首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diet of Gonostoma gracile, a numerically abundant mesopelagic fish in the Subtropical Region and the Transition Domain of the northwestern North Pacific, was examined using 520 specimens collected during June–July 1988, June 1995 and November 1995. The prey included mainly copepods, ostracods, amphipods and euphausiids. Copepods and ostracods were the most abundant, comprising approximately 70% of the total diet. There was little evidence of an ontogenetic dietary shift; Pleuromamma copepods were the most abundant prey for all size classes of fish ranging from 19 to 116 mm in standard length. The size range of prey increased with growth, but all fish sizes examined fed mainly on 1–4 mm long prey. Luminescent copepods and ostracods were the most abundant prey, suggesting that G. gracile detects its prey visually. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Anchovy biomass and copepod standing stocks and growth rates on the Agulhas Bank were compared during the peak spawning period (November) in 1988 and 1989. In 1988, copepod biomass over the western Agulhas Bank was low (1,0 g dry mass·m?2) relative to anchovy biomass there (14,7 g dry mass·m?2). In November 1989 in the same area, fish biomass was much lower (5,7 g dry mass·m?2), following a recruitment failure, and copepod biomass was higher (2,4 g dry mass·m?2), possibly as a result of lesser predation by anchovy. By contrast, the eastern Agulhas Bank had a larger biomass of copepods (4–6 g dry mass·?2) and a lower biomass of anchovy during both years. Knowing, from laboratory studies, that a prey biomass of 0,78 g·m?2 is required for fish to obtain their daily maintenance ration, it is suggested that spawning on the western Agulhas Bank was food-limited in 1988. Copepods on the western Bank may be replaced by local growth or transport from the eastern Bank. Growth rates of copepods on the western Bank were 10–50 per cent of maximum in 1988, but total production (c. 100 mg dry mass·m?2·day?1) was low, primarily because biomass was low and less than the rate of consumption by anchovy (243 mg copepod dry mass·m?2·day?1). On the eastern Bank, copepod production exceeded anchovy consumption and it is concluded that the flux of copepod biomass onto the western Bank may be as important as local growth in replenishing copepod stocks there. Feeding conditions for anchovy on the western Agulhas Bank are often marginal compared to the situation on the eastern Bank, and it is suggested that the selection of the western Bank as the major spawning area is related more to the success of transport and survival of eggs and larvae on the West Coast recruiting grounds than to feeding conditions per se.  相似文献   

3.
The diet of anchovy Engraulis encrasicolus was studied in three regions (Béjaia, Bénisaf and Ghazaouet) along the Algerian coast. Ontogenetic, spatial and seasonal variations in anchovy diet were investigated using multivariate analyses and analysed in relation with sea surface temperature and chlorophyll-a. 46 prey taxa of varying size between 0.57 mm (Euterpina acutifrons) and 6.8 mm (fish larvae) were recorded. Whatever the season, the region or the fish size, anchovy is exclusively zooplanktivorous and copepods were the most present prey, constituting 87% by number of the prey taken and found in 98% of the anchovy stomachs examined. However, their occurrence and number varied according to the different areas, seasons and fish size. During its first year of life, anchovy feeds almost exclusively on copepods (mainly small and medium size prey). As anchovy grows, copepods are gradually substituted by large crustaceans such as decapods and amphipods. Hierarchical cluster analysis, analysis of similarities (ANOSIM) and similarities percentage (SIMPER) indicated a distinct diet of anchovy of the bay of Bejaia from those of the bays of Bénisaf and Ghazaouet probably due to differences in hydrologic conditions. Diet differences also occurred between seasons. Summer and spring have distinct prey assemblages each and showed low diet similarities with the two other seasons. More prey species were found in the diet during winter (36) and autumn (30) and the vacuity index was lower in winter. Temporal variability in satellite-derived chlorophyll-a matched the seasonal variability in the diversity of the anchovy prey and feeding intensity as reflected by the vacuity index, suggesting further investigation of the potential use of satellite-derived chlorophyll-a data as a proxy for anchovy feeding intensity.  相似文献   

4.
Major features of four marine ecosystems were analyzed based on a broad range of fisheries-associated datasets and a suite of oceanographic surveys. The ecosystems analyzed included the Gulf of Maine/Georges Bank in the Northwest Atlantic Ocean, the Norwegian/Barents Seas in the Northeast Atlantic Ocean, and the eastern Bering Sea and the Gulf of Alaska in the Northeast Pacific Ocean. We examined survey trends in major fish abundances, total system fish biomass, and zooplankton biomasses. We standardized each time series and examined trends and anomalies over time, using both time series and cross-correlational statistical methods. We compared dynamics of functionally analogous species from each of these four ecosystems. Major commonalities among ecosystems included a relatively stable amount of total fish biomass and the importance of large calanoid copepods, small pelagic fishes and gadids. Some of the changes in these components were synchronous across ecosystems. Major differences between ecosystems included gradients in the magnitude of total fish biomass, commercial fish biomass, and the timing of major detected events. This work demonstrates the value of comparative analysis across a wide range of marine ecosystems, suggestive of very few but none-the-less detectable common features across all northern hemisphere ocean systems.  相似文献   

5.
The diet of at least 28 species of mesopelagic fish from the Pacific coast of Hokkaido was examined. The dominant family was the Gonostomatidae (42%) which was represented by five species. The most abundant species wasCyclothone atraria which together with the other species of this genus preyed predominantly on copepods. Euphausiids and copepods were dominant in the diet ofGonostoma gracile. The next most abundant family was the Myctophidae (32%) which was represented by seven species. The dominant species,Stenobrachius nannochir, preyed mainly on copepods. Copepods were also the dominant food item of the other myctophids except forLampanyctus jordani which fed mainly on euphausiids. The other important family was the Bathylagidae (21%).Leuroglossus schmidti was the dominant species and its diet was more diverse with ostracods, copepods, molluscs and larvaceans being the most important food items.Bathylagus ochotensis had a similar diet. Copepods were the most important food items for all but a few species and their occurrence in the fish stomachs was related to the known vertical distribution of both predators and prey. Ostracods and euphausiids were also important prey items, the latter especially in large fish species. Molluscs and larvaceans were restricted to the two species of the family Bathylagidae.  相似文献   

6.
The hydrography and distributions of cod larvae on Georges Bank were surveyed during two research cruises in April and May 1993 in order to relate larval drift between cruises to the vernal intensification of the frontal component of the residual circulation. We observed the transport of two patches of cod larvae. One patch, which had maximum larval cod densities of 45 larvae 100 m−3 in April, appeared to have been advected south about 75 km between surveys, while the other, which had maximum larval cod densities of 20 larvae 100 m−3 in April, appeared to have been advected north-northeast about 25 km. Maximum larval densities in each patch sampled during the second cruise in May were 15 and 18 larvae 100 m−3, respectively, and mean growth in total length for larvae in the two patches was approximately 5.5 mm and 4.5 mm, respectively, between the two cruises. During the April cruise there was a large volume of anomalous cold, fresh water, of Scotian Shelf origin, which occupied much of the eastern third of Georges Bank. During May, relatively cold, fresh water appeared in a band from the Northeast Peak along the Southern Flank, between Georges Bank water on the top of the Bank, and upper Slope Water offshore. The distribution of cold, fresh water suggests its participation in the general clockwise circulation around the Bank. The transport of cod larvae comprising the first patch appeared to become organized within, and move along, the frontal boundary established by the Scotian Shelf-like water mass, while larvae in the second patch, which we assumed to have moved to the north, may have been transported northward in an on-Bank flow of warmer and saltier upper Slope Water, which may have originated from a Gulf Stream Ring. Based upon observed transport of the first patch of larvae in relation to the frontal boundary, we present a conceptual model of frontal mixing currents on Georges Bank, where current velocities may reach 5 cm s−1 at the depth of the pycnocline. We suggest that this frontal component of the residual circulation, which is in addition to that resulting from tidal rectification, may be important in the transport of fish larvae, and that interannual variability in the degree of intrusion of extrinsic water masses may contribute to variable larval cod drift patterns, to variable larval cod retention on the Bank, and ultimately, to variable larval fish recruitment to the early juvenile stage.  相似文献   

7.
Abstract. The waters surrounding the Pribilof Islands are an important nursery ground for juvenile walleye pollock (Theragra chalcogramma), an important forage fish in the pelagic food web of the productive Bering Sea shelf region. The diet of juvenile pollock was studied in two consecutive years along a transect line crossing from a well‐mixed coastal domain, through a frontal region to stratified water farther offshore. Variability in stomach fullness was high and evidence for increased feeding intensity in the front was weak. Prey diversity and prey size generally increased with increasing fish size, shifting from predominantly small copepods to larger, more evasive prey items such as euphausiids, crab megalopae and fish. The diet of the fish reflected changes in the relative abundance of copepods and euphausiids in the prey fields between years. Juvenile pollock showed increased feeding rates at dusk, and stomach fullness as well as prey condition were generally lowest just before sunrise; however, the proportion of euphausiids increased in the diet of pollock caught at night, suggesting that some food was also ingested during darkness. Juvenile pollock and their euphausiid prey both vertically migrated above the thermocline at night, although each had a different daytime depth.  相似文献   

8.
《Progress in Oceanography》2007,72(2-3):249-258
Centropages typicus and Centropages hamatus are two of the most abundant copepods on the continental shelf in the mid-Atlantic region of the western North Atlantic. Their range extends from the Scotian Shelf (C. typicus) and the Grand Banks (C. hamatus) in the north to Cape Hatteras in the south. South of Cape Hatteras they have only been observed in inshore waters of North and South Carolina and not offshore on the continental shelf or in coastal waters of eastern Florida. However, C. hamatus has been observed in western Florida. Abundances of both species are greatest in inshore regions in the mid-Atlantic Bight with C. hamatus tending to have a more coastal distribution. In this region seasonal variability is low with high abundances from late fall through mid-summer. In the north year-round presence of both species is confined to inshore areas and offshore banks such as Georges Bank, and Browns Bank, Emerald Bank and Western Bank on the Scotian Shelf. In this northern region there is a pronounced seasonal cycle in abundance with high abundances during late summer and fall. Periods of high reproductive rates are closely linked to blooms of large phytoplankton and food availability rather than temperature appears to be controlling population abundances.  相似文献   

9.
This paper reviews recent progress on modeling cross-frontal water exchange on Georges Bank undertaken as part of the U.S. Global Ecosystem Northwest Atlantic/Georges Bank Study (U.S. GLOBEC/Georges Bank Program). A simple conceptual model is described first, followed by a discussion of four physical mechanisms associated with (1) strong nonlinear interaction, (2) asymmetric tidal mixing, (3) varying wind forcing, and (4) chaotic mixing. Some critical issues in modeling studies of fronts are also addressed. A new unstructured grid, finite-volume coastal ocean ecosystem model is introduced. This model combines the best of the finite-difference method for the simplest discrete computational efficiency and the finite-element method for geometric flexibility. Because the finite-volume method discretizes the integral form of the governing equations, this approach provides a better representation for the conservation laws of mass and momentum are satisfied, which is particularly important in the frontal regions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Recent research developments on the ecology, dynamics and trophic position of copepods in the Benguela ecosystem are synthesized. Attention is focused on herbivorous species of the southern Benguela and how they cope with the physical and biological variability characteristic of this upwelling region. Copepods constitute on average approximately half of the total zooplankton carbon and. are most abundant during the upwelling season. They are able to maintain large population densities within local coastal upwelling areas by combining ontogenetically based vertical migration behaviour with features of the current system. Some species have developed finely tuned strategies to overcome periods of starvation between upwelling bouts by storing lipid reserves or by entering temporary developmental arrest. In situ measurements of production rates of local species are among the highest recorded for copepods. Despite an apparent excess of food, copepods exert only limited impact on the phytoplankton, removing on average <25 per cent of that available daily. Indirect estimates of carbon flux indicate that 11–25 per cent of copepod daily ration is used for egestion of faecal pellets. Copepods are the preferred prey of a wide variety of invertebrate and vertebrate predators. Large copepods in particular are important in the diet of commercially exploited pelagic fish. Localized areas of low abundance of copepods have been found in association with high densities of anchovy during peak spawning and recruitment periods. Copepods may therefore constitute a central limiting factor for pelagic fish production in the southern Benguela.  相似文献   

11.
The aim of the research was to investigate the diet of herring at different stages of its life cycle. For that purpose feeding of 0-group and immature herring in the Barents Sea, as well as of mature fish from the Norwegian Sea, was studied. 0-Group herring was sampled in the Barents Sea in August–September 2002–2005 during the international 0-group and trawl-acoustic survey of pelagic fish, as well as during the trawl-acoustic survey of demersal fish in November–December 2003–2004. Stomach samples of immature herring (1–3 years) were collected in late May and early of June 2001 and 2005 in the south-western part of the Barents Sea during the trawl-acoustic survey for young herring. Stomach samples of mature herring were collected in the Norwegian Sea in 1996, 1998, 1999, 2001, and 2002 in the course of the international trawl-acoustic survey of pelagic fish. Feeding intensity of herring of all age groups varied considerably between years and this was probably associated with availability and accessibility of their prey. The 0-group herring was found to have the most diverse diet, including 31 different taxa. In August–September, copepods, euphausiids, Cladocera, and larvae Bivalvia were most frequent in the diet of 0-group herring, but euphausiids and Calanus finmarchicus were the main prey taken. In November–December, euphausiids and tunicates were major prey groups. It was found that C. finmarchicus in the diet of 0-group herring was replaced by larval and adult euphausiids with increasing fish length. C. finmarchicus was the principal prey of immature herring and dominated in the diet of both small and large individuals and mainly older copepodites of C. finmarchicus were taken. Larval and adult euphausiids were found in stomachs of immature herring as well, but their share was not large. The importance of different prey for mature herring in the Norwegian Sea varied depending on the feeding area and length of the herring. On the whole C. finmarchicus and 0-group fish were the most important prey for mature herring diet, but fish prey were only important in a small sampling area. Hyperiids, euphausiids, tunicates, and pteropods were less important prey, and in 2002 herring actively consumed herring fry and redfish larvae.  相似文献   

12.
The spatial and temporal characteristics of trophic structure of fish communities in the southern Huanghai Sea were examined based on the data sampled from bottom trawl surveys conducted during the autumn of 2000 and the spring of 2001. Hierarchical agglomerative cluster method and bootstrap randomization were used to identify significant trophic groups for each fish assemblage in the southern Huanghai Sea. A total of six major trophic groups were identified within this system, which classified predators based upon location in the water column or prey size ( i. e. , benthic to pelagic predators or fish to small invertebrate prey predators). The similarity level used to identify significant trophic groups in each assemblage ranged from 24% to 34%. Although planktivores were the dominant trophic group in each assemblage (60% - 79% ), there were spatial and temporal variations in the trophic structure, which reflected the differences in the abundance and availability of dominant preys. Simplified food webs were constructed to evaluate the most important trophic relationships between the dominant prey taxa and the fishes in each assemblage within this system. Although there were some differences in the key prey species among different food webs, pelagic prey items (mainly euphausiids and copepods) represent the most important energetic link between primary producers and higher trophic level predators. The trophic level for most fishes was between 3 and d, and the weighted mean trophic level for each assemblage ranged from 3.3 to 3.4. Compared with previous study in the mid-1980s, there was an obvious downward trend in the trophic level for most fish species, which resulted mainly from the fluctuation in key prey species in the Huanghai Sea. The decrease in the importance of Japanese anchovy seems to be offset by other abundant prey species such as Euphausia pacifica and copepods ( mainly Calanus sinicus ) .  相似文献   

13.
The deep-sea fish Malacosteus niger belongs to a family of fishes, the dragonfishes (Order: Stomiiformes, Family: Stomiidae), that are among the top predators of the open ocean mesopelagic zone. Malacosteus typifies the morphological adaptation of this group for the taking of relatively large prey. These adaptations include huge fangs, an enormous gape, and the loss of gill rakers. Despite these adaptations, examination of specimens of this species from different ocean basins shows that zooplanktivory is a common feeding mode of the species, an extreme departure from its trophic lineage. Large calanoid copepods made up 69–83% of prey numbers and 9–47% of prey biomass in specimens from the North Atlantic, the Gulf of Mexico, and throughout the Pacific. As M. niger feeding observations have never been reported, the rationale for this enigmatic feeding ecology must be inferred from other aspects of its ecology. As presently known, M. niger is unique among all vertebrates in the possession of both a long-wave bioluminescence system and a bacteriochlorophyll-derived retinal photosensitizer that allows long-wave visual sensitivity. A two-part theory is presented to explain why M. niger radically diverges from its clade and preys on food it does not appear morphologically suited to eat: (1) the combination of long-wave bioluminescence and vision systems suggests that M. niger may search small volumes for food, and thus may sustain itself energetically by snacking on small parcels of food (copepods) in between rare encounters with large prey, and (2) M. niger may gain the raw material for its long-wave visual sensitivity, and thus its feeding mode, from the consumption of copepods.  相似文献   

14.
The diet of anchovy (Engraulis encrasicolus) in the North and Baltic Seas was studied using stomach analysis from four sampling events in different areas. Zooplanktivory was confirmed; the most frequent prey items (in over 40% of stomachs) were copepods, malacostracan larvae and fish larvae. In the Baltic Sea, Paracalanus spp. and Pseudocalanus spp. were important in relative terms; in the German Bight, Temora spp. dominated the stomach contents. Relative abundances of prey items varied with area more than absolute abundance or presence absence of items. Moreover, the level of resolution of prey categories influenced which prey categories were considered to be most important in driving variability in stomach content. Anchovy diet is broad across the seasons, years and areas sampled, suggesting that it is not a specialist feeder in the North Sea. The similarity of diet between anchovy and other clupeids, as well as anchovy consumption of larval fish, makes the new increased anchovy population a potential intraguild predator of commercial species like herring.  相似文献   

15.
ABSTRACT

Recruiting King George whiting Sillaginodes punctatus were studied to assess the potential for food competition with permanent resident fish species in a nursery habitat. Marine migrant post larval S. punctatus (<60?mm TL) consumed primarily harpacticoid copepods and had high (>0.6) diet overlap with permanent resident fish species Favonigobius leteralis and Stigmatopora nigra. Food electivity index indicated that S. punctatus juveniles preferred harpacticoid copepods and amphipods, while juvenile Heteroclinus adelaide and Gymnapistes marmoratus migrating to the nursery habitat targeted larger prey such as amphipods. Preference for larger prey by H. adelaide and G. marmoratus species coupled with differences in prey composition in the stomach was due to mouth size and feeding habits, resulting in different food preferences to S. punctatus. The whiting showed an ontogenetic shift in diet with early settlers (>60?mm TL) consuming less copepods and more amphipods, while previous year recruits (>120?mm TL) consumed polychaete worms. This study indicates that competition for food resources between the new recruiting S. punctatus juveniles and permanent resident juveniles is reduced through differences in temporal and spatial feeding behaviours, mouth morphology, and ontogenetic shift in prey consumption.  相似文献   

16.
The vertical distributions of copecod nauplii and water properties were sampled at well-mixed and stratified sites on Georges Bank using a pumping system, CTD and in vivo fluorometer during a four day period in late May 1992. At each stratified station at least one sample was taken within the thermocline and the fluorescence maximum, which usually co-occurred. Well-mixed sites had low average concentrations of nauplii, ca 41−1, and showed little variation of abundance with depth. Stratified sites had from 4 to 16 times the integrated (0–50 m) abundance of nauplii compared to well-mixed sites and showed strong vertical patterns of distribution. Maximum concentrations of nauplii, up to 1601−1, were associated with the thermocline at 7 of the 9 stratified stations. At the two remaining stratified sites the naupliar maximum was in the upper mixed layer, sampled at 5 m depth. The encounter rate between early feeding cod (Gadus morhua) larvae and their naupliar prey was calculated with and without turbulence. Turbulence was estimated from two sources: wind stress in the upper layer (calculated from wind observations during our cruise) and tidal shear in the lower layer (estimated initially from a tidal mixing equation). We ultimately replaced the lower layer estimates with turbulence data from a series of measurements made in 1995. The latter are more robust and had the advantage of providing dissipation rates for the pycnocline as well as the lower layer. Theory predicts an increase in encounters between a predator and its prey with the addition of turbulence parameters into standard models of encounter. We combined turbulence profiles with the vertical distribution of nauplii to examine the potential contribution of turbulent kinetic energy to predator-prey encounter rates at various depths in stratified and mixed water columns. Our calculations suggest the following increases due to turbulence at stratified sites on Georges Bank during our cruise: from 34 to 219% in the upper mixed layer, depending on wind speed and depth; approximately 8% in the pycnocline; and approximately 110% below the pycnocline. Mixed sites experience increases of at least 110% (tide only), but greater increases (118–192% in this study) occur when the wind blows because of the combined (spatially overlapped) effects of wind and tidal mixing at these sites. The absolute values for encounter rates and their modification by turbulence are sensitive to a number of assumptions in the models. We used a series of stated assumptions to generate estimates that range from 0.6 to 26.5 prey h−1, depending on geographical location, physical forcing and depth.  相似文献   

17.
Resource partioning among the planktivorous stages of eight fish species occurring in a Mediterranean coastal lagoon was studied. Five species were migratory mullets that spawned in the sea (Liza ramada, L. aurata, L. saliens, Chelon labrosusandMugil cephalus), while the other three species were resident and spawned in the lagoon (Atherina boyeri, Cyprinus carpioandGambusia holbrooki).Mullet fry exhibited similar diets, based on the consumption of zooplanktonic Crustacea such as copepods and cladocerans, although adult chironomids were also important.Gambusia holbrookiandA. boyerifed on small prey such as copepod nauplii, copepodites and rotifers, whileC. carpioconsumed larger prey preferentially (cladocerans and copepods).According to the trophic overlap and niche width results, seven species pairs could be competing in the estuary, although further experimental evidence is still required.  相似文献   

18.
In conjunction with the GLOBEC (Global Ocean Ecosystems Dynamics) program, measurements of moored currents, temperature and salinity were made during 1994–1999 at locations in 76 m of water along the southern flank of Georges Bank and at the Northeastern Peak. The measurements concentrate on the biologically crucial winter and spring periods, and coverage during the fall is usually poorer.Current time series were completely dominated by the semidiurnal M2 tidal component, while other tidal species (including the diurnal K1 component) were also important. There was a substantial wind-driven component of the flow, which was linked, especially during the summer, to regional–scale response patterns. The current response at the Northeast Peak was especially strong in the 3–4 days period band, and this response is shown to be related to an amplifying topographic wave propagating eastward along the northern flank. Monthly mean flows on the southern flank are southwestward throughout the year, but strongest in the summertime. The observed tendency for summertime maximum along-bank flow to occur at depth is rationalized in terms of density gradients associated with a near-surface freshwater tongue wrapping around the Bank.Temperature and salinity time series demonstrate the presence, altogether about 25% of the time, of a number of intruding water masses. These intrusions could last anywhere from a couple days up to about a month. The sources of these intrusions can be broadly classified as the Scotian Shelf (especially during the winter), the Western Gulf of Maine (especially during the summer), and the deeper ocean south of Georges Bank (throughout the year). On longer time scales, the temperature variability is dominated by seasonal temperature changes. During the spring and summer, these changes are balanced by local heating or cooling, but wintertime cooling involves advective lateral transports as well. Salinity variations have weak, if any, seasonal variability, but are dominated by interannual changes that are related to regional- or basin-scale changes.All considered, Georges Bank temperature and salinity characteristics are found to be highly dependent on the surrounding waters, but many questions remain, especially in terms of whether intrusive events leave a sustained impact on Bank waters.  相似文献   

19.
Comparison of current measurements from moored (paddle-wheel rotor) Aanderaa current meters and acoustic Doppler current profilers in a strong tidal flow on Georges Bank indicates rate under-reading by the Aanderaa meters at some vertical positions. The under-reading may arise from mooring-line vibrations induced by vortex shedding from spherical buoyancy packages, and shielding of the paddle-wheel rotors due to the meters' inability to remain aligned with the fluctuating relative water velocity. Field tests and a simple model are used to investigate this explanation. The authors briefly review the Georges Bank observations that instigated this investigation. An explanation for the degradation of the Aanderaa measurements is proposed, observational information from field tests is discussed, and the model and its implications are presented. The model results support the hypothesis that high-frequency mooring-line vibration causes the degradation of the Aanderaa measurements  相似文献   

20.
An oil spill fishery impact assessment model system has been applied to the Georges Bank-Gulf of Maine region to assess the sensitivity of probable impact on several key fisheries to spill location and timing. Simulations of the impact on the fishery of tanker spills (20 million gallons released over 5 days), at two separate locations for each season of the year, and blowout spills (68 million gallons released over 30 days) at one location, with monthly releases and at six other locations with seasonal spills have been studied. Atlantic cod has been employed as the principal fish species throughout the simulations. Impacts on Atlantic herring and haddock have also been investigated for selected cases. All spill sites are located on Georges Bank with the majority in the general region of OCS leasing activity.The results of these simulations suggest a complex interaction among spill location and timing, the spatial and temporal distribution of spawning, the population dynamics of the species under study, and the hydrodynamics of the area. For the species studied, spills occurring during the winter and spring have the largest impact with cod being the most heavily impacted followed by haddock and herring. In all cases, the maximum cumulative loss to the fishery of a one time spill event never exceeded 25% of the annual catch with the exact value depending on the number of ichthyoplankton impacted by the spill and the compensatory dynamics of the population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号