首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Polymetalic sulfide is the main product of sea-floor hydrothermal venting, and has become an important sea-floor mineral resources for its rich in many kinds of precious metal elements. Since 2007, a number of investigations have been carried out by the China Ocean Mineral Resources Research and Development Association(COMRA)cruises(CCCs) along the Southwest Indian Ridge(SWIR). In 2011, the COMRA signed an exploration contract of sea-floor polymetallic sulfides of 10 000 km2 on the SWIR with the International Seabed Authority. Based on the multibeam data and shipborne gravity data obtained in 2010 by the R/V Dayang Yihao during the leg 6 of CCCs21, together with the global satellite surveys, the characteristics of gravity anomalies are analyzed in the Duanqiao hydrothermal field(37°39′S, 50°24′E). The "subarea calibration" terrain-correcting method is employed to calculate the Bouguer gravity anomaly, and the ocean bottom seismometer(OBS) profile is used to constrain the two-dimensional gravity anomaly simulation. The absent Moho in a previous seismic model is also calculated.The results show that the crustal thickness varies between 3 and 10 km along the profile, and the maximum crustal thickness reaches up to 10 km in the Duanqiao hydrothermal field with an average of 7.5 km. It is by far the most thicker crust discovered along the SWIR. The calculated crust thickness at the Longqi hydrothermal field is approximately 3 km, 1 km less than that indicated by seismic models, possibly due to the outcome of an oceanic core complex(OCC).  相似文献   

2.
The ultraslow-spreading Southwest Indian Ridge(SWIR) to the east of the Melville fracture zone is characterized by very low melt supply and intensive tectonic activity. Due to its weak thermal budget and extremely slow spreading rate, the easternmost SWIR was considered to be devoid of hydrothermal activity until the discovery of the inactive Mt. Jourdanne hydrothermal field(27°51′S, 63°56′E) in 1998. During the COMRA DY115-20 cruise in2009, two additional hydrothermal fields(i.e., the Tiancheng(27°51′S, 63°55′E) and Tianzuo(27°57′S, 63°32′E)fields) were discovered. Further detailed investigations of these two hydrothermal sites were conducted by Chinese manned submersible Jiaolong in 2014–2015. The Tiancheng filed can be characterized as a lowtemperature(up to 13.2°C) diffuse flow hydrothermal field, and is hosted by fractured basalts with hydrothermal fauna widespread on the seafloor. The Tianzuo hydrothermal field is an inactive sulfide field, which is hosted by ultramafic rocks and controlled by detachment fault. The discovery of the three hydrothermal fields around Segment #11 which receives more melt than the regional average, provided evidence for local enhanced magmatism providing heat source to drive hydrothermal circulation. We further imply that hydrothermal activity and sulfide deposits may be rather promising along the easternmost SWIR.  相似文献   

3.
洋中脊热液活动多产生于不同扩张速率洋中脊的局部高地形区域,基于达西流体充填的孔隙?弹性热力学模型可以直观、有效地模拟出洋壳内部热液对流的形态、温度结构和喷发位置等信息。数值模拟结果和所得解析模型表明:不同规模的洋底地形起伏会对洋壳内部的热液对流形态产生不同程度的影响,高地形规模越大,起伏程度越大,下伏热液羽向地形高点的偏移就越明显。通过结合东太平洋海隆9°17′N热液区和大西洋洋中脊Lucky Strike热液区实际的跨轴水深分布,也可获得与二者实际喷发位置相吻合的模拟结果。地形起伏相关的洋中脊热液喷发模型揭示洋底低地形及其下伏渗透性洋壳表现为主要的海水充注区域,而高地形由于上覆压力的减小,使其成为汇集热液释放和喷发的主要区域。  相似文献   

4.
The morphotectonic features and their evolution of the central Southwest Indian Ridge (SWIR) are dis- cussed on the base of the high-resolution flfll-coverage bathyraetric data on the ridge between 49°-51°E. A comparative analysis of the topographic features of the axial and flank area indicates that the axial topogra- phy is alternated by the ridge and trough with en echelon pattern and evolved under a spatial-temporal mi- gration especially in 49°-50.17°E. It is probably due to the undulation at the top of the mantle asthenosphere, which is propagating with the mantle flow. From 50.17° to 50.7°E, is a topographical high terrain with a crust much thicker than the global average of the oceanic crust thickness. Its origin should be independent of the spreading mechanism of ultra-slow spreading ridges. The large numbers of volcanoes in this area indicate robust magmatic activity and may be related to the Crozet hot spot according to RMBA (residual mantle Bouguer anomaly). The different geomorphological feature between the north and south flanks of the ridge indicates an asymmetric spreading, and leading to the development of the OCC (oceanic core complex). The tectonic activity of the south frank is stronger than the north and is favorable to develop the OCC. The first found active hydrothermal vent in the SWIR at 37°47'S, 49°39'E is thought to be associated with the detach- ment fault related to the OCC.  相似文献   

5.
The Moho interface provides critical evidence for crustal thickness and the mode of oceanic crust accretion. The seismic Moho interface has not been identified yet at the magma-rich segments (46°-52°E) of the ultra- slow spreading Southwestern Indian Ridge (SWIR). This paper firstly deduces the characteristics and do- mains of seismic phases based on a theoretical oceanic crust model. Then, topographic correction is carried out for the OBS record sections along Profile Y3Y4 using the latest OBS data acquired from the detailed 3D seismic survey at the SWIR in 2010. Seismic phases are identified and analyzed, especially for the reflected and refracted seismic phases from the Moho. A 2D crustal model is finally established using the ray tracing and travel-time simulation method. The presence of reflected seismic phases at Segment 28 shows that the crustal rocks have been separated from the mantle by cooling and the Moho interface has already formed at zero age. The 2D seismic velocity structure across the axis of Segment 28 indicates that detachment faults play a key role during the processes of asymmetric oceanic crust accretion.  相似文献   

6.
Duanqiao hydrothermal field is located between the Indomed and Gallieni fracture zones at the central volcano, at 50°28′E in the ultraslow-spreading Southwest Indian Ridge (SWIR). Twenty-eight subsamples from a relict chimney and massive sulfides were dated using the 230Th/238U method. Four main episodes of hydrothermal activity were determined according to the restricted results: 68.9–84.3, 43.9–48.4, 25.3–34.8, and 0.7–17.3 kyrs. Hydrothermal activity of Duanqiao probably started about 84.3 (±0.5) kyrs ago and ceased about 0.737 (±0.023) kyrs ago. The periodic character of hydrothermal activity may be related to the heat source provided by the interaction of local magmatism and tectonism. The estimated mean growth rate of the sulfide chimney is <0.02 mm/yr. This study is the first to estimate the growth rate of chimneys in the SWIR. The maximum age of the relict chimney in Duanqiao hydrothermal filed is close to that of the chimneys from Mt. Jourdanne (70 kyrs). The hydrothermal activity in Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. The massive sulfides are younger than the sulfides from other hydrothermal fields such as Rainbow, Sonne and Ashadze-2. The preliminarily estimated reserves of sulfide ores of Duanqiao are approximately 0.5–2.9 million tons.  相似文献   

7.
As an interoceanic arc, the Kyushu-Palau Ridge(KPR) is an exceptional place to study the subduction process and related magmatism through its interior velocity structure. However, the crustal structure and its nature of the KPR,especially the southern part with limited seismic data, are still in mystery. In order to unveil the crustal structure of the southern part of the KPR, this study uses deep reflection/refraction seismic data recorded by 24 ocean bottom seismometers to reconstruct a detail...  相似文献   

8.
多波束声纳数据可以有效记录海底地形地貌和底质特征信息。本文利用船载多波束数据对慢速扩张的卡尔斯伯格脊60°~61°E洋脊段的典型构造地貌单元的后向散射强度特征进行了研究,在此基础上,分析了该洋脊段的构造和岩浆作用强度特征。结果表明,洋脊段I以构造拉张作用占主导,脊轴及附近后向散射强度为-29 dB左右,裂谷壁高差可达1 200 m以上,裂谷内断裂发育,裂谷侧翼高度与裂谷宽度的比值为78.7~126.2,裂谷两侧翼部线性构造较少,但轴向正断层面更宽,倾角更小;与洋脊段裂谷中段相比,末端火山活动频率较低但喷发规模较大,火山机构数量和体积也更大,且可发育深大断裂获取深部热源。洋脊段II以岩浆作用占主导,脊轴及附近后向散射强度达-35 dB,裂谷内轴向火山脊发育,裂谷壁高差小于500 m,裂谷侧翼高度与裂谷宽度的比值为77.6~116.8,裂谷两侧翼部线性构造数量众多、长宽比较大且呈近似对称,相邻线性构造之间沉积物广泛分布。通过提取挖掘与底质属性密切相关的多波束后向散射强度数据,结合海底地形地貌的分析,可以为洋中脊的构造和岩浆作用强度的定量研究提供有效的证据。  相似文献   

9.
Modeling of long-wavelength gravity anomaly is crucial for bathymetry inversion with a gravity-geologic method. We propose a new method, named as iGGM, to approximate the long-wavelength gravity anomalies by using a finite element method based on an adaptive triangular mesh which is constructed by uneven control points. The mesh size is suitably controlled to ensure that there are several control points in each grid. By using iGGM, the bathymetry in the South China Sea (Test Area #1: 112°E–119°E, 12°N–20°N) and East China Sea (Test Area #2: 125°E–130°E, 25°N–30°N) is estimated. The performance of the method was evaluated by comparing the predictions with Earth topographical database 1 (ETOPO1) model and shipborne depths in the test points. Results show that the depths derived by iGGM have a strong correlation with the shipborne depths. In the test points, the mean values of their differences are smaller than 10 m. The standard deviations of their differences are smaller than 120 m and their correlation is stronger than 0.98. Meanwhile, the results provided by the iGGM model are comparable with that obtained by the ETOPO1 model, e.g., the differences between iGGM and ETOPO1 models in test points for Test Areas 1 and 2 are 116 and 70 m in standard deviation, respectively.  相似文献   

10.
Historically, prediction of ocean floor depth, or bathymetry, has been based on the isostatic modeling and linearized relationships between gravity anomalies and bathymetry. The need for isostatic modeling limits the application of the resulting bathymetry predictions as constraints in geophysical models. An alternative technique making use of the Earth's vertical gravity gradient for predicting bathymetry is explored in this paper. This technique is based on the fact that the observed gravity gradient anomalies result primarily from local mass concentrations on the ocean floor, and that mass compensation by the oceanic crust has an insignificant effect on the gravity gradients, and can be neglected. The resulting bathymetry prediction therefore is independent of isostatic modeling assumptions, allowing it to be used as a constraint on models of lithospheric compensation and for other geodetic and geophysical applications.  相似文献   

11.
Hydrothermal vent incidence was once thought to be proportional to the spreading rate of the mid-ocean ridges (MORs). However, more and more studies have shown that the ultraslow-spreading ridges (e.g., Southwest Indian Ridge (SWIR)) have a relatively higher incidence of hydrothermal venting fields. The Qiaoyue Seamount (52.1°E) is located at the southern side of segment #25 of the SWIR, to the west of the Gallieni transform fault. The Chinese Dayang cruises conducted eight preliminary deep-towed surveys of hydrothermal activity in the area during 2009 and 2018. Here, through comprehensive analyses of the video and photos obtained by the deep-towed platforms, rock samples, and water column turbidity anomalies, a high-temperature, ultramafic-hosted hydrothermal system is predicted on the northern flank of the Qiaoyue Seamount. We propose that this hydrothermal system is most likely to be driven by gabboric intrusions. Efficient hydrothermal circulation channels appear against a backdrop of high rock permeability related to the detachment fault.  相似文献   

12.
Investigations of the diffusion activities both within and outside the seafloor hydrothermal vents, as well as related mineral genesis, have been one of the key focuses of ocean biogeochemistry studies. Many hydrothermal vents are distributed close to the southern Okinawa Trough on the less-than-30-m deep shallow seafloor off Kueishan Tao, northeast of Taiwan Island. Investigations of temperature, pH and Eh at four depths of hydrothermal plume were carried out near Kueishan Tao at the white(24.83°N, 121.96°E) and yellow(24.83°N, 121.96°E) vents. An 87 h of temperature time series observation-undertaken near the white vent showed that tide is the main factor affecting the background environment. Based on the observed data, 3-dimensional sliced diffusion fields were obtained and analyzed. It was concluded that the plume diffused mainly from north to south due to ebb tide. The yellow vent's plume could effect as far as the white vent surface. From the temperature diffusion field, the vortices of the plume were observed. The Eh negative abnormality was a better indicator to search for hydrothermal plumes and locate hydrothermal vents than high temperature and low pH abnormalities.  相似文献   

13.
Abstract

Considerable effort has been expended in studying the Izu–Bonin Arc over the past 15 years. In particular, 43 dives of the Shinkai 2000 have been undertaken there to discover and evaluate the extent of submarine hydrothermal activity and mineralization. Most effort has been focused on Myojin Knoll (23 dives), Suiyo Seamount (6 dives), and Kaikata Caldera (10 dives).

The Izu–Bonin Arc is divided in two by the Sofugan Tectonic Line. Eight submarine caldera are located north of this line but only one is south of it. The physiography of the northern sector of the arc is quite different from that of the southern sector. Volcanic rocks from the northern sector are more acidic than those from the southern sector.

Evidence for submarine hydrothermal mineralization has been observed at four seamounts along the Izu–Bonin Arc (Myojin Knoll, Myojinsho, Suiyo Seamount, and Kaikata Caldera), and submarine hydrothermal activity is evident at another three seamounts along the arc (Kurose Hole, Mokuyo Seamount, and Doyo Seamount).

The most extensive submarine hydrothermal mineral deposit so far located on the Izu–Bonin Arc is the Sunrise deposit at Myojin Knoll. This deposit, at least 400 m in diameter and 30 m high, is associated with black smoker venting, inactive sulfide chimneys, massive sulfides, hydrothermal Mn crusts, and a hydrothermal vent fauna. The maximum recorded temperature of the hydrothermal vents there was 278°C. Some of the sulfide chimneys contained as much as 49 μg/g Au and 3,400 μg/g Ag. The sunrise deposit is one of the largest submarine volcanic massive sulfide deposits so far discovered in midocean ridge, backarc, or arc settings and has an estimated mass of 9 × 106 t. This deposit may be of the Kuroko-type. The discovery of the Sunrise deposit in 1997 gives hope that other, similarly large, sulfide deposits may be found in other caldera along the Izu–Bonin Arc.

The geological variability along the arc, the high seismicity, the occurrence of active volcanism and submarine hydrothermal venting, and a proven submarine hydrothermal mineral potential coupled with the proximity of the region to Japan suggest that the Izu–Bonin Arc could profitably serve as a natural laboratory for the long-term monitoring of the seafloor.  相似文献   

14.
On the basis of new geophysical data acquired by the Federal Institute of Geosciences and Natural Resources (BGR) and the Polar Marine Geological Research Expedition (PMGRE) as well as existing data new geophysical maps were compiled for the Lazarev Sea and the Riiser-Larsen Sea between 10°W and 25°E. The new results are: – The drastic change in the strike direction of the volcanic Explora Wedge between longitudes 10°W and 5°W is accompanied with a gradual change from one major wedge, i.e. the Explora Wedge, into at least two wedge-shaped volcanic constructions, each manifested by a sequence of seaward-dipping reflectors in the seismic records. – The southern Lazarev Sea is best described as a continental margin affected by multiple rifting episodes accompanied with transient volcanism. – A distinct N80°E striking basement depression separates the volcanic-prone continental margin of the southern Lazarev Sea from oceanic crust upon which the Maud Rise rests. The southern scarp of the narrow depression was presumably aligned with the eastern scarp of the Mozambique Ridge during the Early Cretaceous. – The Astrid Ridge proper occupies the transition from the volcanic-prone continental margin of the Lazarev Sea to old oceanic crust of the Riiser -Larsen Sea, and it rests upon a large volcanic apron which covers the basement of the southwestern Riiser-Larsen Sea. – No evidence was found that prolific volcanism has affected the early opening of the Riiser-Larsen Sea. – The Lazarev Sea is a sediment-starved region.  相似文献   

15.
Predicting Bathymetry from the Earth's Gravity Gradient Anomalies   总被引:4,自引:0,他引:4  
Historically, prediction of ocean floor depth, or bathymetry, has been based on the isostatic modeling and linearized relationships between gravity anomalies and bathymetry. The need for isostatic modeling limits the application of the resulting bathymetry predictions as constraints in geophysical models. An alternative technique making use of the Earth's vertical gravity gradient for predicting bathymetry is explored in this paper. This technique is based on the fact that the observed gravity gradient anomalies result primarily from local mass concentrations on the ocean floor, and that mass compensation by the oceanic crust has an insignificant effect on the gravity gradients, and can be neglected. The resulting bathymetry prediction therefore is independent of isostatic modeling assumptions, allowing it to be used as a constraint on models of lithospheric compensation and for other geodetic and geophysical applications.  相似文献   

16.
Four uniformly spaced regional gravity traverses and the available seismic data across the western continental margin of India, starting from the western Indian shield extending into the deep oceanic areas of the eastern Arabian Sea, have been utilized to delineate the lithospheric structure. The seismically constrained gravity models along these four traverses suggest that the crustal structure below the northern part of the margin within the Deccan Volcanic Province (DVP) is significantly different from the margin outside the DVP. The lithosphere thickness, in general, varies from 110–120 km in the central and southern part of the margin to as much as 85–90 km below the Deccan Plateau and Cambay rift basin in the north. The Eastern basin is characterised by thinned rift stage continental crust which extends as far as Laxmi basin in the north and the Laccadive ridge in the south. At the ocean–continent transition (OCT), crustal density differences between the Laxmi ridge and the Laxmi basin are not sufficient to distinguish continental as against an oceanic crust through gravity modeling. However, 5-6 km thick oceanic crust below the Laxmi basin is a consistent gravity option. Significantly, the models indicate the presence of a high density layer of 3.0 g/cm3 in the lower crust in almost whole of the northern part of the region between the Laxmi ridge and the pericontinental northwest shield region in the DVP, and also below Laccadive ridge in the southern part. The Laxmi ridge is underlain by continental crust upto a depth of 11 km and a thick high density material (3.0 g/cm3) between 11–26 km. The Pratap ridge is indicated as a shallow basement high in the upper part of the crust formed during rifting. The 15 –17 km thick oceanic crust below Laccadive ridge is seen further thickened by high density underplated material down to Moho depths of 24–25 km which indicate formation of the ridge along Reunion hotspot trace.  相似文献   

17.
This study presents the results of a seismic refraction experiment that was carried out off Dronning Maud Land (East Antarctica) along the Explora Escarpment (14° W–12° W) and close to Astrid Ridge (6°E). Oceanic crust of about 10 km thickness is observed northwest of the Explora Escarpment. Stretched continental crust, observed southeast of the escarpment, is most likely intruded by volcanic material at all crustal levels. Seismic velocities of 7.0–7.4 km/s are modelled for the lower crust. The northern boundary of this high velocity body coincides approximately with the Explora Escarpment. The upper crystalline crust is overlain by a 4-km thick and 70-km wide wedge of volcanic material: the Explora Wedge. Seismic velocities for the oceanic crust north of the Explora Escarpment are in good agreement with global studies. The oceanic crust in the region of the Lazarev Sea is also up to 10-km thick. The lower crystalline crust shows seismic velocities of up to 7.4 km/s. This, together with the larger crustal thickness might point to higher mantle temperatures during the formation of the oceanic crust. The more southerly rifted continental crust is up to 25-km thick, and also has seismic velocities of 7.4 km/s in the lower crystalline crust. This section is interpreted to consist of stretched continental crust, which is heavily intruded by volcanic material up to approximately 8-km depth. Multichannel seismic data indicate that, in this region, two volcanic wedges are present. The wedges are interpreted to have evolved during different time/rift periods. The wedges have a total width of at least 180 km in the Lazarev Sea. Our results support previous findings that the continental margin off Dronning Maud Land between ≈2°E and ≈13°E had a complex and long-lived rift history. Both continental margins can be classified as rifted volcanic continental margins that were formed during break-up of Gondwana.  相似文献   

18.
The orthogonal supersegment of the ultraslow-spreading Southwest Indian Ridge at 16°–25°E is characterized by significant along-axis variations of mantle potential temperature. A detailed analysis of multibeam bathymetry,gravity, and magnetic data were performed to investigate its variations in magma supply and crustal accretion process. The results revealed distinct across-axis variations of magma supply. Specifically, the regionally averaged crustal thickness reduced systematically from around 7 Ma to the present, indicating a regionally decreasing magma supply. The crustal structure is asymmetric in regional scale between the conjugate ridge flanks, with the faster-spreading southern flank showing thinner crust and greater degree of tectonic extension. Geodynamic models of mantle melting suggested that the observed variations in axial crustal thickness and major element geochemistry can be adequately explained by an eastward decrease in mantle potential temperature of about40°C beneath the ridge axis. In this work, a synthesized model was proposed to explain the axial variations of magma supply and ridge segmentation stabilities. The existence of large ridge-axis offsets may play important roles in controlling melt supply. Several large ridge-axis offsets in the eastern section(21°–25°E) caused sustained along-axis focusing of magma supply at the centers of eastern ridge segments, enabling quasi-stable segmentation. In contrast, the western section(16°–21°E), which lacks large ridge-axis offsets, is associated with unstable segmentation patterns.  相似文献   

19.
Crustal Thinning of the Northern Continental Margin of the South China Sea   总被引:2,自引:0,他引:2  
Magnetic data suggest that the distribution of the oceanic crust in the northern South China Sea (SCS) may extend to about 21 °N and 118.5 °E. To examine the crustal features of the corresponding continent–ocean transition zone, we have studied the crustal structures of the northern continental margin of the SCS. We have also performed gravity modeling by using a simple four-layer crustal model to understand the geometry of the Moho surface and the crustal thicknesses beneath this transition zone. In general, we can distinguish the crustal structures of the study area into the continental crust, the thinned continental crust, and the oceanic crust. However, some volcanic intrusions or extrusions exist. Our results indicate the existence of oceanic crust in the northernmost SCS as observed by magnetic data. Accordingly, we have moved the continent–ocean boundary (COB) in the northeastern SCS from about 19 °N and 119.5 °E to 21 °N and 118.5 °E. Morphologically, the new COB is located along the base of the continental slope. The southeastward thinning of the continental crust in the study area is prominent. The average value of crustal thinning factor of the thinned continental crust zone is about 1.3–1.5. In the study region, the Moho depths generally vary from ca. 28 km to ca. 12 km and the crustal thicknesses vary from ca. 24 km to ca. 6 km; a regional maximum exists around the Dongsha Island. Our gravity modeling has shown that the oceanic crust in the northern SCS is slightly thicker than normal oceanic crust. This situation could be ascribed to the post-spreading volcanism or underplating in this region.  相似文献   

20.
冲绳海槽断裂、岩浆构造活动和洋壳化进程   总被引:3,自引:1,他引:2       下载免费PDF全文
讨论了冲绳海槽断裂、岩浆构造活动特征和它们之间的关系,认为雁行排列的地堑斜交于陆架外缘隆起带,海槽北段断块隆脊、龙王构造带和海槽南段"棉花构造带"可能保留了海槽各幕断陷前的火山岩浆活动特征,而现在活动的吐噶喇火山岛弧可沿海槽南段岛坡追踪到台湾。吕宋岛向台湾的碰撞挤压引起的旋张活动加强了海槽南段的地壳拉张,诱发了地堑内火山岩浆活动,在洋壳化进程中起关键作用,其中最典型的八重山地堑已经形成洋壳。断裂和岩浆活动主要是单向地向岛弧侧迁移,由洋中脊扩张产生的对称条带状磁异常模式难以解释冲绳海槽的洋壳化进程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号