首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a simplified method to simulate strong ground motion for a realistic representation of a finite earthquake source burried in a layered earth. This method is based on the stochastic simulation method of Boore (Boore, D. M., 1983, Bull. Seism. Soc. Am. 73, 1865–1894) and the Empirical Greens Function (EFG) method of Irikura (Irikura, K., 1986, Proceedings of the 7th Japan Earthquake symposium, pp. 151–156). The rupture responsible for an earthquake is represented by several subfaults. The geometry of subfaults and their number is decided by the similarity relationships. For simulation of ground motion using the stochastic simulation technique we used the shapping window based on the kinetic source model of the rupture plane. The shaping window deepens on the geometry of the earthquake source and the propagation characteristics of the energy released by various subfaults. The division of large fault into small subfaults and the method for accounting their contribution at the surface is identical to the EGF. The shapping window has been modified to take into account the effect of the transmission of energy released form the finite fault at various boundaries of the layered earth model above the source. In the present method we have applied the correction factor to adjust slip time function of small and large earthquakes. The correction factor is used to simulate strong motion records having basic spectral shape of 2 source model in broad frequency range. To test this method we have used the strong motion data of the Geiyo earthquake of 24th March 2001, Japan recorded by KiK network. The source of this earthquake is modelled by a simple rectangular rupture of size 24 × 15 km, burried at a depth of 31 km in a multilayered earth model. This rupture plane is divided into 16 rectangular subfaults of size 6.0 × 3.75 km each. Strong motion records at eight selected near-field stations were simulated and compared with the observed records in terms of the acceleration and velocity records and their response spectrum. The comparison confirms the suitability of proposed rupture model responsible for this earthquake and the efficacy of the approach in predicting the strong motion scenario of earthquakes in the subduction zone. Using the same rupture model of the Geiyo earthquake, we compared the simulated records from our and the EGF techniques at one near-field station. The comparison shows that this technique gives records which matches in a wide frequency range and that too from simple and easily accessible parameters of burried rupture.  相似文献   

2.
The fundamental mode Love and Rayleigh waves generated by earthquakes occurring in Kashmir, Nepal Himalaya, northeast India and Burma and recorded at Hyderabad, New Delhi and Kodaikanal seismic stations are analysed. Love and Rayleigh wave attenuation coefficients are obtained at time periods of 15–100 seconds, using the spectral amplitude of these waves for 23 different paths along northern (across Burma to New Delhi) and central (across Kashmir, Nepal Himalaya and northeast India to Hyderabad and Kodaikanal) India. Love wave attenuation coefficients are found to vary from 0.0003 to 0.0022 km–1 for northern India and 0.00003 km–1 to 0.00016 km–1 for central India. Similarly, Rayleigh wave attenuation coefficients vary from 0.0002 km–1 to 0.0016 km–1 for northern India and 0.00001 km–1 to 0.0009 km–1 for central India. Backus and Gilbert inversion theory is applied to these surface wave attenuation data to obtainQ –1 models for the crust and uppermost mantle beneath northern and central India. Inversion of Love and Rayleigh wave attenuation data shows a highly attenuating zone centred at a depth of 20–80 km with lowQ for northern India. Similarly, inversion of Love and Rayleigh wave attenuation data shows a high attenuation zone below a depth of 100 km. The inferred lowQ value at mid-crustal depth (high attenuating zone) in the model for northern India can be by underthrusting of the Indian plate beneath the Eurasian plate which has caused a low velocity zone at this shallow depth. The gradual increase ofQ –1 from shallow to deeper depth shows that the lithosphere-asthenosphere boundary is not sharply defined beneath central India, but rather it represents a gradual transformation, which starts beneath the uppermost mantle. The lithospheric thickness is 100 km beneath central India and below that the asthenosphere shows higher attenuation, a factor of about two greater than that in the lithosphere. The very lowQ can be explained by changes in the chemical constitution taking place in the uppermost mantle.  相似文献   

3.
The macroseismic field of the Balkan area   总被引:1,自引:0,他引:1  
A catalogue of 356 macroseimic maps which are available for the Balkan area was compiled, including information on the source parameters of the corresponding earthquakes, the macroseismic parameters of their strength and their macroseismic field. The data analysis of this catalogue yields new empirical relations for attenuation, which can be applied for the calibration of historical events, modelling of isoseismals and seismic hazard assessment. An appropriate analysis allowed the separation and estimation of the average values of the geometrical spreading, n, and anelastic attenuation factor, c, for the examined area which were found equal to –3.227 ± 0.112 and –0.0033 ± 0.0010. Scaling relations for the focal macroseismic intensity, If, and the epicentral intensity I0, versus the earthquake moment magnitude were also determined for each Balkan country. A gradual decrease of the order of 0.5 to 1 intensity unit is demonstrated for recent (after 1970) earthquakes in Greece. Finally the depths of the examined earthquakes as they robustly determined (error <5 km) on the basis of macroseismic data were found to have small values ( 10 km). However large magnitude earthquakes show higher focal depths ( 25 km), in accordance with an increase of the seismic fault dimensions for such events.  相似文献   

4.
The distribution of the focal mechanisms of the shallow and intermediate depth (h>40 km) earthquakes of the Aegean and the surrounding area is discussed. The data consist of all events of the period 1963–1986 for the shallow, and 1961–1985 for the intermediate depth earthquakes, withM s 5.5. For this purpose, all published fault plane solutions for each event have been collected, reproduced, carefully checked and if possible improved accordingly. The distribution of the focal mechanisms of the earthquakes in the Aegean declares the existence of thrust faulting following the coastline of southern Yugoslavia, Albania and western Greece extending up to the island of Cephalonia. This zone of compression is due to the collision between two continental lithospheres (Apulian-Eurasian). The subduction of the African lithosphere under the Aegean results in the occurrence of thrust faulting along the convex side of the Hellenic arc. These two zones of compression are connected via strike-slip faulting observed at the area of Cephalonia island. TheP axis along the convex side of the arc keeps approximately the same strike throughout the arc (210° NNE-SSW) and plunges with a mean angle of 24° to southwest. The broad mainland of Greece as well as western Turkey are dominated by normal faulting with theT axis striking almost NS (with a trend of 174° for Greece and 180° for western Turkey). The intermediate depth seismicity is distributed into two segments of the Benioff zone. In the shallower part of the Benioff zone, which is found directly beneath the inner slope of the sedimentary arc of the Hellenic arc, earthquakes with depths in the range 40–100 km are distributed. The dip angle of the Benioff zone in this area is found equal to 23°. This part of the Benioff zone is coupled with the seismic zone of shallow earthquakes along the arc and it is here that the greatest earthquakes have been observed (M s 8.0). The deeper part (inner) of the Benioff zone, where the earthquakes with depths in the range 100–180 km are distributed, dips with a mean angle of 38° below the volcanic arc of southern Aegean.  相似文献   

5.
A simplified technique for simulation of wide-band strong motion based on simple regression relations and Empirical Greens Function (EGF) technique by Irikura (1986) is presented in this paper. The method uses the acceleration envelope as a shaping window for a filtered white Gaussian noise, to get the synthetic accelerogram from each subfault. Correction factors for slip of large and small events and transmission factors at each boundary of different layers are included in this synthetic accelerogram. The synthetic accelerogram obtained from each subfault is used as the Greens function to get resultant records. Simulations are made for the confirmed models of the Uttarkashi and the Chamoli earthquakes at a number of stations to get wide-band strong ground motion. The comparison of synthetic with the observed records over a wide range of frequencies for two different Himalayan earthquakes establishes the efficacy of the present technique.  相似文献   

6.
The EEPAS (Every Earthquake a Precursor According to Scale) model is a method of forecasting earthquakes based on the notion that the precursory scale increase () phenomenon occurs at all scales in the seismogenic process. The rate density of future earthquake occurrence is computed directly from past earthquakes in the catalogue. The EEPAS model has previously been fitted to the New Zealand earthquake catalogue and successfully tested on the California catalogue.Here we describe a further test of the EEPAS model in the Japan region spanning 1965–2001, initially on earthquakes with magnitudes exceeding the threshold value 6.75. A baseline model and the Gutenberg-Richter b-value were fitted to the JMA catalogue over the learning period 1926–1964. The performance of EEPAS, with the key parameters unchanged from the New Zealand values, was compared with that of the baseline model over the testing period, using a likelihood ratio criterion. The EEPAS model proved superior. A sensitivity analysis shows that this result is not sensitive to the choice of the learning period or b-value, but that the advantage of EEPAS over the baseline model diminishes as the magnitude threshold is lowered. When key model parameters are optimised for the Japan catalogue, the advantage of EEPAS over the baseline model is consistent for all magnitudes above 6.25, although less than in the New Zealand and California regions.These results add strength to the proposition that the EEPAS model is effective at a variety of scales and in a variety of seismically active regions.  相似文献   

7.
Information concerning a total number of 13700 instrumentally recorded earthquakes is used to study the geographical and the vertical distribution of the Earth's seismicity. From these earthquakes, which form four complete samples of data (M 7.0, 1894–1992; M 6.5, 1930–1992; M 6.0, 1953–1992; M 5.5, 1966–1992), 11511 are shallow (h 60 km), 2085 are of intermediate focal depth (61 h 300 km) and 564 are deep focus earthquakes (301 h 720 km). The parameters a and b of the frequency-magnitude relationship were calculated in a grid of equally spaced points at 1° by using the data of earthquakes located inside circles centered at each point. The radius of the circles increased from 30 km with a step of 10 km until the information for the earthquakes located inside the circle fulfil three criteria which concern the size of the sample used to compute these parameters at each point of the grid. The results are given in a qualitative way (epicenter maps) as well as in a quantitative way (mean return periods).  相似文献   

8.
State of Uttaranchal in the northern part of India in the Garhwal Himalaya was hit by the Chamoli earthquake on 28th March, 1999 (GMT). This earthquake was recorded on a strong motion array installed in this region. The maximum peak ground acceleration of 353 cm/sec2 was recorded at an accelerograph located at the Gopeshwar station at an approximate epicentral distance of 14 km. The simplified method of Midorikawa (1993) has been used to model finite fault responsible for causing the Chamoli earthquake. This method is based on the Empirical Green's Function (EGF) technique of Irikura (1986).Modifications in this method have been made to include layered earth model and transmission effects at each boundary by Joshi (2001). Rupture causing the Chamoli earthquake is placed in two structural models of the earth in this work: one is a homogeneous half space and other is the multi layered earth model. Comparison in terms of root mean square error (RMSE) is made between the simulated and actual strong motion parameters like peak acceleration and duration. It is seen that the introduction of multi layered earth system in this simplified technique is capable of significantly reducing the RMSE in observed and predicted strong motion parameters and defining the attenuation rate for peak ground acceleration of this earthquake.  相似文献   

9.
Linear stacking procedures are used to retrieve the attenuation of 91 modes belonging to the 3rd, 4th and 5th Rayleigh overtones branches in the 80–160 s period range, and contributing to the so-called PhaseX wave group. Our data show in general slightly less attenuation than expected from available models. Data space inversion shows that, when combined with previously measured fundamental modeQ's, this new dataset improves resolution significantly in the 1000–2000 km depth range. Based on this remark, we carry out a number of parameter space inversions. Our results suggest a narrow (80–200 km) zone of high attenuation (Q =75–90), low attenuation in the intermediate mantle (670–1500 km); (Q 350), and lower values in the deeper mantle (Q 200).  相似文献   

10.
—The plate boundary between Iberia and Africa has been studied using data on seismicity and focal mechanisms. The region has been divided into three areas: A; the Gulf of Cadiz; B, the Betics, Alboran Sea and northern Morocco; and C, Algeria. Seismicity shows a complex behavior, large shallow earthquakes (h < 30 km) occur in areas A and C and moderate shocks in area B; intermediate-depth activity (30 < h < 150 km) is located in area B; the depth earthquakes (h 650 km) are located to the south of Granada. Moment rate, slip velocity and b values have been estimated for shallow shocks, and show similar characteristics for the Gulf of Cadiz and Algeria, and quite different ones for the central region. Focal mechanisms of 80 selected shallow earthquakes (8 mb 4) show thrust faulting in the Gulf of Cadiz and Algeria with horizontal NNW-SSE compression, and normal faulting in the Alboran Sea with E-W extension. Focal mechanisms of 26 intermediate-depth earthquakes in the Alboran Sea display vertical motions, with a predominant plane trending E-W. Solutions for very deep shocks correspond to vertical dip-slip along N-S trends. Frohlich diagrams and seismic moment tensors show different behavior in the Gulf of Cadiz, Betic-Alboran Sea and northern Morocco, and northern Algeria for shallow events. The stress pattern of intermediate-depth and very deep earthquakes has different directions: vertical extension in the NW-SE direction for intermediate depth earthquakes, and tension and pressure axes dipping about 45 ° for very deep earthquakes. Regional stress pattern may result from the collision between the African plate and Iberia, with extension and subduction of lithospheric material in the Alboran Sea at intermediate depth. The very deep seismicity may be correlated with older subduction processes.  相似文献   

11.
The distributions of discrete frequency, N, versus interoccurrence time, t (in days), of M 7 earthquakes in the Taiwan region during the 1900–1994 period, M 6 earthquakes in the north-south seismic belt of China during the 1900–1990 period, and M 5.5 earthquakes in Southern California, U.S.A., during the 1914–1995 period are studied through two statistical models (gamma function and exponential function). Results show that both the exponential function and gamma function can describe the distributions. However, the former is more appropriate than the latter. This indicates that the three time series of earthquakes have a significant component of Poisson processes, even though the tectonic conditions, the fault distributions and the size of the three seismic regions are different.  相似文献   

12.
The concept of a time-depth correlation between tectonic earthquakes at depth beneath some volcanoes, and their eruptions, developed by the author since 1962, has been confirmed by new observations and successful prediction of renewed volcanic activity in New Zealand.Regular earthquake migrations are observed along the Benioff zone, and volcanic eruptions are found to be related to these seismic migrations beneath the volcanoes, as follows:
Therefore, in island arcs and continental margins, volcanic activity is the result of two processes occurring beneath the volcanoes: (1) a “tectonic process”, a migration of strain release along the downgoing lithosphere, of which the earthquakes are the manifestation; (2) a “magmatic process”, a relatively fast vertical ascent of magmatic material from the deep root of the volcano, where the observed shocks may be the starting signal from this level.The rate of migration of tectonic earthquakes increases with depth in the upper mantle.An empirical time relationship between the earthquakes occurring at depth beneath a volcano and its eruptions, has been successfully tested for renewed activity at White Island in New Zealand, over the period 1977–1978.  相似文献   

13.
A sequence of moderate shallow earthquakes (3.5M L5.3) was located within the Vercors massif (France) in the period 1961–1984. This subalpine massif has been a low seismic area for at least 5 centuries. During the period 1962–1963, 12 shallow earthquakes occurred in the neighborhood (10 km) of the Monteynard reservoir, 30 km south of the city of Grenoble. The latest fourM L4.0 earthquakes occurred in 1979–1984 either at larger distance (35 km) or greater depth (10 km) from the reservoir. Two triggering mechanisms are suggested for this sequence: (i) the direct effect of elastic loading through either increased shear stress or strength reducing by increased pore pressure at depth; (ii) the pore pressure diffusion induced by poroelastic stress change due to the reservoir filling.The weekly water levels, local balanced geological cross sections, and focal mechanisms argue for two types of mechanical connection between the earthquake sequence and the filling cycles of the Monteynard reservoir. The seismic sequence started with the 1962–1963 shallow earthquakes that occurred during the first filling of the reservoir and are typical of the direct effect of elastic loading. The 1979 deeper earthquake is located at a 10 km depth below the reservoir. This event occurred 16 years after the initial reservoir impoundment, but one month after the previous 1963 maximum water level was exceeded. Moreover the yearly reservoir level increased gradually in the period 1962–1979 and has decreased since 1980. Accordingly we suggest that the gradual diffusion of water from reservoir to hypocentral depths decreases the strength of the rock matrices through increased pore pressure. The transition between the two types of seismic response is supported by the analysis ofM L3.5 earthquakes which all occurred in the period 1964–1971, ranging between 10 and 30 km distance from the reservoir. The three other delayed earthquakes of the 1961–1984 seismic sequence (M L4 during the 1979–1984 period) are all located 35 km away from the reservoir. Based on the seismic activity, the estimates for the hydraulic diffusivities range between 0.2–10 m2/s, except for the first event that occurred 30 km north of the reservoir, the filling just started. The lack ofin situ measurements of crustal hydrological properties in the area, shared by most of the Reservoir-Induced-Seismicity cases, prevents us from obtaining absolute evidence for the triggering processes. These observations and conceptual models attest that previous recurrence times for moderate natural shocks (4.5M L5.5) estimated within this area using historical data, could be modified by 0.1–1 MPa stress changes. These small changes in deviatoric stress suggest that the upper crust is in this area nearly everywhere at a state of stress near failure. Although the paucity of both number and size of earthquakes in the French subalpine massif shows that aseismic displacements prevail, our study demonstrates that triggered earthquakes are important tools for assessing local seismic risk through mapping fault zones and identifying their possible seismic behavior.  相似文献   

14.
The dependence of peak ground acceleration and velocity on seismic moment is studied for a set of small earthquakes (0.7<M L<3.2) recorded digitally at distances of a few km in the Campi Flegrei volcanic area near Naples, Italy, during the ground uplift episode of 1982–1984. Numerical simulations, using the -square spectral model with constant stress drop and ane –kf high frequency decay, fit well both the velocity and acceleration data for an averagek=0.015. The observed ground motions in the 1–24 Hz frequency band appear to consist of radiation from simple sources modified only slightly by attenuation effects. Moreover, the scaling of peak values agrees closely with those determined in nonvolcanic areas, once the difference in stress drop is taken into account.  相似文献   

15.
Summary The average dependence of the calibration function q and the travel-time residuals t on the depth and distance of the source has been derived for individual branches of PKP waves using earthquakes from the SW Pacific Ocean (distance interval 147°–159°, depths 0–700 km). The analysis of very distant shocks of all depths according to the regional PKP travel time tables can be completed by the magnitude determination.  相似文献   

16.
17.
— The three-dimensional crustal velocity structure in the area of the northwestern Greek mainland was determined by P-wave travel time inversion, applying a two-step tomography procedure. The data set consists of the travel-time residuals of 584 well located earthquakes. In order to improve the initial (reference) velocity model, before the inversion of travel times, the minimum 1-D model was determined. Several tests were conducted to estimate model stability and hypocenter uncertainties. The velocity distribution in the shallow layers (4 and 7 km) is strongly affected by the crustal thickness variation and the complex tectonics. A first, well-defined velocity discontinuity appears at a depth of 3–6 km, along the Hellenides Mountain chain. A second low velocity anomaly is detected at a depth of 9–12 km and may be connected with the Alpidic orogenesis. Another interesting feature appears beneath the Amvrakikos Gulf (horstgraben structure), where relatively low velocities (<6.0 km-1) appear to a depth of 20 km. Finally, a well-pronounced velocity boundary is found at a depth of 16 km. In general, low velocities are predominant along the Dinarides-Hellenides Mountain chain, rather typical for the upper crust.Acknowledgement. The authors thank the referees for their useful comments. Moreover, we would like to thank the General Secretariat for Research and Technology of Greece, for the partial support of this study.  相似文献   

18.
Seismicity in the La Cerdanya region of the eastern Pyrenees has been accurately mapped for the first time using data from a local seismic network. The majority of earthquakes lies on or near the La Cerdanya fault or secondary faults to the south. Coda magnitudes determined for these earthquakes, using magnitude relations from other regions, range between –0.5 and 2.2. These are, however, presumed to be underdetermined values sinceQ values appear to be very low in the La Cerdanya region. CodaQ values at a frequency of 1.5 Hz range between 17 and 120, the lowest values being obtained for the most seismically active regions. CodaQ values also increase with increasing distance, a result which indicates decreasing seismic attenuation with increasing depth in the crust.  相似文献   

19.
Scaling relations previously derived from examples of the precursory scale increase before major earthquakes show that the precursor is a long-term predictor of the time, magnitude, and location of the major earthquake. These relations are here taken as the basis of a stochastic forecasting model in which every earthquake is regarded as a precursor. The problem of identifying those earthquakes that are actually precursory is thus set aside, at the cost of limiting the strength of the resulting forecast. The contribution of an individual earthquake to the future distribution of hazard in time, magnitude and location is on a scale determined, through the scaling relations, by its magnitude. Provision is made for a contribution to be affected by other earthquakes close in time and location, e.g., an aftershock may be given low weight. Using the New Zealand catalogue, the model has been fitted to the forecasting of shallow earthquakes exceeding magnitude 5.75 over the period 1965–2000. It fits the data much better than a baseline Poisson model with a location distribution based on proximity to the epicenters of past earthquakes. Further, the model has been applied, with unchanged parameters, to the California region over the period 1975–2001. There also, it performs much better than the baseline model fitted to the same region over the period 1951–1974; the likelihood ratio is 1015 in favor of the present model. These results lend credence to the precursory scale increase phenomenon, and show that the scaling relations are pervasive in earthquake catalogues. The forecasting model provides a new baseline model against which future refinements, and other proposed models, can be tested. It may also prove to be useful in practice. Its applicability to other regions has still to be established.  相似文献   

20.
Result of the algorithm of earthquake prediction, published in 1982, is examined in this paper. The algorithm is based on the hypothesis of long-range interaction between strong and moderate earthquakes in a region. It has been applied to the prediction of earthquakes withM6.4 in Southern California for the time interval 1932–1979. The retrospective results were as follows: 9 out of 10 strong earthquakes were predicted with average spatial accuracy of 58 km and average delay time (the time interval between a strong earthquake and its best precursor) 9.4 years varying from 0.8 to 27.9 years. During the time interval following the period studied in that publication, namely in 1980–1988, four earthquakes occurred in the region which had a magnitude ofM6.4 at least in one of the catalogs: Caltech or NOAA. Three earthquakes—Coalinga of May, 1983, Chalfant Valley of July, 1985 and Superstition Hills of November, 1987—were successfully predicted by the published algorithm.The missed event is a couple of two Mammoth Lake earthquakes of May, 1980 which we consider as one event due to their time-space closeness. This event occurred near the northern boundary of the region, and it also would have been predicted if we had moved the northern boundary from 38°N to the 39°N; the precision of the prediction in this case would be 30 km.The average area declared by the algorithm as the area of increased probability of strong earthquake, e.g., the area within 111-km distance of all long-range aftershocks currently present on the map of the region during 1980–1988 is equal to 47% of the total area of the region if the latter is measured in accordance with the density distribution of earthquakes in California, approximated by the catalog of earthquakes withM5. In geometrical terms it is approximately equal to 17% of the total area.Thus the result of the real time test shows a 1.6 times increase of the occurrence ofC-events in the alarmed area relative to the normal rate of seismicity. Due to the small size of the sample, it is of course, beyond the statistically significant value. We adjust the parameters of the algorithm in accordance with the new material and publish them here for further real-time testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号