首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 363 毫秒
1.
A geological-geophysical expedition (Ev-K2–CNR 1988) visited the area from West Kun Lun to Karakorum (K2–Gasherbrum). Seven tectonic units including sedimentary, magmatic and metamorphic rocks were distinguished in this area; the northernmost are suggested to belong to the Kun Lun and Qiangtang Microplates. The sedimentary sequence of Shaksgam is proved to extend from the Permian to the Jurassic, with Carboniferous and Cretaceous ages more doubtful. This sequence shows intermediate affinities between the Karakorum and the Qiangtang. The two southernmost units belong to the Karakorum Microplate. The Karakorum Fault Zone comprises a complex pattern of faults and thrusts, with brittle deformation and uplifting of granitoid bodies.  相似文献   

2.
Abstract

The Karakorum gneisses outcrop north of the complex suture separating the Indian-Pakistan plate from the Europe-Asia block; they grade to deformed earlier members of the Karakorum batholith ranging in age from Cretaceous to Miocene and are cross-cut by its later members. The main interest of the region lies in the fact that very young high-grade gneisses (Miocene), outline the southern edge of the Europe-Asia Plate. The tectonic and metamorpic evolution of the Braldu-Baltoro region is interpreted here as resulting from a poly phased history. The following structural sequence has been defined : - (1) A Dl isoclinal folding was accompanied by subparallel healed shear zones and by intense boudinage, and cross-cut by a dense net of post-Dl hetero-geneous leucogranitic veins and stocks; - (2) a major phase of EW trending recumbent folds (D2), is followed by (3) large open D3 folds generating EW trending domai structures (Dassu and Panmah domes); and (4) a late set of brittle to locally more ductile structures such as the southern thrust contact of the Karakorum gneisses with the Shyok suture zone. The sequence proposed here differs from other interpretations (Rex et al. 1988). We consider that the Dl event only may be attributed to the main India-Asia collision and that the D2-D3 events, interpreted as having occurred in a continuum, correspond to a late reactivation of the major thrusts and sutures related to continuing continental subduction.

A Dl-related intermediate pressure assemblage is preserved (Grt-St-Ky) in the upper levels of the tectonic pile; the estimated PT conditions determined are 10-4 Kb and 700°--525°C. In the core of the large D3 domes, late granoblastic recrystallization is widespread together with almost complete S1-S2 transposition, incipient melting and development of a low-pressure sillimanite-bearing assemblage where relicts of higher pressure minerals are locally preserved. Corresponding PT conditions are 650°-550°C and a lower pressure (5.5 to 2.5 Kb). As most of the observed structures at the lower levels (mineral lineations, boudinage) are clearly associated with (or reworked by) D2 and accentuated by D3 which was accompagnied by partial melting, D2 and D3 are interpreted as representing a continuum developed in the same PT field. It can be assumed also that the Baltoro granite was emplaced by the end of this combined D2-D3 event. From the Miocene ages published for the Baltoro granite (20 Ma to 8 Ma), the low-pressure evolution of the Karakorum gneisses may represent a very young high-grade assemblage. The age of Dl is less defined but at least older than 36 Ma old leucogranites.

The sharp contact along the Shyok Suture zone, interpreted as a large thrust (Main Karakorum Thrust - MKT) of this young high-grade metamorphic terrene against the older (older than 30-45 Ma from late undeformed intrusives) Kohistan-Ladakh island-arc domain, is interpreted, following Mattauer (1985), as resulting from the interaction between the still-ongoing northward movement of the Indo-Pakistan plate and an opposite southward continental subduction, seismically active, operating in Pamir.  相似文献   

3.
Fusulinids from the Rosh Gol, Mastuj, Reshun Gol (East Hindu Kush) and Baroghil (West Karakorum) localities are studied. Five successive fusulinid assemblages from the Rosh Gol section characterize the Sakmarian (?), Yakhtashian-Bolorian, and Kubergandian stages of the Permian. Fusulinids of the Sakmarian (?) Stage are discovered in the Baroghil locality. In the Mastuj and Reshun Gol localities, rocks of natural outcrops, talus cones, and pebbles of the Cretaceous conglomerates yield predominantly the Kubergandian fusulinids accompanied sometimes by the Sakmarian (?) and Bolorian forms. Four new species Monodiexodina talenti, Nonpseudofusulina conaghani, N. yarkhunensis, and N. mawsoni are described.  相似文献   

4.
This paper investigates the age, PT conditions and kinematics of Karakorum Fault (KF) zone rocks in the NW part of the Himalaya–Karakorum belt. Granulite to greenschist facies assemblages were developed within the KF zone during strike-slip shearing. The granulites were formed at high temperature (800 °C, 5.5 kbar), were subsequently retromorphosed into the amphibolite facies (700–750 °C, 4–5 kbar) and the greenschist facies (350–400 °C, 3–4 kbar). The Tangtse granite emplaced syn-kinematically at the contact between a LT and the HT granulite facies. Intrusion occurred during the juxtaposition of the two units under amphibolite conditions. Microstructures observed within the Tangtse granite exhibit a syn-magmatic dextral S–C fabric. Compiled U–Pb and Ar–Ar data show that in the central KF segment, granulite facies metamorphism occurred at a minimum age of 32 Ma, subsequent amphibolite facies metamorphism at 20–18 Ma. Further shearing under amphibolite facies (650–500 °C) was recorded at 13.6 ± 0.9 Ma, and greenschist-facies mica growth at 11 Ma. These data give further constrains to the age of initiation and depth of the Karakorum Fault. The granulite-facies conditions suggest that the KF, accommodating the lateral extrusion of Tibet, could be at least a crustal or even a Lithosphere-scale shear zone comparable to other peri-Himalayan faults.  相似文献   

5.
The Tibetan Plateau, largely derived from the accretion of several Gondwana microplates to the southern margin of Asia since the late Palaeozoic, is the highest and largest topographic relief on Earth. Although the first order geodynamic processes responsible for its pre-Cenozoic evolution are quite well-known, many issues are still debated, among which is the timing of collision of each terrane with the southern margin of Asia. Even more uncertain is the pre-Palaeozoic history of these terranes, due to the lack of basement exposures. As a contribution to understanding the pre-Cenozoic evolution of the Tibetan Plateau, this paper focuses on the Aghil Range, a remote and poorly investigated area close to the Karakorum Fault between Kunlun and Karakorum (Xinjiang, China) in western Tibet. The tectono-metamorphic and magmatic evolution of the Aghil Range is investigated using a multidisciplinary approach that combines field mapping, petrology and geochronology (UPb on titanite, zircon, monazite and xenotime using SHRIMP-RG). We demonstrate that the Aghil Range preserves a coherent slice of Neoproterozoic crystalline basement with a late Palaeozoic sedimentary cover deposited on a passive continental margin during the Gondwana break-up. This represents the westernmost exposure of Precambrian crystalline basement known so far in the Tibetan Plateau. Furthermore, petrological and geochronological results allow reconstructing the Mesozoic poly-metamorphic evolution of this sector of the Tibetan Plateau, which records the evidence of Middle Jurassic (ca. 170 Ma) and Late Cretaceous (66 Ma) collisional events, as well as of the Late Jurassic (ca. 150 Ma) early subduction of an accretionary complex developed on its southern margin. Evidence of Late Cretaceous subduction-related magmatism preceding the last collisional event is also recorded. These results allow tentative correlation of the different terranes of Central Tibet with those of the Pamir-Karakorum Range on both sides of the Karakorum fault.  相似文献   

6.
During the summer of 1992 a geological expedition crossed the northern Karakorum range in northern Pakistan, from the Chitral to Karambar valleys, from the villages of Mastuj to Imit. Some of the areas visited were geologically unknown. A number of structural units were crossed, belonging to the Karakorum block or to other crustal blocks north of it. They are: (a) the axial batholith, in which three plutonic bodies have been identified, and (b) the northern sedimentary belt (NSB), in which three major tectonostratigraphic units form thrust stacks dipping to the north. Their internal stratigraphy and structural style are partly different. The most complete contains a crystalline basement, transgressed by a marine succession during the Early Ordovician. The youngest strata are represented by the Reshun conglomerate, of inferred Cretaceous age. The northernmost unit of the NSB is tightly folded, whereas the central one forms a monocline. Vertical faults, mainly strike-slip, dissect the thrusted slabs. Metamorphic deformation is absent or reaches only the anchizone in the studied sector of the Karakorum NSB. To the north of the Karakorum proper there are several other tectonic units, separated by vertical faults. They are, from south to north: (a) the Taš Kupruk zone, with metavolcanics of basaltic to latibasaltic composition; (b) the Atark unit, mostly consisting of massive carbonate rocks of Mesozoic age; and (c) the Wakhan slates which consist of a thick widespread succession of dark slates, metasiltites and sandstones. The fine-grained elastic rocks are supposed to be Palaeozoic to Early Triassic in age. The Wakhan slates are intruded by plutons belonging to the East Hindu Kush batholith, from which a single K/Ar age on muscovite gave a Jurassic age.  相似文献   

7.
Abstract The Shyok Suture Zone separates rocks in the Asian plate from rocks in the Kohistan-Ladakh island arc. In Baltistan, this suture has been reactivated by the late 'break-back'Main Karakorum Thrust (MKT). The P-T histories of metamorphic rocks both north and south of the MKT have been determined in an effort to place constraints on the tectonic history of this zone. The terranes north and south of the MKT have different, unrelated metamorphic histories. Rocks from the Kohistan-Ladakh island arc south of the MKT have undergone a static low- P (2–4 kbar, c. 500° C) thermal metamorphism. The P-T paths and metamorphic textures of these rocks are consistent with metamorphism due to emplacement of plutonic rocks into the island arc. This metamorphism pre-dates folding and deformation of these rocks. Rocks in the Karakorum Metamorphic Complex, north of the MKT, have experienced a complex deformational and metamorphic history. Prograde metamorphic isograds have been deformed by subsequent south-verging folding and by gneiss dome emplacement. However, decompression metamorphic reactions occurred during nappe emplacement. Higher pressure rocks are associated with higher level nappes, creating an inverted pressure metamorphic sequence (8–9-kbar rocks over 5–6-kbar rocks). There is little variation in temperature with structural level (550–625° C). These two different terranes have been juxtaposed after metamorphism by the late south-directed MKT.  相似文献   

8.
Ugo Pognante 《Lithos》1991,26(3-4):305-316
High-K calc-alkaline, shoshonitic and ultrapotassic post-collisional dykes of Neogene age have been found in the remote and little known region of northern Karakorum located around the Shaksgam valley, north of the K2-Gasherbrum range (China). The dykes derive from more or less comparable basic magma(s) and display rather unusual petrographic and geochemical characters with respect to the other K-rich rocks. The geochemical data are consistent with derivation of the basic magma(s) from small degrees of partial melting of garnet-lherzolites previously enriched in incompatible elements of crustal origin possibly during the subduction of the Indian plate beneath Karakorum. The spectrum of compositions reflects fractional crystallization governed by an early removal of clinopyroxene, phlogopite, plagioclase, garnet±amphibole followed by the precipitation of abundant alkali feldspar, amphibole±apatite±quartz. Additionally, assimilation of crustal rocks during magma ascent contributed to the unusual compositional characteristics and is suggested by the abundance of corroded quartz ( ± plagioclase) xenocrysts and by the occasional presence of granitic xenoliths.

An apparent connection exists between magmatism and tectonism in the complex Karakorum Fault Zone (KFZ). It is suggested that, during the Neogene, the strike-slip KFZ and some adjacent post-metamorphic faults transiently behaved as extensional fault systems down to deep levels, triggering ascent and emplacement of the K-rich magma. The subsequent (re)activation of a compressive and transcurrent regime determined the rapid and recent uplift of the more primitive lamprophyres occurring in the plutonites and metamorphites of the upper Baltoro Glacier and K2-Gasherbrum range, relative to the more fractionated and contaminated lamprophyres injecting the shallower rocks of the Shaksgam valley area.  相似文献   


9.
Upper Maastrichtian deposits formed in a nearshore subtidal environment within the Valdenoceda Formation (Castilian Ramp, North Iberian margin) are described together with two recently found selachian assemblages. Rare earth element concentrations (REE) have been used to assess the degree of taphonomic mixing and reworking, observing that it is minor or non-existent, and differences in degree of preservation and ecologic mixing can be explained by biostratinomic processes. The patterns of REE also helped to obtain a better understanding of the depositional environment, including the diagenetic history from burial to final degree of bone preservation.The fossil assemblages here described are close to that of the late Maastrichtian of Albaina (in the enclave of Condado de Treviño, Burgos), both in the Basque-Cantabrian Region, but their age may be slightly older (early late Maastrichtian). In total, the new assemblages consist of 17 taxa, assigned to 11 genera of shallow-water dwellers combined with individuals from the outer shelf. They represent cosmopolitan taxa (Squalicorax pristodontus, Serratolamna serrata and Rhombodus binkhorsti) together with local species (Rhinobatos echavei, Rhinobatos ibericus). Although there are not significant differences between Albaina and Quintanilla la Ojada faunas, the new assemblages add interesting taphonomic and geochemical information to the few existing uppermost Cretaceous deposits with fossil sharks in southwestern Europe.  相似文献   

10.
Reexamination of radiolarians from the Naiba and Bykovo formations of the Naiba reference section (West Sakhalin Mountains) is carried out. Distinguished in the section are the Cromyomma (?) nodosa-Amphipyndax sp. A (terminal early Cenomanian), Cuboctostylus kasinzovae-C. sakhalinensis (Middle Cenomanian), Cuboctostylus trifurcatus-Cassideus yoloensis (terminal middle-late Cenomanian), and Spongodiscus concentricus-Multastrum robustum (late Turonian to early Coniacian probably) assemblages. According to results of comparative analysis for North Pacific regions, concurrent radiolarian assemblages from the Naiba section and California contain up to 40% of species in common, whereas taxonomic similarity with assemblages from Japan is insignifican in contrast.  相似文献   

11.
The Campanian of the eastern Koppeh-Dagh Basin (NE Iran) is generally considered to be represented by the upper part of the Abderaz and the Abtalkh formations. The Abtalkh Formation, which is studied here, reaches thicknesses of up to 1750 m in the area. The formation is characterized by abundant, diverse, and poor to moderately well preserved calcareous nannofossil assemblages of Tethyan affinity. The assemblages were studied in detail in two sections in eastern Koppeh-Dagh, allowing construction of a precise biozonation for this stage. The Abtalkh Formation at sections in Abtalkh village and Padeha spans biozones CC20 to CC23a (UC15bTP to UC16). The results of this study indicate a late early to late Campanian age for the formation in the area. The most complete Campanian sequence is in the southeast, where the Padeha section is located. Nannofossil abundance and diversity decreases upwards, showing a trend from the base to top of the formation. Dominance of warm water taxa, and low abundance of high latitude taxa, confirm placement of the basin in low to mid palaeolatitudes during deposition of the formation.  相似文献   

12.
Metasediments in the southern Grossvenediger area (Tauern Window, Austria) were studied along a cross-section through rocks of increasing metamorphic grade from the margin of the Tauern Window in the south to the base of the Upper Schieferhülle, including the Eclogite Zone, in the north. In the southern part of the cross-section there is no evidence for a pre-late Alpine metamorphic history in the form of high-pressure relics or pseudomorphs. Mineral assemblages are characterized by the stability of tremolite + calcite, biotite + calcite and biotite + chlorite + calcite. In the northern part a more complete Alpine metamorphic evolution is preserved. Primary high-pressure assemblages are dolomite + quartz, tremolite + zoisite, zoisite + dolomite + quartz + phengite I and probably tremolite + dolomite + phengite I. Secondary, post-kinematic assemblages [tremolite + calcite, talc + calcite, phengite II + chlorite + calcite (+ quartz), biotite + chlorite + calcite, biotite + zoisite + calcite] formed as a result of the dominant late Alpine metamorphic overprint. The occurrence of biotite + zoisite + calcite is confined to the northernmost area and defines a biotite–zoisite–calcite isograd. P–T estimates based on standard thermobarometric techniques and on stability relationships of tremolite + calcite + dolomite + quartz and zoisite give consistent results. P–T conditions of the main Tertiary metamorphic overprint were 525° C, P= 7.5 ± 1 kbar in the northern part of the cross-section. The southern part was metamorphosed at lower temperatures of 430–470° C. The Si-content of phengites from this area is almost as high as that of phengites from the Eclogite Zone (Simax= 3.4 pfu). Pressures > 10 kbar at 420° C are suggested by phengite barometry according to Massone & Schreyer (1987). In the absence of high-pressure relics or pseudomorphs, these phengites, which lack late Alpine re-equilibration, are the only record that rocks of the southern part probably also experienced an early non-eclogitic high-pressure metamorphism.  相似文献   

13.
A palynological investigation of 164 samples from 18 water wells in northern Kordofan, Sudan, enabled the recognition of five informal zones based on pollen and spore assemblages ranging in age from Albian to Maastrichtian. The youngest (late Campanian-Maastrichtian) assemblages are restricted to the Bagbag Basin, whereas Albian-Cenomanian (to Turonian) sediments are widespread to the east and west of the Bagbag area. Impressions of Salvinia floating leaves from outcrops of the upper Hamrat el Wuz Formation, western part of the study area, are among the oldest occurrences of this water fern and indicate a Campanian-Maastrichtian age for these sediments.The vertical distribution of hygrophilous (pteridophytic spores) versus xerophilous (ephedroids and possibly small, weakly sculptured tricolporates) elements in the palynofloras suggests widespread moist or even aquatic habitats in the Albian-Cenomanian and Campanian-Maastrichtian. A shift towards drier conditions occurred in the late Cenomanian-Turonian. Throughout the Cretaceous, however, there may have been extensive arid/semiarid areas of non-deposition and seasonally dry periods. Some characteristics of the local palynofloras are attributed to its inner continental position. Rare Albian-Cenomanian and Campanian-Maastrichtian dinoflagellates could be interpreted as lacustrine phytoplankton rather than as evidence for marine influence.  相似文献   

14.
Abstract

The Karakorum is located north of the India/Kohistan-Ladakh/Eurasia sutures. Along the Karambar valley, its axial batholith comprises four plutonic complexes. (1) The largest one represents the westerly continuation of the huge mid-Cretaceous calc-alkaline Hunza plutonic unit. This unit here displays a remarkable reverse zoning that would result from a differentiation at depth followed by multipulse intrusions. (2) A stock of subalkaline (i.e. intermediate between alkaline and calc-alkaline) granitoids (Warghut porphyritic granite). (3) A composite group of fine-grained granitoids. (4) The so-called Koz Sar alkaline complex (KSAC), a unique example of this composition of plutonism so far reported in the batholith. In addition, leucogranite dykes and rare alkaline mafic ones occur.

The KSAC is a heterogeneous and more or less deformed body, ca. 5 km wide and possibly 20 km long, comprising two coeval groups of rocks. (1) Medium- to coarse-grained rocks are the most representative members of the complex. They consist of metaluminous to slightly peralkaline monzonite, quartz monzonite, granite and leucogranite, with iron-rich mafic silicates and Fe-Ti oxide. These subsolvus granitoids define a strongly ferriferous alkaline series. Five monzonite and quartz monzonite samples yield an isochron Rb-Sr age of 88 ± 4 Ma (87Sr/86Sri = 0.70440 ± 7; MSWD = 1.7). (2) Fine-grained rocks (monzogabbro to quartz syenite) are compositionally comparable to the dark-coloured members of the preceding group.

The KSAC was emplaced into a post-collisional environment resulting from the accretion, maybe at least since Aptian times, of the Kohistan island arc to the Karakorum. Its alkaline character testifies to the development of extensional tectonics, a process compatible with an oblique collision and/or with the decrease, at the time of collision, of the convergence velocity between the two colliding terrenes. Available data suggest that this alkaline complex (1) is late-orogenic, (2) is genetically-related to the nearby subalkaline granitoids and originates from the same mantle-source with a small crustal contribution, and (3) represents the ultimate member of the mid-Cretaceous subduction-related plutonism emplaced into the Karakorum continental margin.  相似文献   

15.
A study of clay mineral and calcareous nannofossil abundances in late Jurassic–early Cretaceous sediments from the Volga Basin, SE Russia, is presented. From these results, we are able to compare some general patterns of mineralogical and palaeontological change for the Volga Basin to the palaeoclimate models developed for northern Europe and beyond. The two successions examined comprise calcareous mudstones with black organic‐rich shale horizons, overlain by a series of phosphatic silty sands. Clay mineralogical results show a progressive decrease in kaolinite and the concomitant increase of smectite and illite through the middle Volgian, followed by an abrupt increase in kaolinite in the late Volgian. The clay mineral evidence suggests increasing aridity at the end of the Jurassic, similar, in part, to many western European successions. Because of differential settling of clay minerals, superimposed upon this possible climatic signature is likely to be the effect of relative sea‐level change. Calcareous nannofossil analysis from a single section reveals a shift through the middle Volgian from low nutrient, warm water assemblages dominated by Watznaueria to cooler surface water and high nutrient assemblages dominated by Biscutum constans. These observations suggest that increased aridity is also associated with climatic cooling. Black shales are associated with increased productivity, higher sea levels and increases in smectite content. Hence, periods of low (chemical) hinterland weathering during semi‐arid conditions are paradoxically associated with relatively nutrient‐rich waters, and organic‐rich shales. Comparison of published carbon and oxygen stable isotope results from this and other sections to the clay mineral and nannofossil data confirms the palaeoclimatic interpretation. This study significantly improves the published biostratigraphically constrained clay mineral database for this time period, because other European and North American successions are either non‐marine (and thus poorly dated), absent (through penecontemporaneous erosion) or condensed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Diverse and well‐preserved palynomorph assemblages recovered from the Deurne Sands, a local member of the Upper Miocene Diest Formation near Antwerp, allow the recognition of dinoflagellate cyst biozones defined in the North Atlantic realm (East Coast, USA) and the North Sea region (Nieder Ochtenhausen well, northern Germany). Based on the dinoflagellate cyst assemblages and the calcareous microfossils, the deposition of the Deurne Sands took place at some time during middle to late Tortonian (Late Miocene). These sands can be correlated biostratigraphically with the Dessel Sands in the Campine area of northern Belgium. This correlation demonstrates the existence of two separate and contemporary depositional areas in northern Belgium during early Late Miocene times. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
We report the following new40Ar/39Ar ages: 130–150 and 90–100 Ma from monzodiorite and tremolite-actinolite schist of the Kohistan Complex; 44±0.5, 39.7±0.2 Ma from dikes cutting the Ladakh-Deosai Batholith Complex; 130–145 Ma from a diorite in the Shyok melange; and 7.8±0.1 Ma from a late stage monzogranite of the Kärakorum Batholith. A 261±13 Ma age from gneiss of the Karakorum Batholith is of uncertain significance. These dates, previously published ones which we summarize here, and some Sr isotope data suggest the following, (due to subduction switching between the Indian and Asian margins during closing of the Tethys ocean): Late Cretaceous emplacement of the Dras-Kohistan Cretaceous Island arc, followed by rapid cooling between abut 85 and 45 Ma. A quiet phase tectonically on the northern Indian plate during the Palaeocene to early Eocene, when subduction was occurring on the Asian margin. Further southward thrusting of the Indian continental margin associated with the development of an Andean-type arc (the Ladakh-Desosai Batholiths) on the northern Indian margin during the Eocene. An Oligocene Andean arc (the Karakorum Batholiths) on the Asian margin, followed by Miocene collision of the two continents and intrusion of ‘true’ granites derived from partial melting of continental crust.  相似文献   

18.
First biogeographic maps are proposed for the late Eocene-Oligocene of the North Pacific. The maps are compiled based on distribution of 120 molluscan species studied in 30 reference sections of the region. The analyzed Machigar (Sakhalin), Rategin, Amanina-Gakh (western Kamchatka), Asagai-Momidziyama (Japan) type assemblages and their age analogues are well known and described long ago. Over 50 schematic biogeographic maps illustrate distribution areas of different taxa in the late Eocene, early Oligocene, and late Oligocene epochs. Some of them characterize distribution areas of individual species, while the others depict habitat areas of typical (Machigar and Rategin) assemblages or certain genera different in terms of their thermotropism. Analysis of the maps resulted in recognition of the Japan-Kamchatka and Kamchatka-North American paleoprovinces, and indications of general gradual seawater temperature decrease during the Oligocene are defined. The attention is paid to the commenced diversification of North Pacific biota that leads to formation of boreal communities and also to different-rank the amphipacific dusjunctions.  相似文献   

19.
In distribution areas of the Pekul’neiveem and Chirynai formations customary distinguishable in the Koryak Upland, complicated tectonostratigraphic units are composed of alternating thrust sheets of different lithologic composition and age, which are juxtaposed because of widespread thrust faulting, as is proved by the radiolarian analysis. Nineteen radiolarian assemblages of different age are first established here in the Lower Jurassic-Hauterivian succession of siliceous-volcanogenic sediments. In the Lower Jurassic interval, the lower and upper Hettangian, lower and upper Sinemurian, and Pliensbachian beds are recognized. Paleontological characterization is also presented for the Aalenian (or Toarcian?-Aalenian), upper Bajocian, lower and upper Bathonian, and Callovian beds of the Middle Jurassic. Within the Upper Jurassic, the Oxfordian-early Kimmeridgian, late Kimmeridgian-early Tithonian, Tithonian, and late Tithonian-early Berriasian radiolarian assemblages are distinguished. The late Berriasian-early Valanginian, middle-late Valanginian, and Hauterivian radiolarian assemblages are first recognized or compositionally revised. Radiolarians and lithofacies data are used to correlate the tectonostratigraphic units and individualize the jasper-alkali basaltic (lower Hettangian), chert-terrigenous (Hettangian-Sinemurian), jasper-cherty (Pliensbachian-Aalenian), jasper (Bajocian-Hauterivian), jasper-basaltic (upper Bajocian-Valanginian), Fe-Ti basaltic (upper Bajocian-Bathonian), tuffitejasper-basaltic (Bathonian-Hauterivian), and terrigenous-volcanogenic (Bajocian-Valanginian) sequences. The correlation results are extrapolated into other continental areas flanking the Pacific, i.e., to the western Kamchatka, northern and northwestern coastal areas of the Sea of Okhotsk, where the analogous radiolarian assemblages are characteristic of comparable allochthonous units of terrigenous-siliceous-volcanogenic sediments.  相似文献   

20.
The Carboniferous succession in the Tindouf Basin of southern Morocco, North Africa, displays Mississippian to Early Pennsylvanian marine beds, followed by Pennsylvanian continental deposits. The marine beds comprise a shallow water cyclic platform sequence, dominated by shales and fine‐grained sandstones with thin but laterally persistent limestone/dolostone beds. Foraminiferal assemblages have been studied in the limestone beds in several sections from the Djebel Ouarkziz range in the northern limb of the Tindouf Syncline; they indicate that the age of the limestones range from late Asbian (late Viséan) to Krasnopolyanian (early Bashkirian). The foraminiferal assemblages are abundant and diverse, and much richer in diversity than those suggested by previous studies in the region, as well as for other areas of the western Palaeotethys. The richest assemblages are recorded in the Serpukhovian but, unusually, they contain several taxa which appear much earlier in Western European basins (in the latest Viséan). In contrast, conodont assemblages are scarce due to the shallow‐water facies, although some important taxa are recorded in the youngest limestones. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号