首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We model solar coronal mass ejections (CMEs) as expanding force-free magnetic structures and find the self-similar dynamics of configurations with spatially constant ??, where J=?? B, in spherical and cylindrical geometries, expanding spheromaks and Lundquist fields, respectively. The field structures remain force-free, under the conventional non-relativistic assumption that the dynamical effects of the inductive electric fields can be neglected. While keeping the internal magnetic field structure of the stationary solutions, expansion leads to complicated internal velocities and rotation, caused by inductive electric fields. The structure depends only on overall radius R(t) and rate of expansion $\dot{R}(t)$ measured at a given moment, and thus is applicable to arbitrary expansion laws. In case of cylindrical Lundquist fields, magnetic flux conservation requires that both axial and radial expansion proceed with equal rates. In accordance with observations, the model predicts that the maximum magnetic field is reached before the spacecraft reaches the geometric center of a CME.  相似文献   

2.
Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) which exhibit signatures consistent with a magnetic flux rope structure. Techniques for reconstructing flux rope orientation from single-point in situ observations typically assume the flux rope is locally cylindrical, e.g., minimum variance analysis (MVA) and force-free flux rope (FFFR) fitting. In this study, we outline a non-cylindrical magnetic flux rope model, in which the flux rope radius and axial curvature can both vary along the length of the axis. This model is not necessarily intended to represent the global structure of MCs, but it can be used to quantify the error in MC reconstruction resulting from the cylindrical approximation. When the local flux rope axis is approximately perpendicular to the heliocentric radial direction, which is also the effective spacecraft trajectory through a magnetic cloud, the error in using cylindrical reconstruction methods is relatively small (≈ 10). However, as the local axis orientation becomes increasingly aligned with the radial direction, the spacecraft trajectory may pass close to the axis at two separate locations. This results in a magnetic field time series which deviates significantly from encounters with a force-free flux rope, and consequently the error in the axis orientation derived from cylindrical reconstructions can be as much as 90. Such two-axis encounters can result in an apparent ‘double flux rope’ signature in the magnetic field time series, sometimes observed in spacecraft data. Analysing each axis encounter independently produces reasonably accurate axis orientations with MVA, but larger errors with FFFR fitting.  相似文献   

3.
Simple models of flare-generated magnetic clouds are considered in the light of magnetic measurements on board Vega 1 and Vega 2 during the solar-interplanetary events in January–February 1986. The models are in approximate accordance with the experimental data if the following conditions are satisfied: (1)the clouds are force-free finite aspect ratio toroids; (2) the large radius of each cloud is parallel to the magnetic axis of the nearest bipolar group; (3) the magnetic buoyancy, gravity, and hydrodynamical deceleration are taken into consideration.  相似文献   

4.
The temperature and density are obtained for coronal plasma in thermal and hydrostatic equilibrium and located in a force-free magnetic arcade. The isotherms are found to be inclined to the magnetic field lines and so care should be taken in inferring the magnetic structure from observed emission.When the coronal pressure becomes too great, the equilibrium ceases to exist and the material cools to form a quiescent prominence. The same process can be initiated at low heating rates when the width or shear of the arcade exceeds a critical value.We suggest that the prominence should be modelled as a dynamic structure with plasma always draining downwards. Material is continually sucked up along field lines of the ambient arcade and into the region lacking a hot equilibrium, where it cools to form new prominence material.  相似文献   

5.
We present a novel numerical method that allows the calculation of nonlinear force-free magnetostatic solutions above a boundary surface on which only the distribution of the normal magnetic field component is given. The method relies on the theory of force-free electrodynamics and applies directly to the reconstruction of the solar coronal magnetic field for a given distribution of the photospheric radial field component. The method works as follows: we start with any initial magnetostatic global field configuration (e.g. zero, dipole), and along the boundary surface we create an evolving distribution of tangential (horizontal) electric fields that, via Faraday’s equation, give rise to a respective normal-field distribution approaching asymptotically the target distribution. At the same time, these electric fields are used as boundary condition to numerically evolve the resulting electromagnetic field above the boundary surface, modeled as a thin ideal plasma with non-reflecting, perfectly absorbing outer boundaries. The simulation relaxes to a nonlinear force-free configuration that satisfies the given normal-field distribution on the boundary. This is different from existing methods relying on a fixed boundary condition – the boundary evolves toward the a priori given one, at the same time evolving the three-dimensional field solution above it. Moreover, this is the first time that a nonlinear force-free solution is reached by using only the normal field component on the boundary. This solution is not unique, but it depends on the initial magnetic field configuration and on the evolutionary course along the boundary surface. To our knowledge, this is the first time that the formalism of force-free electrodynamics, used very successfully in other astrophysical contexts, is applied to the global solar magnetic field.  相似文献   

6.
I. Contopoulos 《Solar physics》2013,282(2):419-426
We present a new improved version of our force-free electrodynamics (FFE) numerical code in spherical coordinates that extrapolates the magnetic field in the inner solar corona from a photospheric vector magnetogram. The code satisfies the photospheric boundary condition and the condition ??B=0 to machine accuracy. The performance of our method is evaluated with standard convergence parameters, and is found to be comparable to that of other nonlinear force-free extrapolations.  相似文献   

7.
We present a set of cylindrically-symmetric force-free magnetic fields with non-constant scalar function scalar. We found that the kink instability of the fields can be suppressed by reducing the length of the flux tube. By using the pressure profile in coronal magnetic loops obtained on the basis of the observational data, and by neglecting the effect of gravity, these force-free fields ars modified to non-force-free ones. For the plasma of finite conductivity the time and space dependent magnetic fields are obtained, and the ohmic dissipation per unit volume per second is calculated. For the magnetic fields, presented in the investigation, it is also found that, due to the large electrical conductivity of the plasma, the ohmic dissipation is negligable in comparison to the conduction and the radiation loss. Hence, for the energy equilibrium in a coronal loop, the contribution of ohmic dissipation is insignificant.  相似文献   

8.
A model is presented which describes the 3-dimensional non-radial solar wind expansion between the Sun and the Earth in a specified magnetic field configuration subject to synoptically observed plasma properties at the coronal base. In this paper, the field is taken to be potential in the inner corona based upon the Mt. Wilson magnetograph observations and radial beyond a certain chosen surface. For plasma boundary conditions at the Sun, we use deconvoluted density profiles obtained from synopticK-coronameter brightness observations. The temperature is taken to be 2 × 106 K at the base of closed field lines and 1.6 x 106K at the base of open field lines. For a sample calculation, we employ data taken during the period of the 12 November 1966 eclipse. Although qualitative agreement with observations at 1 AU is obtained, important discrepancies emerge which are not apparent from spherically symmetric models or those models which do not incorporate actual observations in the lower corona. These discrepancies appear to be due to two primary difficulties - the rapid geometric divergence of the open field lines in the inner corona as well as the breakdown in the validity of the Spitzer heat conduction formula even closer to the Sun than predicted by radial flow models. These two effects combine to produce conductively dominated solutions and lower velocities, densities, and field strengths at the Earth than those observed. The traditional difficulty in solar wind theory in that unrealistically small densities must be assumed at the coronal base in order to obtain observed densities at 1 AU is more than compensated for here by the rapid divergence of field lines in the inner corona. For these base conditions, the value ofβ(ratio of gas pressure to magnetic pressure) is shown to be significantly greater than one over most of the lower corona - suggesting that, for the coronal boundary conditions used here, the use of a potential or force-free magnetic field configuration may not be justified. The calculations of this paper point to the directions where future research on solar-interplanetary modelling should receive priority:
  1. better models for the coronal magnetic field structure
  2. improved understanding of the thermal conductivity relevant for the solar wind plasma.
  相似文献   

9.
By expressing the magnetic field and fluid velocity in terms of two Chandrasekhar-Kendall functions (n = 0, m = 0; n = 1, m = 0) we investigated the steady-state pressure profile inside a solar coronal loop. For constant density loops, we found a two-dimensional (radial and axial) structure of pressure. This work is the modified version of the work of Krishan (1985). At the base of the loop, the pressure is found to increase steeply outwards along the radius, whereas at the apex it decreases slowly. The radial variation of pressure is found to be minimum around L/5, where L is the length of the loop measured from one foot to another one. But Krishan (1985) found that the rate of increase of pressure at the base was nearly equal to the rate of decrease of pressure at the apex, and the pressure was found nearly constant at L/4. For axial variation, we found that along the loop axis the pressure increases from the base up to z = 3L/8 and then decreases up to the apex, whereas at the surface, the pressure decreases from the base up to the apex. Krishan (1985), however, found the axial variation to be linear.  相似文献   

10.
To model irregularities in the magnetic structure of solar flux ropes or in interplanetary magnetic clouds, we propose the following approach. A local irregularity in the form of a compact toroid is added into a cylindrical linear force-free magnetic structure. The radius of the cylinder and the small radius of the toroid are the same, since the force-free parameter α is constant, that is, we have in total a linear force-free configuration, too. Meanwhile, the large radius of the toroid can be smaller. The effect of such modeling depends on the aspect ratio of the compact toroid, its location and orientation, and on its magnetic field magnitude in comparison with that of the cylinder.  相似文献   

11.
The twisting of magnetic fields threading an accretion system can lead to the generation on axis of toroidal field loops. As the magnetic pressure increases, the toroidal field inflates, producing a flow. Collimation is due to a background corona, which radially confines this axially growing “magnetic tower”. We investigate the possibility of studying in the laboratory the dynamics, confinement and stability of magnetic tower jets. We present two-dimensional resistive magnetohydrodynamic simulations of radial arrays, which consist of two concentric electrodes connected radially by thin metallic wires. In the laboratory, a radial wire array is driven by a 1 MA current which produces a hot, low density background plasma. During the current discharge a low plasma beta (β < 1), magnetic cavity develops in the background plasma (β is the ratio of thermal to magnetic pressure). This laboratory magnetic tower is driven by the magnetic pressure of the toroidal field and it is surrounded by a shock envelope. On axis, a high density column is produced by the pinch effect. The background plasma has >rsim1, and in the radial direction the magnetic tower is confined mostly by the thermal pressure. In contrast, in the axial direction the pressure rapidly decays and an elongated, well collimated magnetic-jet develops. This is later disrupted by the development of m = 0 instabilities arising in the axial column.  相似文献   

12.
The coronal magnetic field cannot be directly observed, but, in principle, it can be reconstructed from the comparatively well observed photospheric magnetic field. A?popular approach uses a nonlinear force-free model. Non-magnetic forces at the photosphere are significant, meaning the photospheric data are inconsistent with the force-free model, and this causes problems with the modeling (De Rosa et?al., Astrophys. J. 696, 1780, 2009). In this paper we present a numerical implementation of the Grad?CRubin method for reconstructing the coronal magnetic field using a magnetostatic model. This model includes a pressure force and a non-zero magnetic Lorentz force. We demonstrate our implementation on a simple analytic test case and obtain the speed and numerical error scaling as a function of the grid size.  相似文献   

13.
Starting from Bernstein's principle of magnetohydrodynamic energy, a general analysis is presented for the stability of a kind of 1-D force-free magnetic fields with singular current density surfaces and a single parameter in cylindrical coordinates. It is found that in the parameter space of this kind of force-free magnetic fields there simultaneously exist stable and unstable regions. Their stability is solely determined by the radial distribution of the magnetic pitch in the neighborhood of the cylinder axis, and is independent of the presence of singular current density surface at the boundary of the field.  相似文献   

14.
Magnetic Energy of Force-Free Fields with Detached Field Lines   总被引:2,自引:0,他引:2  
Using an axisymmetrical ideal MHD model in spherical coordinates, we present a numerical study of magnetic configurations characterized by a levitating flux rope embedded in a bipolar background field whose normal field at the solar surface is the same or very close to that of a central dipole. The characteristic plasma β (the ratio between gas pressure and magnetic pressure) is taken to be sosmall (β= 10^-4) that the magnetic field is close to being force-free. The system as a whole is then let evolve quasi-statically with a slow increase of either the annular magnetic flux or the axial magnetic flux of the rope, and the total magneticenergy of the system grows accordingly. It is found that there exists an energy threshold: the flux rope sticks to the solar surface in equilibrium if the magneticenergy of the system is below the threshold, whereas it loses equilibrium if the threshold is exceeded. The energy threshold is found to be larger than that of thecorresponding fully-open magnetic field by a factor of nearly 1.08 irrespective as towhether the background field is completely closed or partly open, or whether the magnetic energy is enhanced by an increase of annular or axial flux of the rope.This gives an example showing that a force-free magnetic field may have an energy larger than the corresponding open field energy if part of the field lines is allowed tobe detached from the solar surface. The implication of such a conclusion in coronal mass ejections is briefly discussed and some comments are made on the maximum energy of force-free magnetic fields.  相似文献   

15.
We report on experiments in which magnetically driven radiatively cooled plasma jets were produced by a 1 MA, 250 ns current pulse on the MAGPIE pulsed power facility. The jets were driven by the pressure of a toroidal magnetic field in a “magnetic tower” jet configuration. This scenario is characterized by the formation of a magnetically collimated plasma jet on the axis of a magnetic “bubble”, confined by the ambient medium. The use of a radial metallic foil instead of the radial wire arrays employed in our previous work allows for the generation of episodic magnetic tower outflows which emerge periodically on timescales of ~30 ns. The subsequent magnetic bubbles propagate with velocities reaching ~300 km/s and interact with previous eruptions leading to the formation of shocks.  相似文献   

16.
We derive an analytical approximation of nonlinear force-free magnetic field solutions (NLFFF) that can efficiently be used for fast forward-fitting to solar magnetic data, constrained either by observed line-of-sight magnetograms and stereoscopically triangulated coronal loops, or by 3D vector-magnetograph data. The derived NLFFF solutions provide the magnetic field components B x (x), B y (x), B z (x), the force-free parameter α(x), the electric current density j(x), and are accurate to second-order (of the nonlinear force-free α-parameter). The explicit expressions of a force-free field can easily be applied to modeling or forward-fitting of many coronal phenomena.  相似文献   

17.
In Paper I (Hu, 1982), we discussed the the influence of fluctuation fields on the force-free field for the case of conventional turbulence and demonstrated the general relationships. In the present paper, by using the approach of local expansion, the equation of average force-free field is obtained as (1+b)?×B 0=(α#x002B;a)B 0#x002B;a (1)×B 0#x002B;K. The average coefficientsa,a (1),b, andK show the influence of the fluctuation fields in small scale on the configurations of magnetic field in large scale. As the average magnetic field is no longer parallel to the average electric current, the average configurations of force-free fields are more general and complex than the usual ones. From the view point of physics, the energy and momentum of the turbulent structures should have influence on the equilibrium of the average fields. Several examples are discussed, and they show the basic features of the fluctuation fields and the influence of fluctuation fields on the average configurations of magnetic fields. The astrophysical environments are often in the turbulent state, the results of the present paper may be applied to the turbulent plasma where the magnetic field is strong.  相似文献   

18.
Nonlinear force-free magnetic field(NLFFF) extrapolation based on the observed photospheric magnetic field is the most important method to obtain the coronal magnetic field nowadays.However, raw photospheric magnetograms contain magnetic forces and small-scale noises, and fail to be consistent with the force-free assumption of NLFFF models. The procedure for removing the forces and noises in observed data is called preprocessing. In this paper, we extend the preprocessing code of Jiang Feng to spherical coordinates for a full sphere. We first smooth the observed data with Gaussian smoothing, and then split the smoothed magnetic field into a potential field and a non-potential field.The potential part is computed by a numerical potential field model, and the non-potential part is preprocessed using an optimization method to minimize the magnetic forces and magnetic torques. Applying the code to synoptic charts of the vector magnetic field from SDO/HMI, we find it can effectively reduce the noises and forces, and improve the quality of data for a better input which will be used for NLFFF extrapolations applied to the global corona.  相似文献   

19.
The structure of the solar corona is dominated by the magnetic field because the magnetic pressure is about four orders of magnitude higher than the plasma pressure. Due to the high conductivity the emitting coronal plasma (visible, e.g., in SOHO/EIT) outlines the magnetic field lines. The gradient of the emitting plasma structures is significantly lower parallel to the magnetic field lines than in the perpendicular direction. Consequently information regarding the coronal magnetic field can be used for the interpretation of coronal plasma structures. We extrapolate the coronal magnetic field from photospheric magnetic field measurements into the corona. The extrapolation method depends on assumptions regarding coronal currents, e.g., potential fields (current-free) or force-free fields (current parallel to magnetic field). As a next step we project the reconstructed 3D magnetic field lines on an EIT-image and compare with the emitting plasma structures. Coronal loops are identified as closed magnetic field lines with a high emissivity in EIT and a small gradient of the emissivity along the magnetic field.  相似文献   

20.
Knowledge regarding the coronal magnetic field is important for the understanding of many phenomena, like flares and coronal mass ejections. Because of the low plasma beta in the solar corona, the coronal magnetic field is often assumed to be force-free and we use photospheric vector magnetograph data to extrapolate the magnetic field into the corona with the help of a nonlinear force-free optimization code. Unfortunately, the measurements of the photospheric magnetic field contain inconsistencies and noise. In particular, the transversal components (say B x and B y) of current vector magnetographs have their uncertainties. Furthermore, the magnetic field in the photosphere is not necessarily force free and often not consistent with the assumption of a force-free field above the magnetogram. We develop a preprocessing procedure to drive the observed non–force-free data towards suitable boundary conditions for a force-free extrapolation. As a result, we get a data set which is as close as possible to the measured data and consistent with the force-free assumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号