首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ratio of penumbral to umbral area of sunspots is an important topic for solar and geophysical studies. Hathaway (Solar Phys.286, 347, 2013) found a curious behaviour in this parameter for small sunspot groups (areas smaller than 100 millionths of solar hemisphere, msh) using records from Royal Greenwich Observatory (RGO). Hathaway showed that the penumbra–umbra ratio decreased smoothly from more than 7 in 1905 to lower than 3 by 1930 and then increased to almost 8 in 1961. Thus, Hathaway proposed the existence of a secular variation in the penumbra–umbra area ratio. In order to confirm that secular variation, we employ data of the sunspot catalogue published by the Coimbra Astronomical Observatory (COI) for the period 1929?–?1941. Our results disagree with the penumbra–umbra ratio found by Hathaway for that period. However, the behaviour of this ratio for large (areas greater or equal than 100 msh) and small groups registered in COI during 1929?–?1941 is similar to data available from RGO for the periods 1874?–?1914 and 1950?–?1976. Nevertheless, while the average values and time evolution of the ratio in large groups are similar those for small groups according to the Coimbra data (1929?–?1941) it is not analogous for RGO data for the same period. We also found that the behaviour of the penumbra–umbra area ratio for smaller groups in both observatories is significantly different. The main difference between the area measurements made in Coimbra and RGO is associated with the umbra measurements. We would like to stress that the two observatories used different methods of observation and while in COI both methodology and instruments did not change during the study period, some changes were carried out in RGO that could have affected measurements of umbra and penumbra. These facts illustrate the importance of the careful recovery of past solar data.  相似文献   

2.
We examine daily records of sunspot group areas (measured in millionths of a solar hemisphere or μHem) for the last 130 years to determine the rate of decay of sunspot group areas. We exclude observations of groups when they are more than 60° in longitude from the central meridian and only include data when at least three days of observations are available following the date of maximum area for a group’s disk passage. This leaves data for over 18 000 measurements of sunspot group decay. We find that the decay rate increases linearly from 28 μHem day−1 to about 140 μHem day−1 for groups with areas increasing from 35 μHem to 1000 μHem. The decay rate tends to level off for groups with areas larger than 1000 μHem. This behavior is very similar to the increase in the number of sunspots per group as the area of the group increases. Calculating the decay rate per individual sunspot gives a decay rate of about 3.65 μHem day−1 with little dependence upon the area of the group. This suggests that sunspots decay by a Fickian diffusion process with a diffusion coefficient of about 10 km2 s−1. Although the 18 000 decay rate measurements are lognormally distributed, this can be attributed to the lognormal distribution of sunspot group areas and the linear relationship between area and decay rate for the vast majority of groups. We find weak evidence for variations in decay rates from one solar cycle to another and for different phases of each sunspot cycle. However, the strongest evidence for variations is with latitude and the variations with cycle and phase of each cycle can be attributed to this variation. High latitude spots tend to decay faster than low latitude spots.  相似文献   

3.
A new sunspot and faculae digital dataset for the interval 1874?–?1955 has been prepared under the auspices of the NOAA National Geophysical Data Center (NGDC). This digital dataset contains measurements of the positions and areas of both sunspots and faculae published initially by the Royal Observatory, Greenwich, and subsequently by the Royal Greenwich Observatory (RGO), under the title Greenwich Photo-heliographic Results (GPR), 1874?–?1976. Quality control (QC) procedures based on logical consistency have been used to identify the more obvious errors in the RGO publications. Typical examples of identifiable errors are North versus South errors in specifying heliographic latitude, errors in specifying heliographic (Carrington) longitude, errors in the dates and times, errors in sunspot group numbers, arithmetic errors in the summation process, and the occasional omission of solar ephemerides. Although the number of errors in the RGO publications is remarkably small, an initial table of necessary corrections is provided for the interval 1874?–?1917. Moreover, as noted in the preceding companion papers, the existence of two independently prepared digital datasets, which both contain information on sunspot positions and areas, makes it possible to outline a preliminary strategy for the development of an even more accurate digital dataset. Further work is in progress to generate an extremely reliable sunspot digital dataset, based on the long programme of solar observations supported first by the Royal Observatory, Greenwich, and then by the Royal Greenwich Observatory.  相似文献   

4.
INTER-CYCLE VARIATIONS OF SOLAR IRRADIANCE: SUNSPOT AREAS AS A POINTER   总被引:1,自引:0,他引:1  
Fligge  M.  Solanki  S. K. 《Solar physics》1997,173(2):427-439
Most of the present models and reconstructions of solar irradiance use the concept of Photometric Sunspot Index (PSI) to account for the influence of sunspots on solar brightness. Since PSI is based on measured sunspot areas a firm database of such areas is essential. We show, however, that a significant disagreement exists between the data provided by the Royal Greenwich Observatory (from 1874 to 1976) and newer measurements provided by the observatories of Rome, Yunnan, Catania, and the US Air Force. The overlap of the time intervals over which sunspot areas were measured at Greenwich and Rome allows us to quantify the difference between the Greenwich and other data sets. We find that the various data sets differ, at least in a statistical sense, mainly by a correction factor of between 1.15 and 1.25.The revised time series of sunspot areas correlates well with the Zürich sunspot relative numbers over the last 120 years, with the relationship between sunspot areas and sunspot numbers changing only slightly from one cycle to the next. In particular, no indication exists for any extraordinary magnetic behavior of the Sun during the last 2 decades, as might falsely be concluded if the various sunspot area data sets are uncritically combined. There are, however, some indications that cycles 15 and 16 deviate from the rest. We expect that our results should have a significant influence on the reconstruction of the historical solar irradiance.  相似文献   

5.
Attention is drawn to the existence of errors in the original digital dataset containing sunspot data extracted from certain sections of the printed Greenwich Photo-heliographic Results (GPR) 1874?–?1976. Calculating the polar coordinates from the heliographic coordinates and comparing them with the recorded polar coordinates reveals that there are both isolated and systematic errors in the original sunspot digital dataset, particularly during the early years (1874?–?1914). It should be noted that most of these errors are present in the compiled sunspot digital dataset and not in the original printed copies of the Greenwich Photo-heliographic Results. Surprisingly, many of the errors in the digitised positions of sunspot groups are apparently in the measured polar coordinates, not the derived heliographic coordinates. The mathematical equations that are used to convert between heliographic and polar coordinate systems are formulated and then used to calculate revised (digitised) polar coordinates for sunspot groups, on the assumption that the heliographic coordinates of every sunspot group are correct. The additional complication of requiring accurate solar ephemerides in order to solve the mathematical equations is discussed in detail. It is shown that the isolated and systematic errors, which are prevalent in the sunspot digital dataset during the early years, disappear if revised polar coordinates are used instead. A comprehensive procedure for checking the original sunspot digital dataset is formulated in an Appendix.  相似文献   

6.
We investigate the spatial and temporal variation of sunspot group areas reported by the Greenwich Photoheliographic Results (GPR), the Solar Optical Observing Network (SOON), the Kislovodsk Mountain Astronomical Station (KMAS), and the Debrecen Photoheliographic Data (DPD) databases. We identify improved correction factors for reconciling these individual records to a common scale. Our results show that the DPD sunspot group areas are stable over the studied interval (1974?–?2014). We find an improved fit between GPR and DPD sunspot group areas when using a correction factor such that \(\mathrm{GPR} = 0.975(\pm 0.006) \times \mathrm{DPD}\), independent of the position of the sunspot group on the solar disk. We also find that the scale of KMAS sunspot group areas fits that of DPD well, but has a small position-dependent trend near the limb. However, in order to set SOON sunspot group area records onto the scale of DPD, we find that there is a need for a multivariate correction factor. This multivariate correction factor has a value ranging between 1.1 and 1.9 and is dependent upon the time of the SOON observation, the distance of the group from disk center, and the observatory within the SOON network. Finally, we provide further context to the systematic bias in SOON sunspot group area observations toward lower values relative to those recorded in the GPR and DPD databases that has previously been reported in the literature. We have identified the two main contributors to the SOON area deficit; some penumbral parts are unobserved, and the spot areas are underestimated. Our analysis is vital for studies that require stable, long-term solar activity records such as solar irradiance models that estimate irradiance reduction from records of sunspot group numbers, areas, and locations.  相似文献   

7.
A diagram of the distribution in latitude of sunspot groups during the period 1874–1976 is given. As an indication of sunspot activity, a diagram of the mean total daily sunspot areas for each synodic rotation is also given.  相似文献   

8.
Measurements from the Mount Wilson Observatory (MWO) were used to study the long-term variations of sunspot field strengths from 1920 to 1958. Following a modified approach similar to that presented in Pevtsov et al. (Astrophys. J. Lett. 742, L36, 2011), we selected the sunspot with the strongest measured field strength for each observing week and computed monthly averages of these weekly maximum field strengths. The data show the solar cycle variation of the peak field strengths with an amplitude of about 500?–?700 gauss (G), but no statistically significant long-term trends. Next, we used the sunspot observations from the Royal Greenwich Observatory (RGO) to establish a relationship between the sunspot areas and the sunspot field strengths for cycles 15?–?19. This relationship was used to create a proxy of the peak magnetic field strength based on sunspot areas from the RGO and the USAF/NOAA network for the period from 1874 to early 2012. Over this interval, the magnetic field proxy shows a clear solar cycle variation with an amplitude of 500?–?700 G and a weaker long-term trend. From 1874 to around 1920, the mean value of magnetic field proxy increases by about 300?–?350 G, and, following a broad maximum in 1920?–?1960, it decreases by about 300 G. Using the proxy for the magnetic field strength as the reference, we scaled the MWO field measurements to the measurements of the magnetic fields in Pevtsov et al. (2011) to construct a combined data set of maximum sunspot field strengths extending from 1920 to early 2012. This combined data set shows strong solar cycle variations and no significant long-term trend (the linear fit to the data yields a slope of ??0.2±0.8 G?year?1). On the other hand, the peak sunspot field strengths observed at the minimum of the solar cycle show a gradual decline over the last three minima (corresponding to cycles 21?–?23) with a mean downward trend of ≈?15 G?year?1.  相似文献   

9.
The Greenwich series of data was used to study the ratio [q] of the total umbra area to the total area of the sunspot group (for brevity “relative umbral area”) for the period 1874?–?1976. It was revealed that the annual mean value of q varied in time from 0.15 to 0.28 and reached its maximum in the early 1930s. The dependence of q on the sunspot group area [S] was considered to show that the smallest groups, of area less than 100 m.v.h. (millionths of the visible hemisphere), contributed most significantly to the temporal variation of q. In contrast to the earlier results, the dependence obtained proved to be rather complicated. The coefficients of the linear expansion q(S) are themselves dependent on the sunspot-group area and time [t]; i.e. the relation of q to both S and t is nonlinear. Only in sunspot groups with a large area does dependence disappear, and q becomes constant, equal to 0.18. This is the value given in textbooks. The relations obtained show that the relive umbral area and the relative number of small groups are important parameters of the secular variation of solar activity. In particular, they may account for variations in the mean magnetic field in active regions, the complexity of a group according to the magnetic classification, the flare activity of a sunspot group, and its geophysical impact. It is conjectured that the parameter q describes the time-varying relative contribution from the interior and subsurface dynamo mechanisms.  相似文献   

10.
G. Lustig  H. Wöhl 《Solar physics》1994,152(1):221-226
Greenwich data (1874–1976) are used for a time-dependent analysis of meridional motions of sunspot groups. We obtain the latitude-dependence of meridional motions of sunspot groups with respect to a mean latitude determined for half-year intervals. The daily meridional motions of groups are also given separately for growing and decaying sunspot groups. The development is determined from changes of sunspot areas. Our results are compared with the reductions performed by Howard (1991b) using the Mt. Wilson sunspot data from 1917 until 1985: Although we have smaller errors, we do not find any significant drift. We also do not find different trends in the meridional motions of growing as compared to decreasing sunspots.  相似文献   

11.
K. J. Li 《Solar physics》2009,255(1):169-177
Five solar-activity indices – the monthly-mean sunspot numbers from January 1945 to March 2008, the monthly-mean sunspot areas during the period of May 1874 to March 2008, the monthly numbers of sunspot groups from May 1874 to May 2008, the monthly-mean flare indices from January 1966 to December 2006, and the numbers of solar filaments per Carrington rotation in the time interval of solar rotations 876 to 1823 – have been used to show a systematic time delay between northern and southern hemispheric solar activities in a cycle. It is found that solar activity does not occur synchronously in the northern and southern hemispheres, and there is a systematic time lag or lead (phase shift) between northern and southern hemispheric solar activity in a cycle. About an eight-cycle period is inferred to exist in such phase shifts. The activity on the Sun may be governed by two different and coupled processes, not by a single process.  相似文献   

12.
Data of sunspot groups at high latitude (35°), from the year 1874 to the present (2000 January), are collected to show their evolutional behaviour and to investigate features of the yearly number of sunspot groups at high latitude. Subsequently, an evolutional pattern of sunspot group number at high latitude is given in this paper. Results obtained show that the number of sunspot groups of a solar cycle at high latitude rises to a maximum value about 1 yr earlier than the time of the maximum of sunspot relative numbers of the solar cycle, and then falls to zero more rapidly. The results also show that, at the moment, solar activity described by the sunspot relative numbers has not yet reached its minimum. In general, sunspot groups at high latitude have not appeared on the solar disc during the last 3 yr of a Wolf solar cycle. The asymmetry of the high latitude sunspot group number of a Wolf solar cycle can reflect the asymmetry of solar activity in the Wolf solar cycle, and it is suggested that one could further use the high latitude sunspot group number during the rising time of a Wolf solar cycle, maximum year included, to judge the asymmetry of solar activity over the whole solar cycle.  相似文献   

13.
G. Lustig  H. Wöhl 《Solar physics》1995,157(1-2):389-392
The complete sample of theGreenwich Photoheliographic Results (GPR) for the years 1874–1976 was used for the investigation of the growth and decay of sunspot groups. The results were compared with similar findings from the Mt. Wilson sunspot data for the years 1917–1985, which were recently published by R. F. Howard. The results of the absolute umbral area changes are about the same for both sets of data. The main difference between the sets of data occurs for the percentage increase of the umbral areas as a function of latitude. The mean values from the Mt. Wilson data are bigger by a factor of 5 to 7 and show a dependence on the latitude, while the increase of the Greenwich data does not depend on the latitude. The decrease of sunspot areas as a function of latitude is only available from the Greenwich data. There occur higher values for the decrease for higher latitudes from 2.5 up to 42.5 deg  相似文献   

14.
We analysed the combined Greenwich (1874–1976) and Solar Optical Observatories Network (1977–2011) data on sunspot groups. The daily rate of change of the area of a spot group is computed using the differences between the epochs of the spot group observation on any two consecutive days during its life-time and between the corrected whole spot areas of the spot group at these epochs. Positive/negative value of the daily rate of change of the area of a spot group represents the growth/decay rate of the spot group. We found that the total amounts of growth and decay of spot groups whose life times ≥2 days in a given time interval (say one-year) well correlate to the amount of activity in the same interval. We have also found that there exists a reasonably good correlation and an approximate linear relationship between the logarithmic values of the decay rate and area of the spot group at the first day of the corresponding consecutive days, largely suggesting that a large/small area (magnetic flux) decreases in a faster/slower rate. There exists a long-term variation (about 90-year) in the slope of the linear relationship. The solar cycle variation in the decay of spot groups may have a strong relationship with the corresponding variations in solar energetic phenomena such as solar flare activity. The decay of spot groups may also substantially contribute to the coherence relationship between the total solar irradiance and the solar activity variations.  相似文献   

15.
Peter Foukal 《Solar physics》2014,289(5):1517-1529
Several studies have shown that the sunspot areas recorded by the Royal Greenwich Observatory (RGO) between 1874?–?1976 are about 40?–?50 % larger than those measured by the NOAA/USAF Solar Observing Optical Network (SOON) since 1966. We show here that while the two measurement sets provide consistent total areas for large spots, the impossibility of recording small spots as anything except dots in the SOON drawings leads to an underestimate of small spot areas. These are more accurately recorded by the RGO and other programs that use photographic or CCD images. The large number of such small spots is often overlooked. A similar explanation holds for the RGO umbral areas, which amount to 40 % more than those measured from Mt. Wilson data between 1923 and 1982. The neglected small spots have a much lower photometric contrast. Our explanation suggests, therefore, that the adjustment to spot irradiance blocking at the 1976 transition from RGO to SOON areas is smaller than the almost 50 % correction advocated by some recent, purely statistical, studies.  相似文献   

16.
We have analyzed the asymmetry of sunspot areas during the current solar cycle 22, finding that it has been statistically significant and that the shape of the underlying trend within the full asymmetry time series (1874–1993) indicates that the dominance of solar activity has started to shift, during the current cycle, from the northern hemisphere to the southern one.  相似文献   

17.
The mean width and distribution of penumbral filaments of a sunspot have been estimated, using white light photographs obtained with a vacuum, Newtonian type, telescope. Three areas corresponding to the penumbra of a sunspot have been analysed. Data were collected during the solar eclipse of June 1973. The photometric profiles of the Moon limb over the photosphere have been analysed to obtain useful information on both, atmospheric and instrumental perturbation on each exposure. The mean value of the width of penumbral filaments is 0.37 arc sec.Now at INTA-Villafranca, S.T.S., P.O. Box 54065, Madrid, Spain.  相似文献   

18.
We study the periodicity of twisting motions in sunspot penumbral filaments, which were recently discovered from space (Hinode) and ground-based (SST) observations. A sunspot was well observed for 97 minutes by Hinode/SOT in the G-band (4305 Å) on 12 November 2006. By the use of the time?–?space gradient applied to intensity space?–?time plots, twisting structures can be identified in the penumbral filaments. Consistent with previous findings, we find that the twisting is oriented from the solar limb to disk center. Some of them show a periodicity. The typical period is about ≈?four minutes, and the twisting velocity is roughly 6 km s?1. However, the penumbral filaments do not always show periodic twisting motions during the time interval of the observations. Such behavior seems to start and stop randomly with various penumbral filaments displaying periodic twisting during different intervals. The maximum number of periodic twists is 20 in our observations. Studying this periodicity can help us to understand the physical nature of the twisting motions. The present results enable us to determine observational constraints on the twisting mechanism.  相似文献   

19.
The statistics of extreme values is used to investigate the statistical properties of the largest areas of sunspots and photospheric faculae per solar cycle. The largest values of the synodic-solar-rotation mean areas of umbrae, whole spots and faculae, which have been recorded for nine solar cycles, are each shown to comply with the general form of the extreme value probability function. Empirical expressions are derived for the three extreme value populations from which the characteristic statistical parameters, namely the mode, median, mean and standard deviation, can be calculated for each population. These three extreme value populations are also used to find the expected ranges of the extreme areas in a group of solar cycles as a function of the number of cycles in the group. The extreme areas of umbrae and whole spots have a dispersion comparable to that found by Siscoe for the extreme values of sunspot number, whereas the extreme areas of faculae have a smaller dispersion which is comparable to that found by Siscoe for the largest geomagnetic storm per solar cycle. The expected range of the largest sunspot area per solar cycle for a group of one hundred cycles appears to be inconsistent with the existence of the prolonged periods of sunspot minima that have been inferred from the historical information on solar variability. This inconsistency supports the contention that there are temporal changes of solar-cycle statistics during protracted periods of sunspot minima (or maxima). Indeed, without such temporal changes, photospheric faculae should have been continually observable throughout the lifetime of the Sun.  相似文献   

20.
Sunspots are solar features located in active regions of the Sun, whose number is an indicator of the Sun's magnetic activity. With a substantial increase in the quantity of solar image data, the automated detection and verification of various solar features have become increasingly important for the accurate and timely forecasts of solar activity and space weather. In order to use the high time-cadence SDO/HMI data to extract the main sunspot features for forecasting solar activities, we have established an automatic detection method of sunspots based on mathematical morphology, and calculated the sunspot group area and sunspot number. By comparing our results with those obtained from the Solar Region Summary compiled by NOAA/SWPC, it is found that the sunspot group areas and sunspot numbers computed with our algorithm are in good agreement with the active region values released by SWPC, and the corresponding correlation coefficients for the sunspot group area and sunspot number are 0.77 and 0.79, respectively. By using the method of this paper, the high time-cadence feature parameters can be obtained from the HMI data to provide the timely and accurate inputs for the solar activity forecast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号