplate attenuation relations, which account for less severe attenuation of seismic waves when compared to the crustal interplate relations used in these previous studies. For sites in Bhuj and Ahmedabad, magnitude (M) 7 3/4 earthquakes contribute most to the PGA and the 0.2- and 1-s spectral acceleration ground motion maps at the two considered hazard levels.  相似文献   

4.
The paper describes an integrated approach to seismic hazard assessment, which was applied for the Taiwan region. First, empirical modelsfor ground motion estimation in the region were obtained on the basisof records from recent (1993-1999) earthquakes. The databaseincludes strong-motion data collected during the recent Chi-Chiearthquake (M=7.6, 21 September 1999) and large (M=6.8)aftershocks. The ground-motion database was also used for evaluationof generalised site amplification functions for typical soil classes(B, C and D). Second, the theoretical seismic catalogue (2001–2050)for the Taiwan region had been calculated using the 4D-model(location, depth, time) for dynamic deformation of the Earth' crustand 5D-model (location, depth, time, magnitude) for seismic process.The models were developed on the basis of available geophysical andgeodynamic data that include regional seismic catalogue. Third, theregion & site & time-dependent seismic analysis, which is basedon schemes of probable earthquake zones evaluated from the theoreticalcatalogue, regional ground motion models, and local site responsecharacteristics, has been performed. The seismic hazard maps arecompiled in terms of Peak Ground Acceleration (PGA) and ResponseSpectra (RS) amplitudes. The maps show distribution of amplitudesthat will not be exceeded with certain probability in condition oftypical soil classes during all possible earthquakes that may occur inthe region during time period of 2003–2025. The approach allowsintroducing new parameter that describes dependency of seismichazard on time, so-called 'period of maximum hazard'. Theparameter shows the period, during which every considered sitewill be subjected by the maximum value of ground motioncharacteristic (PGA or RS).  相似文献   

5.
Northeast India is one of the most highly seismically active regions in the world with more than seven earthquakes on an average per year of magnitude 5.0 and above. Reliable seismic hazard assessment could provide the necessary design inputs for earthquake resistant design of structures in this region. In this study, deterministic as well as probabilistic methods have been attempted for seismic hazard assessment of Tripura and Mizoram states at bedrock level condition. An updated earthquake catalogue was collected from various national and international seismological agencies for the period from 1731 to 2011. The homogenization, declustering and data completeness analysis of events have been carried out before hazard evaluation. Seismicity parameters have been estimated using G–R relationship for each source zone. Based on the seismicity, tectonic features and fault rupture mechanism, this region was divided into six major subzones. Region specific correlations were used for magnitude conversion for homogenization of earthquake size. Ground motion equations (Atkinson and Boore 2003; Gupta 2010) were validated with the observed PGA (peak ground acceleration) values before use in the hazard evaluation. In this study, the hazard is estimated using linear sources, identified in and around the study area. Results are presented in the form of PGA using both DSHA (deterministic seismic hazard analysis) and PSHA (probabilistic seismic hazard analysis) with 2 and 10% probability of exceedance in 50 years, and spectral acceleration (T = 0. 2 s, 1.0 s) for both the states (2% probability of exceedance in 50 years). The results are important to provide inputs for planning risk reduction strategies, for developing risk acceptance criteria and financial analysis for possible damages in the study area with a comprehensive analysis and higher resolution hazard mapping.  相似文献   

6.

The state of Chiapas (SE México) conforms a territory of complex tectonics and high seismic activity. The interaction among the Cocos, North American and Caribbean tectonic plates, as well as the active crustal deformation inside Chiapas, determines a variety of seismogenic sources of distinct characteristics and particular strong ground motion attenuation. This situation makes the assessment of seismic hazard in the region a challenging task. In this work, we follow the methodology of probabilistic seismic hazard analysis, starting from the compilation of an earthquake catalogue, and the definition of seismogenic source-zones based on the particular seismotectonics of the region: plate-subduction-related sources (interface and intraslab zones), active crustal deformation zones and the shear zone between the North American and Caribbean plates formed by the Motagua, Polochic and Ixcán faults. The latter source is modelled in two different configurations: one single source-zone and three distinct ones. We select three ground motion prediction equations (GMPEs) recommended for South and Central America, plus two Mexican ones. We combine the GMPEs with the source-zone models in a logic tree scheme and produce hazard maps in terms of peak ground acceleration and spectral acceleration for the 500-, 1000- and 2500-year return periods, as well as uniform hazard spectra for the towns of Tuxtla Gutiérrez, Tapachula and San Cristóbal. We obtain higher values in comparison with previous seismic hazard studies and particularly much higher than the output of the Prodisis v.2.3 software for seismic design in México. Our results are consistent with those of neighbouring Guatemala obtained in a recent study for Central America.

  相似文献   

7.
A Probabilistic method is used to evaluate the seismic hazard of nineteen embankment dam sites in Jordan. A line source model developed by McGuire (1978) is used in this study. An updated earthquake catalogue covering the period from 1 A.D. to 1991 A.D. is used for this purpose. This catalogue includes all earthquakes that occurred in Jordan and adjacent areas, more specifically between latitudes 27.0°–35.5° N and longitudes 32.0°–39.0° E.Nine distinct seismic sources of potential seismic activities are identified. The seismic hazard parameters are determined using the method suggested by Kijko and Sellevoll (1989).The Peak Ground Acceleration (PGA) is selected as a measure of ground motion severity. Esteva (1974) attenuation relationship is used in evaluating PGA values at each dam site. Analysis is carried out for 50%, 90%, and 95% probability that is not being exceeded in a life time of 50, 100, and 200 years.Results of analysis indicate that PGA values are higher for dam sites closer to the Dead Sea Fault. This fault is believed to be responsible for most earthquake activities in Jordan and vicinity. The highest PGA value is found to be for Al-Karama dam site.  相似文献   

8.
The preparation of the preliminary seismic hazard maps of the territory of Slovenia has been based on an expansion of the basic approach laid out by Cornell in 1968. Three seismic source models were prepared. Two of them are based mainly on the earthquake catalogue using the Poissonian probability model. A map of seismic energy release and a map of earthquake epicenter density are used to delineate seismic sources in these models. The geometry of the third model which is based on a rough estimate of seismotectonic setting is taken from the probabilistic seismic hazard analysis of a nuclear power plant in Slovenia. Published ground motion attenuation models based on strong motion records of recent strong earthquakes in Italy are used. Test maps for variable and uniform b-values are presented. The computer program, Seisrisk III, developed by the U.S. Geological Survey is used.  相似文献   

9.
A seismic hazard map of Kanpur city has been developed considering the region-specific seismotectonic parameters within a 500-km radius by deterministic and probabilistic approaches. The maximum probable earthquake magnitude (M max) for each seismic source has been estimated by considering the regional rupture characteristics method and has been compared with the maximum magnitude observed \(\left ({M_{\max }^{\text {obs}}}\right )\), \(M_{\max }^{\text {obs}} +0.5\) and Kijko method. The best suitable ground motion prediction equations (GMPE) were selected from 27 applicable GMPEs based on the ‘efficacy test’. Furthermore, different weight factors were assigned to different M max values and the selected GMPE to calculate the final hazard value. Peak ground acceleration and spectral acceleration at 0.2 and 1 s were estimated and mapped for worst-case scenario and 2 and 10% probability of exceedance for 50 years. Peak ground acceleration (PGA) showed a variation from 0.04 to 0.36 g for DSHA, from 0.02 to 0.32 g and 0.092 to 0.1525 g for 2 and 10% probability in 50 years, respectively. A normalised site-specific design spectrum has been developed considering three vulnerable sources based on deaggregation at the city center and the results are compared with the recent 2011 Sikkim and 2015 Nepal earthquakes, and the Indian seismic code IS 1893.  相似文献   

10.
Öncel  A. O.  Alptekin  Ö. 《Natural Hazards》1999,19(1):1-11
In order to investigate the effect of aftershocks on earthquake hazard estimation, earthquake hazard parameters (m, b and Mmax) have been estimated by the maximum likelihood method from the main shocks catalogue and the raw earthquakes catalogue for the North Anatolian Fault Zone (NAFZ). The main shocks catalogue has been compiled from the raw earthquake catalogue by eliminating the aftershocks using the window method. The raw earthquake catalogue consisted of instrumentally detected earthquakes between 1900 and 1992, and historical earthquakes that occurred between 1000–1900. For the events of the mainshock catalogue the Poisson process is valid and for the raw earthquake catalogue it does not fit. The paper demonstrates differences in the hazard outputs if on one hand the main catalogues and on the other hand the raw catalogue is used. The maximum likelihood method which allows the use of the mixed earthquake catalogue containing incomplete (historical) and complete (instrumental) earthquake data is used to determine the earthquake hazard parameters. The maximum regional magnitude (Mmax, the seismic activity rate (m), the mean return period (R) and the b value of the magnitude-frequency relation have been estimated for the 24°–31° E, 31°–41° E, 41°–45° E sections of the North Anatolian Fault Zone from the raw earthquake catalogue and the main shocks catalogue. Our results indicate that inclusion of aftershocks changes the b value and the seismic activity rate m depending on the proportion of aftershocks in a region while it does not significantly effect the value of the maximum regional magnitude since it is related to the maximum observed magnitude. These changes in the earthquake hazard parameters caused the return periods to be over- and underestimated for smaller and larger events, respectively.  相似文献   

11.
Intermediate-depth earthquakes in the Vrancea region occur in response to stress generation due to descending lithosphere beneath the southeastern Carpathians. In this article, tectonic stress and seismicity are analyzed in the region on the basis of a vast body of observations. We show a correlation between the location of intermediate-depth earthquakes and the predicted localization of maximum shear stress in the lithosphere. A probabilistic seismic hazard assessment (PSHA) for the region is presented in terms of various ground motion parameters on the utilization of Fourier amplitude spectra used in engineering practice and risk assessment (peak ground acceleration, response spectra amplitude, and seismic intensity). We review the PSHA carried out in the region, and present new PSHA results for the eastern and southern parts of Romania. Our seismic hazard assessment is based on the information about the features of earthquake ground motion excitation, seismic wave propagation (attenuation), and site effect in the region. Spectral models and characteristics of site-response on earthquake ground motions are obtained from the regional ground motion data including several hundred records of small and large earthquakes. Results of the probabilistic seismic hazard assessment are consistent with the features of observed earthquake effects in the southeastern Carpathians and show that geological factors play an important part in the distribution of the earthquake ground motion parameters.  相似文献   

12.
Earthquake ground motion model is an essential part of seismic hazard assessment. The model consists in several empirical ground motion prediction equations (GMPEs) that are considered to be applicable to the given region. When the recorded ground motion data are scarce, numerical modeling of ground motion based on available seismological information is widely used. We describe results of stochastic simulation of ground motion acceleration records for western Saudi Arabia. The simulation was performed using the finite fault model and considering peak ground acceleration and amplitudes of spectral acceleration at natural frequencies 0.2 and 1.0 s. Based on the parameters of the input seismological model that were accepted in similar previous studies, we analyze influence of variations in the source factor (stress drop) and in the local attenuation and amplification factors (kappa value, crustal amplification). These characteristics of the model are considered as the major contributors to the ground motion variability. The results of our work show that distribution of simulated ground motion parameters versus magnitude and distance reveals an agreement with the GMPEs recently used in seismic hazard assessment for the region. Collection of credible information about seismic source, propagation path, and site attenuation parameters using the regional ground motion database would allow constraining the seismological model and developing regional GMPEs. The stochastic simulation based on regional seismological model may be applied for generation of ground motion time histories used for development of analytical fragility curves for typical constructions in the region.  相似文献   

13.
A reply essay is presented on the rebuttal article by Parise (Environ Earth Sci 75(23):1476, 2016) suggesting that qanat is not a hazard. It is presented as a refutation on the paper by Abbasnejad et al. (Environ Earth Sci 75:1306, 2016) in which the authors have explained the etiology, the impacts and remedies of a qanat hazard in Iranian urban areas. Since the majority of qanats in Iranian urban areas are abandoned, useless and threatening, according to definition and in comparison with similar features introduced as a hazard, they are considered as a hazard too. However, this does not mean, and Abbasnejad et al. (in Environ Earth Sci 75:1306, 2016) have not claimed, that all qanats are hazardous. In addition, the authors who have studied qanats in Iranian urban areas, before Abbasnejad et al. (in Environ Earth Sci 75:1306, 2016), have also considered qanats as a hazard.  相似文献   

14.
The assessment of local site effects on seismic ground motions is of great importance in earthquake engineering practice. Several destructive earthquakes in the past have demonstrated that the amplification of ground motion and associated damage to structures due to local site conditions is a significant consideration in earthquake hazard analysis. A recent paper published in this journal highlights the hazard posed by earthquakes in the megacity of Kolkata in India due to its seismic and geological settings. The seismic hazard assessment study speculates that the deep alluvial deposit in the city may increase the seismic hazard probably due to the amplification of the seismic energies. This paper focuses on the seismic response studies of the various soil strata (i.e. for local subsurface conditions) obtained from various construction sites in the city for predicted earthquake. It is very well recognized that site response studies (a part of seismic microhazard zonation for urban areas) are the first step towards performance-based foundation design or seismic risk analysis and mitigation strategy. One of the problems for carrying out site-specific study in Kolkata is the lack of recorded strong motion data in the city. Hence, this paper outlines a methodology to carry out site-specific study, where no strong motion data or seismic data are available. The methodology uses wavelet-based spectrum compatibility approach to generate synthetic earthquake motions and equivalent linear method for seismic site response analysis. The Mega City of Kolkata has been considered to explain the methodology. Seismic hazard zonation map by the Bureau of Indian Standards classifies the City of Kolkata as moderate seismic zone (Zone III) with a zone factor 0.16. On the other hand, GSHAP(Global Seismic Hazard Assessment Program) map which is based on 10% probability of exceedance in 50 years specifies a maximum peak ground acceleration (PGA) of 1.6 m/s2 (0.163 g) for this region. In the present study, the seismic response has been carried out based on GSHAP. The results of the analysis indicate the amplification of ground motion in the range of 4.46–4.82 with the fundamental period ranging from 0.81 to 1.17 s. Furthermore, the maximum spectral accelerations vary in the range of 0.78–0.95 g.  相似文献   

15.
The 2010 eruption of the Eyjafjallajökull volcano had a devastating effect on the European air traffic network, preventing air travel throughout most of Europe for 6 days (Oroian in ProEnvironment 3:5–8, 2010). The severity of the disruption was surprising as previous research suggests that this type of network should be tolerant to random hazard (Albert et al. in Nature 406(6794):378–382, 2000; Strogatz in Nature 410(6825):268–276, 2001). The source of this hazard tolerance lies in the degree distribution of the network which, for many real-world networks, has been shown to follow a power law (Albert et al. in Nature 401(6749):130–131, 1999; Albert et al. in Nature 406(6794):378–382, 2000). In this paper, we demonstrate that the ash cloud was unexpectedly disruptive because it was spatially coherent rather than uniformly random. We analyse the spatial dependence in air traffic networks and demonstrate how the combination of their geographical distribution and their network architectures jeopardises their inherent hazard tolerance.  相似文献   

16.
Ground motion intensity parameters of past and potential earthquakes are required for a range of purposes including earthquake insurance practice. In regions with no or sparse earthquake recordings, most of the available methods generate only peak ground motion parameters. For cases where full ground motion time histories are required, simulations that consider fault rupture processes become necessary. In this study, a major novel use of simulated ground motions is presented in insurance premium calculations which also require ground motion intensity measures that are not always available through observations. For this purpose, potential earthquakes in Bursa are simulated using stochastic finite-fault simulation method with dynamic corner frequency model. To ensure simulations with reliable synthetic ground motions, input parameters are derived from regional data. Regional model parameters are verified by comparisons against the observations as well as ground motion prediction equations. Next, a potential large magnitude event in Bursa is simulated. Distribution of peak ground motion parameters and time histories at selected locations are obtained. From these parameters, the corresponding Modified Mercalli Intensities (MMI) are estimated. Later, these MMIs are used as the main ground motion parameter in damage probability matrices (DPM). Return period of the scenario earthquake is obtained from the previous regional seismic hazard studies. Finally, insurance rates for Bursa region are determined with implementation of two new approaches in the literature. The probability of the scenario event and the expected mean damage ratios (MDR) from the corresponding DPMs are used, and the results are compared to Turkish Catastrophe Insurance Pool (TCIP) rates. Results show that insurance premiums can be effectively computed using simulated ground motions in the absence of real data.  相似文献   

17.
A systematic investigation of the applicability of several ground motion prediction models for Vrancea intermediate-depth seismic source is conducted in this research. Two ground motion prediction models recommended by previous evaluations (Vacareanu et al. in Bull Earthq Eng 11(6):1867–1884, 2013a; Pavel et al. in Earthq Struct 6(1):1–18, 2014), as well as two new state-of-the-art ground motion prediction equations (Vacareanu et al. in J Earthq Eng, 2013b; Earthq Struct 6(2):141–161, 2014) are tested using an increased strong ground motion database consisting of 150 recordings from Vrancea subcrustal earthquakes. The evaluation is performed by using several goodness-of-fit parameters from the literature. Moreover, the applicability of the single-station sigma method is also investigated by using the same strong ground motion database recorded in 30 seismic stations from southern and eastern Romania. The influence of the soil conditions on the numerical results obtained in this study is investigated and discussed using the results provided by the analysis of variance method. The impact of the single-station standard deviation on the levels of seismic hazard is also assessed in this study, and the results show, in the analyzed cases, significant reductions of the hazard levels.  相似文献   

18.
Earthquake hazard maps for Syria are presented in this paper. The Peak Ground Acceleration (PGA) and the Modified Mercalli Intensity (MMI) on bedrock, both with 90% probability of not being exceeded during a life time of 50, 100 and 200 years, respectively are developed. The probabilistic PGA and MMI values are evaluated assuming linear sources (faults) as potential sources of future earthquakes. A new attenuation relationship for this region is developed. Ten distinctive faults of potential earthquakes are identified in and around Syria. The pertinent parameters of each fault, such as theb-parameter in the Gutenberg-Richter formula, the annual rate 4 and the upper bound magnitudem 1 are determined from two sets of seismic data: the historical earthquakes and the instrumentally recorded earthquake data (AD 1900–1992). The seismic hazard maps developed are intended for preliminary analysis of new designs and seismic check of existing civil engineering structures.  相似文献   

19.
A comprehensive analytical as well as numerical treatment of seismological, geological, geomorphological and geotechnical concepts has been implemented through microzonation projects in the northeast Indian provinces of Sikkim Himalaya and Guwahati city, representing cases of contrasting geological backgrounds — a hilly terrain and a predominantly alluvial basin respectively. The estimated maximum earthquakes in the underlying seismic source zones, demarcated in the broad northeast Indian region, implicates scenario earthquakes of M W 8.3 and 8.7 to the respective study regions for deterministic seismic hazard assessments. The microzonation approach as undertaken in the present analyses involves multi-criteria seismic hazard evaluation through thematic integration of contributing factors. The geomorphological themes for Sikkim Himalaya include surface geology, soil cover, slope, rock outcrop and landslide integrated to achieve geological hazard distribution. Seismological themes, namely surface consistent peak ground acceleration and predominant frequency were, thereafter, overlaid on and added with the geological hazard distribution to obtain the seismic hazard microzonation map of the Sikkim Himalaya. On the other hand, the microzonation study of Guwahati city accounts for eight themes — geological and geomorphological, basement or bedrock, landuse, landslide, factor of safety for soil stability, shear wave velocity, predominant frequency, and surface consistent peak ground acceleration. The five broad qualitative hazard classifications — ‘low’, ‘moderate’, ‘high’, ‘moderate high’ and ‘very high’ could be applied in both the cases, albeit with different implications to peak ground acceleration variations. These developed hazard maps offer better representation of the local specific seismic hazard variation in the terrain.  相似文献   

20.
This paper presents a simulation of three components of near-field ground shaking recorded during the main shock at three stations of the September 16, 1978, Tabas (M w = 7.4), Iran, earthquake, close to the causative fault. A hybrid method composed of a discrete wavenumber method developed by Bouchon (Bouchon in Bull Seismol Soc Am 71:959–971, 1981; Cotton and Coutant in Geophys J Int 128:676–688, 1997) and a stochastic finite-fault modeling based on a dynamic corner frequency proposed by Motazedian and Atkinson (Bull Seismol Soc Am 95:995–1010, 2005), modified by Assatourians and Atkinson (Bull Seismol Soc Am 97:935–1949, 2007), is used for generating the seismograms at low (0.1–1.0 Hz) and high frequencies (1.0–20.0 Hz), respectively. The results are validated by comparing the simulated peak acceleration, peak velocity, peak displacement, Arias intensity, the integral of velocity squared, Fourier spectrum and acceleration response spectrum on a frequency-by-frequency basis, the shape of the normalized integrals of acceleration and velocity squared, and the cross-correlation with the observed time-series data. Each characteristic is compared on a scale from 0 to 10, with 10 being perfect agreement. Also, the results are validated by comparing the simulated ground motions with the modified Mercalli intensity observations reported by reconnaissance teams and showed reasonable agreement. The results of the present study imply that the damage distribution pattern of the 1978 Tabas earthquake can be explained by the source directivity effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号