首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel processor for the generation of a digital terrain model (DTM) using ground-based synthetic aperture radar (GB-SAR) imagery is presented. The performance of the processor has been assessed using the archive of C-band GB-SAR images available at the Joint Research Centre from the Sion Valley (CH) test site, from which a high-resolution ground-truth DTM is available. In order to reduce the standard deviation of the differences between the two DTMs, several techniques have been applied: interferogram averaging, phase referencing, and differential path calibration. In addition, different formulations have been reviewed, and its impact has been quantified in the DTM accuracy obtained. Results show that the standard deviation of the differences between the ground-truth DTM and that of the C-band GB-SAR can be reduced from the 5 m that was previously reported down to 3 m with the new processor.   相似文献   

2.
To date, triple collocation (TC) analysis is one of the most important methods for the global-scale evaluation of remotely sensed soil moisture data sets. In this study we review existing implementations of soil moisture TC analysis as well as investigations of the assumptions underlying the method. Different notations that are used to formulate the TC problem are shown to be mathematically identical. While many studies have investigated issues related to possible violations of the underlying assumptions, only few TC modifications have been proposed to mitigate the impact of these violations. Moreover, assumptions, which are often understood as a limitation that is unique to TC analysis are shown to be common also to other conventional performance metrics. Noteworthy advances in TC analysis have been made in the way error estimates are being presented by moving from the investigation of absolute error variance estimates to the investigation of signal-to-noise ratio (SNR) metrics. Here we review existing error presentations and propose the combined investigation of the SNR (expressed in logarithmic units), the unscaled error variances, and the soil moisture sensitivities of the data sets as an optimal strategy for the evaluation of remotely-sensed soil moisture data sets.  相似文献   

3.
采用星载微波辐射计AMSR-E的低频C波段(6.925GHz),改进了山区微波辐射传输方程,以中国青藏高原地区为例,研究山区可能产生的多种地形效应对微波辐射特征以及土壤水分反演的影响。结果表明,地形效应使得垂直极化亮温最多衰减达到16K,水平极化的亮温最大增强了18K,土壤水分在地形的影响下将被高估超过最大允许误差4%。最后,利用地形效应模拟模型计算的山区地表有效发射率,为山区土壤水分的反演提出了可行的地形校正方法。  相似文献   

4.
彭学峰  万玮  李飞  陈秀万 《遥感学报》2017,21(3):341-350
利用GNSS-R(Global Navigation Satellite System-Reflectometry)技术探测土壤水分是近年来一个新兴的研究方向。目前GNSS-R遥感观测中反射信号的接收与处理方式包括单天线与多天线两种模式,面向实际应用需求,GNSS-R遥感正在实现从最初的地基观测向空基、星载观测的转变。在推进GNSS-R土壤水分遥感技术业务化应用的过程中,必须首先进行适宜性分析,确定该技术探测的地理位置、空间分辨率与探测深度,然而目前对此尚未有系统、全面、定量的论述。本文针对适宜性分析中的3个关键因子分别进行理论分析与公式推导,明确相关概念的定义,并实现定量化描述,最终通过实际应用分析进一步诠释其应用价值。对于单天线模式地基观测,以美国板块边界观测计划PBO(Plate Boundary Observatory)土壤水分产品为例,分析镜面反射点的相对位置、第一级Fresnel反射椭圆簇的面积与时间序列土壤水分所代表的探测深度;对于多天线模式,以郑州上街区农田空基观测试验为例,得到基于航迹的栅格土壤水分空间分布并探讨其探测深度。本文能够为未来两种观测模式下地基、空基和星载GNSS-R遥感观测、北斗反射信号遥感,以及GNSS-R在农业、水文、生态等领域的实际应用提供理论指导。  相似文献   

5.
在考虑可降水量季节性变化的基础上,提出利用GPS数据建立MODIS近红外可降水量季节性模型。首先对比分析2014年北京房山(BJFS)站的GPS可降水量和相应时间的MODIS近红外可降水量数据,发现两者之间的变化趋势基本一致,存在显著线性相关性;然后以GPS可降水量为标准值,利用回归分析建立GPS和MODIS可降水量之间的季节和全年校正模型。经检验,GPS可降水量与四个季节模型校正的MODIS近红外可降水量的均方根误差均小于3mm,最大误差不超过6mm,季节校正模型的精度都要高于全年校正模型。  相似文献   

6.
An Effective Model to Retrieve Soil Moisture from L- and C-Band SAR Data   总被引:1,自引:0,他引:1  
This study investigated an appropriate method for soil moisture retrieval from radar images and coincident ground measurements acquired over bare soil and sparsely vegetated regions. The adopted approach based on a single scattering integral equation method (IEM) was developed to establish the relationship between backscatter coefficient and surface soil parameters including volumetric soil moisture content and surface roughness. The performance of IEM in 0–7.6 cm is better than that in 0–20 cm. Moreover, IEM can simulate correctly the backscatter coefficients only for the root mean square (RMS) height s < 1.5 cm at C-band and s < 2.5 cm at L-band by using an exponential correlation function and for s > 1.5 cm at C-band and s > 2.5 cm at L-band by using Gaussian function. However, due to the difficulties involved in the parameterization of soil surface roughness, the estimated accuracy is not satisfactory for the inversion of IEM. This paper used a combined roughness parameter and Fresnel reflection coefficient to develop an empirical model. Simulations were performed to support experimental results and to highlight soil moisture content and surface roughness effects in different polarizations. Results showed that a good agreement was found between the IEM simulations and the SAR measurements over a wide range of soil moisture and surface roughness characteristics. The model had a significant operational advantage in soil moisture retrieval. The correlation coefficients were 77.03 % at L-band and 81.45 % at C-band with the RMSEs of 0.515 and 0.4996 dB, respectively. Additionally, this work offered insight into the required application accuracy of soil moisture retrieval at a large area of arid regions.  相似文献   

7.
Soil moisture estimation using microwave remote sensing faces challenges of the segregation of influences mainly from roughness and vegetation. Under static surface conditions, it was found that Radarsat C-band SAR shows reasonably good correlation and sensitivity with changing soil moisture. Dynamic surface and vegetation conditions are supposed to result in a substantial reduction in radar sensitivity to soil moisture. A C-band scatterometer system (5.2 GHz) with a multi-polarization and multi-angular configuration was used 12 times to sense the soil moisture over a tall vegetated grass field. A score of vegetation and soil parameters were recorded on every occasion of the experiment. Three radar backscattering models Viz., Integral Equation Model (IEM), an empirical model and a volume scattering model, have been used to predict the backscattering phenomena. The volume scattering model, using the Distorted Born Approximation, is found to predict the backscattering phenomena reasonably well. But the surface scattering models are expectedly found to be inadequate for the purpose. The temporal variation of soil moisture does show good empirical relationship with the observed radar backscattering. But as the vegetation biomass increases, the radar shows higher sensitivity to the vegetation parameters compared to surface characteristics. A sensitivity analysis of the volume scattering model for all the parameters also reveals that the radar is more sensitive to plant parameters under high biomass conditions, particularly vegetation water content, but the sensitivity to surface characteristics, particularly to soil moisture, is also appreciable.  相似文献   

8.
Designing and validating digital soil mapping (DSM) techniques can facilitate precision agriculture implementation. This study generates and validates a technique for the spatial prediction of soil properties based on C-band radar data. To this end, (i) we focused on working at farm-field scale and conditions, a fact scarcely reported; (ii) we validated the usefulness of Random Forest regression (RF) to predict soil properties based on C-band radar data; (iii) we validated the prediction accuracy of C-band radar data according to the coverage condition (for example: crop or fallow); and (iv) we aimed to find spatial relationship between soil apparent electrical conductivity and C-band radar. The experiment was conducted on two agricultural fields in the southern Argentine Pampas. Fifty one Sentinel 1 Level-1 GRD (Grid) products of C-band frequency (5.36 GHz) were processed. VH and VV polarizations and the dual polarization SAR vegetation index (DPSVI) were estimated. Soil information was obtained through regular-grid sample scheme and apparent soil electrical conductivity (ECa) measurements. Soil properties predicted were: texture, effective soil depth, ECa at 0-0.3m depth and ECa at 0-0.9m depth. The effect of water, vegetation and soil on the depolarization from SAR backscattering was analyzed. Complementary, spatial predictions of all soil properties from ordinary cokriging and Conditioned Latin hypercube sampling (cLHS) were evaluated using six different soil sample sizes: 20, 40, 60, 80, 100 and the total of the grid sampling scheme. The results demonstrate that the prediction accuracy of C-band SAR data for most of the soil properties evaluated varies considerably and is closely dependent on the coverage type and weather dynamics. The polarizations with high prediction accuracy of all soil properties showed low values of σVVo and σVHo, while those with low prediction accuracy showed high values of σVVo and low values of σVHo. The spatial patterns among maps of all soil properties using all samples and all sample sizes were similar. In conditions when summer crops demand large amount of water and there is soil water deficit backscattering showed higher prediction accuracy for most soil properties. During the fallow season, the prediction accuracy decreased and the spatial prediction accuracy was closely dependent on the number of validation samples. The findings of this study corroborates that DSM techniques at field scale can be achieved by using C-band SAR data. Extrapolation y applicability of this study to other areas remain to be tested.  相似文献   

9.
Besides amplitude, frequency and phase, the polarization is another basic property of the electromagnetic wave. In the remote sensing field, the polarization is mainly applied in active detection systems of radar and lidar. This paper presents the quantitative relationship between soil moisture and polarization signatures in a certain type of soil in a farm. And this relationship is expected to be introduced on agriculture and hydrology ultimately. The experiments were performed both in the laboratory and the field. Soil samples with different moisture contents were measured at three wavebands on visible spectrum, and at several viewing angles in the plane of incidence. The polarization signature was indicated by the multi-band and multi-angle degree of linear polarization (DOLP) in this paper. The soil moisture were divided into five levels according to the properties of DOLP curves, namely, the quasi-quantitative relationship between soil moisture and its polarization signature were established. The percentages of soil moisture of the five levels are: ≤10%, 10%—20%, 20%—40%, 40%—56% and >56%, respectively. Although this division for soil moisture is on a rather large scale, it will meet the precision of application agricultural and hydrologic remote sensing.  相似文献   

10.
双极化SAR数据反演裸露地表土壤水分   总被引:1,自引:0,他引:1  
为了较高精度地获取大范围地表土壤水分,提出一种基于双极化合成孔径雷达数据的裸露地表土壤水分反演模型即非线性方程组,通过改进的粒子群算法求解非线性方程组从而得到土壤水分。首先通过AIEM模型数值模拟和回归分析,得到一种新的组合粗糙度,然后模拟分析得到土壤水分与雷达后向散射系数的关系,从而建立雷达后向散射系数与组合粗糙度、土壤水分的经验关系。利用ASAR C波段双极化雷达数据,基于经验关系和改进的粒子群算法即可实现土壤水分的反演。经过黑河流域实测土壤水分数据对模型进行验证,反演结果与实测数据具备良好的相关性(R~2=0.778 6)。与以往同一区域研究成果比较,文中的方法反演精度有所提高,更适用于裸露地表土壤水分反演。  相似文献   

11.
基于大地测量型GNSS接收机获取的反射信号反演土壤湿度是GNSS领域的研究热点。为克服常规线性回归和BP神经网络算法等的缺陷,本文提出了一种基于深度置信网络的GNSS-IR土壤湿度反演方法。试验结果表明,基于该方法得到的决定系数、土壤湿度平均绝对误差和均方根误差分别为0.909 8、0.017、0.021,与线性回归和BP神经网络算法相比,与实测数据吻合度更高,可有效提高土壤湿度反演精度,证明了方法的有效性和可靠性。  相似文献   

12.
中国资源卫星应用中心于2005年8月,利用敦煌场地分别对CBERS-02CCD和SPOT-4 HRVIR1两个传感器进行在轨绝对辐射定标。本文对此次地面同步测量数据进行了处理分析,基于反射率法计算出了CBERS-02CCD和SPOT-4HRVIR1两个传感器各波段的定标系数。其中,SPOT-4HRVIR1的定标结果与法国官方8月份提供的定标系数相比,差异在6%内,满足法方对绝对辐射定标精度的要求。此外,应用定标系数分别将两个传感器的图像数据反演成地表反射率图像,对它们进行了对比分析。  相似文献   

13.
Comparison of Absolute and Relative Antenna Phase Center Variations   总被引:4,自引:1,他引:4  
Three major GPS antenna calibration methods are available toda: the relative field calibrations using the GPS data collected on short baselines, the absolute field calibrations, where the GPS antenna is rotated and tilted by a robot, and calibration measurements in an anechoic chamber. Mean antenna offsets and the elevation-dependent phase center variations of GPS antennas determined by all three techniques are compared to assess their accuracy. The analysis of global GPS data with these sets of calibration values reveals that the offsets and variations of the satellite antenna phase centers have to be considered, too, to obtain a consistent picture. ? 2001 John Wiley & Sons, Inc.  相似文献   

14.
Satellite surface soil moisture has become more widely available in the past five years, with several missions designed specifically for soil moisture measurement now available, including the Soil Moisture and Ocean Salinity (SMOS) mission and the Soil Moisture Active/Passive (SMAP) mission. With a wealth of data now available, the challenge is to understand the skill and limitations of the data so they can be used routinely to support monitoring applications and to better understand environmental change. This paper examined two satellite surface soil moisture data sets from the SMOS and Aquarius missions against in situ networks in largely agricultural regions of Canada. The data from both sensors was compared to ground measurements on both an absolute and relative basis. Overall, the root mean squared errors for SMOS were less than 0.10 m3 m−3 at most sites, and less where the in situ soil moisture was measured at multiple sites within the radiometer footprint (sites in Saskatchewan, Manitoba and Ontario). At many sites, SMOS overestimates soil moisture shortly after rainfall events compared to the in situ data; however this was not consistent for each site and each time period. SMOS was found to underestimate drying events compared to the in situ data, however this observation was not consistent from site to site. The Aquarius soil moisture data showed higher root mean squared errors in areas where there were more frequent wetting and drying cycles. Overall, both data sets, and SMOS in particular, showed a stable and consistent pattern of capturing surface soil moisture over time.  相似文献   

15.
The QuikSCAT enhanced (2.225-km) backscattering product is investigated for sensitivity to changes in soil moisture and its potential for spatial disaggregation of Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture. Specifically, an active–passive methodology based on temporal change detection is tested using data from the 2006 National Airborne Field Experiment data set. This campaign was carried out from October 29 to November 20, 2006 in a 60 km $times$ 40 km area of the Murrumbidgee catchment, southeast Australia. Temporal change detection analysis and accuracy in terms of spatial pattern distribution throughout the domain were assessed using a passive microwave airborne product derived from the Polarimetric L-band Multibeam Radiometer at 1-km spatial resolution. QuikSCAT–AMSR-E intercomparisons indicated higher correlations when using C-band observations. The greatest sensitivity to soil moisture was observed when using V-polarized backscatter measurement. While backscattering data showed adequate temporal sensitivity to changes in soil moisture due to precipitation events, the spatial agreement was complicated by the presence of irrigation and standing water (rice fields). This resulted in low Cramer's Phi values (less than 0.06), which were used as a measure of spatial correspondence in terms of change in soil moisture and backscatter. In addition, the high QuikSCAT sensor frequency and existence of noise in the observed data contributed to the observed discrepancies.   相似文献   

16.
土壤浸湿对重力观测影响的初步分析   总被引:7,自引:0,他引:7  
张为民  王勇  张赤军 《测绘学报》2001,30(2):108-111
本文对武汉测绘科技大学 (WTUSM)重力基准点在暴雨后不久引起的观测异常进行了测试和研究 ,包括对测点附近的土壤在饱和前后的密度、孔隙度等及由此而引起的重力变化进行计算和分析。结果表明 ,该项效应与雨后相对于正常天气情况下 3次观测结果 (平均值 )的偏离相当接近。文中还对今后在绝对重力测量中 ,如何注意土壤浸湿的影响提出了建议  相似文献   

17.
18.
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) provides the user community with standard products of land-surface temperature (LST) and emissivity using the temperature and emissivity separation (TES) algorithm. This letter analyzes the feasibility of using two-channel (TC) algorithms for LST retrieval from ASTER data, which could be considered as an alternative or complementary procedure to the TES algorithm. TC algorithms have been developed for all the ASTER thermal infrared bands combinations, and they have been applied to six ASTER images acquired over an agricultural area of Spain in 2000, 2001, and 2004. LST values obtained with TC algorithms were compared with the TES product. In addition, the TC algorithms were tested using simulated data and ground-based measurements collected coincident with the ASTER acquisition in 2004. The results show that TC algorithms provide similar accuracies than the TES algorithm (~1.5 K), with the main advantage that the atmospheric correction is included in the algorithm itself  相似文献   

19.
Soil, as one of the three basic biophysical components, has been understudied using remote sensing techniques compared to vegetation and impervious surface areas (ISA). This study characterized land surfaces based on the brightness–darkness–greenness model. These three dimensions, brightness, darkness, and greenness, were represented by the first Tasseled Cap Transformation (TC1), Normalize Difference Snow Index (NDSI), and Normalized Difference Vegetation Index (NDVI), respectively. The Ratio Index for Bright Soil (RIBS) was developed based on TC1 and NDSI, and the Product Index for Dark Soil (PIDS) was established by TC1 and NDVI. Their applications to the Landsat 8 Operational Land Imager images and 500 m 8-day composite Moderate Resolution Imaging Spectroradiometer (MODIS) in China revealed the efficiency. The two soil indices proficiently highlighted soil covers with consistently the smallest values, due to larger TC1 and smaller NDSI values in bright soil, and smaller NDVI and TC1 values in dark soil. The RIBS is capable of distinguishing bright soil from ISA without masking vegetation and water body. The spectral separability bright soil and ISA were perfect, with a Jeffries–Matusita distance of 1.916. And the PIDS was the only soil index that could discriminate dark soil from other land covers including ISA. The soil areas in China were classified using a simple threshold method based on MODIS images. An overall accuracy of 94.00% was obtained, with the kappa index of 0.8789. This study provided valuable insights into developing indices for characterizing land surfaces from different perspectives.  相似文献   

20.
参数不确定性是SAR反演土壤水分的重要不确定性来源,为控制土壤水分反演精度,提出一种基于参数不确定性的有效控制土壤水分反演精度的方法,使用该方法可以控制参数的误差范围。首先使用全局敏感性分析方法,确定后向影响散射系数输出的主要参数;在不同量级高斯噪声随机扰动下,将大量各参数采值输入AIEM模型中,得到带噪声的后向散射系数集合;再使用LUT法反演土壤水分,计算反演结果满足误差量级控制范围。以此为基础,利用ENVISAT ASAR双极化数据(VV、VH)和实测土壤水分数据进行验证,利用LUT法反演得到带噪声的土壤水分,计算ASAR影像中采样点土壤水分反演值RMSE0.04cm3/cm3。结果表明各影响参数误差量级控制范围可有效控制土壤水分反演精度,在较大的入射角范围内都适用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号