首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Paraxial ray methods for anisotropic inhomogeneous media   总被引:1,自引:0,他引:1  
A new formalism of surface-to-surface paraxial matrices allows a very general and flexible formulation of the paraxial ray theory, equally valid in anisotropic and isotropic inhomogeneous layered media. The formalism is based on conventional dynamic ray tracing in Cartesian coordinates along a reference ray. At any user-selected pair of points of the reference ray, a pair of surfaces may be defined. These surfaces may be arbitrarily curved and oriented, and may represent structural interfaces, data recording surfaces, or merely formal surfaces. A newly obtained factorization of the interface propagator matrix allows to transform the conventional 6 × 6 propagator matrix in Cartesian coordinates into a 6 × 6 surface-to-surface paraxial matrix. This matrix defines the transformation of paraxial ray quantities from one surface to another. The redundant non-eikonal and ray-tangent solutions of the dynamic ray-tracing system in Cartesian coordinates can be easily eliminated from the 6 × 6 surface-to-surface paraxial matrix, and it can be reduced to 4 × 4 form. Both the 6 × 6 and 4 × 4 surface-to-surface paraxial matrices satisfy useful properties, particularly the symplecticity. In their 4 × 4 reduced form, they can be used to solve important boundary-value problems of a four-parametric system of paraxial rays, connecting the two surfaces, similarly as the well-known surface-to-surface matrices in isotropic media in ray-centred coordinates. Applications of such boundary-value problems include the two-point eikonal, relative geometrical spreading, Fresnel zones, the design of migration operators, and more.  相似文献   

2.
In the computation of paraxial travel times and Gaussian beams, the basic role is played by the second-order derivatives of the travel-time field at the reference ray. These derivatives can be determined by dynamic ray tracing (DRT) along the ray. Two basic DRT systems have been broadly used in applications: the DRT system in Cartesian coordinates and the DRT system in ray-centred coordinates. In this paper, the transformation relations between the second-order derivatives of the travel-time field in Cartesian and ray-centred coordinates are derived. These transformation relations can be used both in isotropic and anisotropic media, including computations of complex-valued travel times necessary for the evaluation of Gaussian beams.  相似文献   

3.
Paraxial ray methods have found broad applications in the seismic ray method and in numerical modelling and interpretation of high-frequency seismic wave fields propagating in inhomogeneous, isotropic or anisotropic structures. The basic procedure in paraxial ray methods consists in dynamic ray tracing. We derive the initial conditions for dynamic ray equations in Cartesian coordinates, for rays initiated at three types of initial manifolds given in a three-dimensional medium: 1) curved surfaces (surface source), 2) isolated points (point source), and 3) curved, planar and non-planar lines (line source). These initial conditions are very general, valid for homogeneous or inhomogeneous, isotropic or anisotropic media, and for both a constant and a variable initial travel time along the initial manifold. The results presented in the paper considerably extend the possible applications of the paraxial ray method.  相似文献   

4.
Dynamic ray tracing plays an important role in paraxial ray methods. In this paper, dynamic ray tracing systems for inhomogeneous anisotropic media, consisting of four linear ordinary differential equations of the first order along the reference ray, are studied. The main attention is devoted to systems expressed in a particularly simple choice of ray-centered coordinates, here referred to as the standard ray-centered coordinates, and in wavefront orthonormal coordinates. These two systems, known from the literature, were derived independently and were given in different forms. In this paper it is proved that both systems are fully equivalent. Consequently, the dynamic ray tracing system, consisting of four equations in wavefront orthonormal coordinates, can also be used if we work in ray-centered coordinates, and vice versa. vcerveny@seis.karlov.mff.cuni.cz  相似文献   

5.
A review of the 6 × 6 anisotropic interface ray propagator matrix in Cartesian coordinates and within the framework of the Hamiltonian formalism shows that there is one unique propagator satisfying the symplectic property. This is essential, since the symplecticity furnishes an exact inverse, while an eigenvalue analysis indicates that the propagator may be arbitrarily ill-conditioned. As such, the symplectic interface propagator naturally connects to symplectic ray integration algorithms for smooth media, designed to maintain accuracy. Moreover, several ray invariants for smooth media remain invariant across interfaces. It is straightforward to derive expressions for the interface propagator, both explicit and implicit. Symplecticity is equivalent to the condition that the propagator preserves the eikonal constraint across the interface. The symplectic interface propagator complies with phase matching of the incident and reflected/transmitted ray field, and is therefore in accordance with the earlier derived 4 × 4 matrix in ray-centred coordinates. The symplectic property is related to the symmetry of the second derivative matrix of the reflected/transmitted traveltime field. Thanks to the analytic expression of the symplectic interface propagator, relating interface curvature directly to second derivatives of traveltimes observed at a datum level, numerous applications are available in the area of processing and inversion.  相似文献   

6.
A 4×4-propagator matrix formalism is presented for anisotropic dynamic ray tracing, including the propagation across curved interfaces. The computations are organised in the same way as in ervený's well-known isotropic propagator matrix formalism. Attention is paid to cases where double eigenvalues of the Christoffel matrix result in unstable expressions in the dynamic ray tracing system, but where geometrical spreading is well-behaved.  相似文献   

7.
This paper is the second in a sequel of two papers and dedicated to the computation of paraxial rays and dynamic characteristics along the stationary rays obtained in the first paper. We start by formulating the linear, second‐order, Jacobi dynamic ray tracing equation. We then apply a similar finite‐element solver, as used for the kinematic ray tracing, to compute the dynamic characteristics between the source and any point along the ray. The dynamic characteristics in our study include the relative geometric spreading and the phase correction due to caustics (i.e. the amplitude and the phase of the asymptotic form of the Green's function for waves propagating in 3D heterogeneous general anisotropic elastic media). The basic solution of the Jacobi equation is a shift vector of a paraxial ray in the plane normal to the ray direction at each point along the central ray. A general paraxial ray is defined by a linear combination of up to four basic vector solutions, each corresponds to specific initial conditions related to the ray coordinates at the source. We define the four basic solutions with two pairs of initial condition sets: point–source and plane‐wave. For the proposed point–source ray coordinates and initial conditions, we derive the ray Jacobian and relate it to the relative geometric spreading for general anisotropy. Finally, we introduce a new dynamic parameter, similar to the endpoint complexity factor, presented in the first paper, used to define the measure of complexity of the propagated wave/ray phenomena. The new weighted propagation complexity accounts for the normalized relative geometric spreading not only at the receiver point, but along the whole stationary ray path. We propose a criterion based on this parameter as a qualifying factor associated with the given ray solution. To demonstrate the implementation of the proposed method, we use several isotropic and anisotropic benchmark models. For all the examples, we first compute the stationary ray paths, and then compute the geometric spreading and analyse these trajectories for possible caustics. Our primary aim is to emphasize the advantages, transparency and simplicity of the proposed approach.  相似文献   

8.
3D multivalued travel time and amplitude maps   总被引:2,自引:0,他引:2  
An algorithm for computing multivalued maps for travel time, amplitude and any other ray related variable in 3D smooth velocity models is presented. It is based on the construction of successive isochrons by tracing a uniformly dense discrete set of rays by fixed travel-time steps. Ray tracing is based on Hamiltonian formulation and includes computation of paraxial matrices. A ray density criterion ensures uniform ray density along isochrons over the entire ray field including caustics. Applications to complex models are shown.  相似文献   

9.
Anisotropic common S-wave rays are traced using the averaged Hamiltonian of both S-wave polarizations. They represent very practical reference rays for calculating S waves by means of the coupling ray theory. They eliminate problems with anisotropic-ray-theory ray tracing through some S-wave slowness-surface singularities and also considerably simplify the numerical algorithm of the coupling ray theory for S waves. The equations required for anisotropic-common-ray tracing for S waves in a smooth elastic anisotropic medium, and for corresponding dynamic ray tracing in Cartesian or ray-centred coordinates, are presented. The equations, for the most part generally known, are summarized in a form which represents a complete algorithm suitable for coding and numerical applications.  相似文献   

10.
The 4 × 4 T -propagator matrix of a 3D central ray determines, among other important seismic quantities, second-order (parabolic or hyperbolic) two-point traveltime approximations of certain paraxial rays in the vicinity of the known central ray through a 3D medium consisting of inhomogeneous isotropic velocity layers. These rays result from perturbing the start and endpoints of the central ray on smoothly curved anterior and posterior surfaces. The perturbation of each ray endpoint is described only by a two-component vector. Here, we provide parabolic and hyperbolic paraxial two-point traveltime approximations using the T -propagator to feature a number of useful 3D seismic models, putting particular emphasis on expressing the traveltimes for paraxial primary reflected rays in terms of hyperbolic approximations. These are of use in solving several forward and inverse seismic problems. Our results simplify those in which the perturbation of the ray endpoints upon a curved interface is described by a three-component vector. In order to emphasize the importance of the hyperbolic expression, we show that the hyperbolic paraxial-ray traveltime (in terms of four independent variables) is exact for the case of a primary ray reflected from a planar dipping interface below a homogeneous velocity medium.  相似文献   

11.
I reformulate well-established systems for kinematic and dynamic ray tracing in 3D heterogeneous media with arbitrary anisotropy. Matrices of size 3 × 3, e.g. the Christoffel matrix, are substituted by six-component vectors, and the Christoffel matrix elements are expressed explicitly in terms of the elements of the 6 × 6 matrix of elastic coefficients, written in Voigt notation. Thereby, I find it easier to see the effects on the ray tracing systems of vanishing elastic coefficients and Christoffel matrix elements and of vanishing derivatives with respect to spatial coordinates and slowness vector components. The eigenvalue of the current wave and its derivatives with respect to the ray parameters are included explicitly, which may be favorable for ray tracing processes optimized with respect to speed. With the ANRAY program as a reference, I show that the new formulation requires less optimization than the conventional one.  相似文献   

12.
Starting from a given time‐migrated zero‐offset data volume and time‐migration velocity, recent literature has shown that it is possible to simultaneously trace image rays in depth and reconstruct the depth‐velocity model along them. This, in turn, allows image‐ray migration, namely to map time‐migrated reflections into depth by tracing the image ray until half of the reflection time is consumed. As known since the 1980s, image‐ray migration can be made more complete if, besides reflection time, also estimates of its first and second derivatives with respect to the time‐migration datum coordinates are available. Such information provides, in addition to the location and dip of the reflectors in depth, also an estimation of their curvature. The expressions explicitly relate geological dip and curvature to first and second derivatives of reflection time with respect to time‐migration datum coordinates. Such quantitative relationships can provide useful constraints for improved construction of reflectors at depth in the presence of uncertainty. Furthermore, the results of image‐ray migration can be used to verify and improve time‐migration algorithms and can therefore be considered complementary to those of normal‐ray migration. So far, image‐ray migration algorithms have been restricted to layered models with isotropic smooth velocities within the layers. Using the methodology of surface‐to‐surface paraxial matrices, we obtain a natural extension to smooth or layered anisotropic media.  相似文献   

13.
We describe the behaviour of the anisotropic–ray–theory S–wave rays in a velocity model with a split intersection singularity. The anisotropic–ray–theory S–wave rays crossing the split intersection singularity are smoothly but very sharply bent. While the initial–value rays can be safely traced by solving Hamilton’s equations of rays, it is often impossible to determine the coefficients of the equations of geodesic deviation (paraxial ray equations, dynamic ray tracing equations) and to solve them numerically. As a result, we often know neither the matrix of geometrical spreading, nor the phase shift due to caustics. We demonstrate the abrupt changes of the geometrical spreading and wavefront curvature of the fast anisotropic–ray–theory S wave. We also demonstrate the formation of caustics and wavefront triplication of the slow anisotropic–ray–theory S wave.Since the actual S waves propagate approximately along the SH and SV reference rays in this velocity model, we compare the anisotropic–ray–theory S–wave rays with the SH and SV reference rays. Since the coupling ray theory is usually calculated along the anisotropic common S–wave rays, we also compare the anisotropic common S–wave rays with the SH and SV reference rays.  相似文献   

14.
We describe two practicable approaches for an efficient computation of seismic traveltimes and amplitudes. The first approach is based on a combined finite‐difference solution of the eikonal equation and the transport equation (the ‘FD approach’). These equations are formulated as hyperbolic conservation laws; the eikonal equation is solved numerically by a third‐order ENO–Godunov scheme for the traveltimes whereas the transport equation is solved by a first‐order upwind scheme for the amplitudes. The schemes are implemented in 2D using polar coordinates. The results are first‐arrival traveltimes and the corresponding amplitudes. The second approach uses ray tracing (the ‘ray approach’) and employs a wavefront construction (WFC) method to calculate the traveltimes. Geometrical spreading factors are then computed from these traveltimes via the ray propagator without the need for dynamic ray tracing or numerical differentiation. With this procedure it is also possible to obtain multivalued traveltimes and the corresponding geometrical spreading factors. Both methods are compared using the Marmousi model. The results show that the FD eikonal traveltimes are highly accurate and perfectly match the WFC traveltimes. The resulting FD amplitudes are smooth and consistent with the geometrical spreading factors obtained from the ray approach. Hence, both approaches can be used for fast and reliable computation of seismic first‐arrival traveltimes and amplitudes in complex models. In addition, the capabilities of the ray approach for computing traveltimes and spreading factors of later arrivals are demonstrated with the help of the Shell benchmark model.  相似文献   

15.
The paper outlines the most important results of the paraxial complex geometrical optics (CGO) in respect to Gaussian beams diffraction in the smooth inhomogeneous media and discusses interrelations between CGO and other asymptotic methods, which reduce the problem of Gaussian beam diffraction to the solution of ordinary differential equations, namely: (i) Babich’s method, which deals with the abridged parabolic equation and describes diffraction of the Gaussian beams; (ii) complex form of the dynamic ray tracing method, which generalizes paraxial ray approximation on Gaussian beams and (iii) paraxial WKB approximation by Pereverzev, which gives the results, quite close to those of Babich’s method. For Gaussian beams all the methods under consideration lead to the similar ordinary differential equations, which are complex-valued nonlinear Riccati equation and related system of complex-valued linear equations of paraxial ray approximation. It is pointed out that Babich’s method provides diffraction substantiation both for the paraxial CGO and for complex-valued dynamic ray tracing method. It is emphasized also that the latter two methods are conceptually equivalent to each other, operate with the equivalent equations and in fact are twins, though they differ by names. The paper illustrates abilities of the paraxial CGO method by two available analytical solutions: Gaussian beam diffraction in the homogeneous and in the lens-like media, and by the numerical example: Gaussian beam reflection from a plane-layered medium.  相似文献   

16.
The common ray approximation considerably simplifies the numerical algorithm of the coupling ray theory for S waves, but may introduce errors in travel times due to the perturbation from the common reference ray. These travel-time errors can deteriorate the coupling-ray-theory solution at high frequencies. It is thus of principal importance for numerical applications to estimate the errors due to the common ray approximation.We derive the equations for estimating the travel-time errors due to the isotropic and anisotropic common ray approximations of the coupling ray theory. These equations represent the main result of the paper. The derivation is based on the general equations for the second-order perturbations of travel time. The accuracy of the anisotropic common ray approximation can be studied along the isotropic common rays, without tracing the anisotropic common rays.The derived equations are numerically tested in three 1-D models of differing degree of anisotropy. The first-order and second-order perturbation expansions of travel time from the isotropic common rays to anisotropic-ray-theory rays are compared with the anisotropic-ray-theory travel times. The errors due to the isotropic common ray approximation and due to the anisotropic common ray approximation are estimated. In the numerical example, the errors of the anisotropic common ray approximation are considerably smaller than the errors of the isotropic common ray approximation.The effect of the isotropic common ray approximation on the coupling-ray-theory synthetic seismograms is demonstrated graphically. For comparison, the effects of the quasi-isotropic projection of the Green tensor, of the quasi-isotropic approximation of the Christoffel matrix, and of the quasi-isotropic perturbation of travel times on the coupling-ray-theory synthetic seismograms are also shown. The projection of the travel-time errors on the relative errors of the time-harmonic Green tensor is briefly presented.  相似文献   

17.
The recursive nature of rays in blocky models can be exploited to solve some difficult problems in seismic modelling. Each segment of a ray travels from an initial point up to a reflecting interface, where it is split into reflected and transmitted ray segments, which each continue in a similar way. The tree structure that thus emanates is conveniently handled by a recursive scheme. Recursion allows an automatic generation of all phases on a seismogram, together with all information necessary to analyse or select them. By operating recursively with a ray cell, bounded by a pair of vicinal rays in 2D, or a triplet of vicinal rays in 3D, and two successive isochrons, the two-point ray-tracing problem is reduced to a simple interpolation. Also, the cellular approach allows for a stable and robust evaluation of dynamic ray quantities without any paraxial tracing, which is cumbersome in blocky models of realistic complexity. Geometric shadows are filled by recursively generated diffractions. The recursive ray tracer has found applications in the fast computation of Green's functions in target-oriented inversion and in phase identification in VSP.  相似文献   

18.
Gaussian beam is an important complex geometrical optical technology for modeling seismic wave propagation and diffraction in the subsurface with complex geological structure. Current methods for Gaussian beam modeling rely on the dynamic ray tracing and the evanescent wave tracking. However, the dynamic ray tracing method is based on the paraxial ray approximation and the evanescent wave tracking method cannot describe strongly evanescent fields. This leads to inaccuracy of the computed wave fields in the region with a strong inhomogeneous medium. To address this problem, we compute Gaussian beam wave fields using the complex phase by directly solving the complex eikonal equation. In this method, the fast marching method, which is widely used for phase calculation, is combined with Gauss–Newton optimization algorithm to obtain the complex phase at the regular grid points. The main theoretical challenge in combination of this method with Gaussian beam modeling is to address the irregular boundary near the curved central ray. To cope with this challenge, we present the non-uniform finite difference operator and a modified fast marching method. The numerical results confirm the proposed approach.  相似文献   

19.
The common-ray approximation eliminates problems with ray tracing through S-wave singularities and also considerably simplifies the numerical algorithm of the coupling ray theory for S waves, but may introduce errors in travel times due to the perturbation from the common reference ray. These travel-time errors can deteriorate the coupling-ray-theory solution at high frequencies. It is thus of principal importance for numerical applications to estimate the errors due to the common-ray approximation applied. The anisotropic-common-ray approximation of the coupling ray theory is more accurate than the isotropic-common-ray approximation. We derive the equations for estimating the travel-time errors due to the anisotropic-common-ray (and also isotropic-common-ray) approximation of the coupling ray theory. The errors of the common-ray approximations are calculated along the anisotropic common rays in smooth velocity models without interfaces. The derivation is based on the general equations for the second-order perturbations of travel time.  相似文献   

20.
Equations are presented to determine the phase shift of the amplitude of the elastic Green tensor due to both simple (line) and point caustics in anisotropic media. The phase-shift rules for the Green tensor are expressed in terms of the paraxial-ray matrices calculated by dynamic ray tracing. The phase-shift rules are derived both for 2×2 paraxial-ray matrices in ray-centred coordinates and for 3×3 paraxial-ray matrices in general coordinates. The reciprocity of the phase shift of the Green tensor is demonstrated. Then a simple example is given to illustrate the positive and negative phase shifts in anisotropic media, and also to illustrate the reciprocity of the phase shift of the Green tensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号