首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Pattern formation is a fundamental aspect of self‐organization in fields of bedforms. Time‐series aerial photographs and airborne light detection and ranging show that fully developed, crescentic aeolian dunes at White Sands, New Mexico, interact and the dune pattern organizes in systematically similar ways as wind ripples and subaqueous dunes and ripples. Documented interactions include: (i) merging; (ii) lateral linking; (iii) defect repulsion; (iv) bedform repulsion; (v) off‐centre collision; (vi) defect creation; and (vii) dune splitting. Merging and lateral linking are constructive interactions that give rise to a more organized pattern. Defect creation and bedform splitting are regenerative interactions that push the system to a more disorganized state. Defect/bedform repulsion and off‐centre collision cause significant pattern change, but appear to be neutral in overall pattern development. Measurements of pattern parameters (number of dunes, crest length, defect density, crest spacing and dune height), dune migration rates, and the type and frequency of dune interactions within a 3500 m box transect from the upwind margin to the core of the dune field show that most pattern organization occurs within the upwind field. Upwind dominance by constructive interactions yields to neutral and regenerative interactions in the field centre. This spatial change reflects upwind line source and sediment availability boundary conditions arising from antecedent palaeo‐lake topography. Pattern evolution is most strongly coupled to the pattern parameters of dune spacing and defect density, such that spatially or temporally the frequency of bedform interactions decreases as the dunes become further apart and have fewer defects.  相似文献   

2.
《Sedimentology》2018,65(1):191-208
The formative conditions for bedform spurs and their roles in bedform dynamics and associated sediment transport are described herein. Bedform spurs are formed by helical vortices that trail from the lee surface of oblique segments of bedform crest lines. Trailing helical vortices quickly route sediment away from the lee surface of their parent bedform, scouring troughs and placing this bed material into the body of the spur. The geometric configuration of bedform spurs to their parent bedform crests is predicted by a cross‐stream Strouhal number. When present, spur‐bearing bedforms and their associated trailing helical wakes exert tremendous control on bedform morphology by routing enhanced sediment transport between adjacent bedforms. Field measurements collected at the North Loup River, Nebraska, and flume experiments described in previous studies demonstrate that this trailing helical vortex‐mediated sediment transport is a mechanism for bedform deformation, interactions and transitions between two‐dimensional and three‐dimensional bedforms.  相似文献   

3.
Bedform climbing in theory and nature   总被引:7,自引:0,他引:7  
Where bedforms migrate during deposition, they move upward (climb) with respect to the generalized sediment surface. Sediment deposited on each lee slope and not eroded during the passage of a following trough is left behind as a cross-stratified bed. Because sediment is thus transferred from bedforms to underlying strata, bedforms must decrease in cross-sectional area or in number, or both, unless sediment lost from bedforms during deposition is replaced with sediment transported from outside the depositional area. Where sediment is transported solely by downcurrent migration of two-dimensional bedforms, the mean thickness of cross-stratified beds is equal to the decrease in bedform cross-sectional area divided by the migration distance over which that size decrease occurs; where bedforms migrate more than one spacing while depositing cross-strata, bed thickness is only a fraction of bedform height. Equations that describe this depositional process explain the downcurrent decrease in size of tidal sand waves in St Andrew Bay, Florida, and the downwind decrease in size of transverse aeolian dunes on the Oregon coast. Using the same concepts, dunes that deposited the Navajo, De Chelly, and Entrada Sandstones are calculated to have had mean heights between several tens and several hundreds of metres.  相似文献   

4.
The development of bedforms under unidirectional, oscillatory and combined‐flows results from temporal changes in sediment transport, flow and morphological response. In such flows, the bedform characteristics (for example, height, wavelength and shape) change over time, from their initiation to equilibrium with the imposed conditions, even if the flow conditions remain unchanged. These variations in bedform morphology during development are reflected in the sedimentary structures preserved in the rock record. Hence, understanding the time and morphological development in which bedforms evolve to an equilibrium stage is critical for informed reconstruction of the ancient sedimentary record. This article presents results from a laboratory flume study on bedform development and equilibrium development time conducted under purely unidirectional, purely oscillatory and combined‐flow conditions, which aimed to test and extend an empirical model developed in past work solely for unidirectional ripples. The present results yield a unified model for bedform development and equilibrium under unidirectional, oscillatory and combined‐flows. The experimental results show that the processes of bedform genesis and growth are common to all types of flows, and can be characterized into four stages: (i) incipient bedforms; (ii) growing bedforms; (iii) stabilizing bedforms; and (iv) fully developed bedforms. Furthermore, the development path of bedform; growth exhibits the same general trend for different flow types (for example, unidirectional, oscillatory and combined‐flows), bedform size (for example, small versus large ripples), bedform shape (for example, symmetrical or rounded), bedform planform geometry (for example, two‐dimensional versus three‐dimensional), flow velocities and sediment grain sizes. The equilibrium time for a wide range of bed configurations was determined and found to be inversely proportional to the sediment transport flux occurring for that flow condition.  相似文献   

5.
A second‐generation, source‐to‐sink cellular automaton‐based model presented here captures and quantifies many of the factors controlling the evolution of aeolian dune‐field patterns by varying only a small number of parameters. The role of sediment supply, sediment availability and transport capacity (together defined as sediment state) in the development and evolution of an aeolian dune‐field pattern over long time scales is quantified from model simulations. Seven dune‐field patterns can be classified from simulation results varying the sediment supply and transport capacity that control the type and frequency of dune interactions, the sediment availability of the system and, ultimately, the development of dune‐field patterns. This model allows predictions to be made about the range of sediment supply and wind strengths required to produce the dune‐field patterns seen in the real world. A new clustered dune‐field pattern is identified from model results and used to propose an alternative mechanism for the formation of superimposed dunes. Bedforms are hypothesized to cluster together, simultaneously forming two spatial scales of bedforms without first developing a large basal dune with small superimposed dunes. Manipulation of boundary conditions produces evolving dune fields with different spatial configurations of sediment supply. Trends of spacing and crest length increase with decreasing variability as the dune field matures. This simple model is a valuable tool which can be used to elucidate the dominant control of aeolian sediment state on the construction and evolution of aeolian dune‐field patterns.  相似文献   

6.
Linear aeolian bedforms are the most abundant bedform type in Earth's dune fields, and are very common in the Solar System. Despite their abundance, the long‐term development of these bedforms and its impact upon the resulting sedimentary architecture in the geological record is still poorly understood. The aim of this paper is to study the exposed record of an ancient linear megadune in order to discuss its development and the factors that impact the sedimentary architecture of aeolian linear bedforms. The outcrops of the ancient Troncoso Sand Sea (Barremian, Neuquén Basin, Argentina) provide a unique opportunity to study a preserved megadune record with an external body geometry that confirms its linear morphology. Architectural analysis reveals significant differences in cross‐stratified set bodies and bounding surfaces’ features and allows for the identification of three architectural complexes within the bedform's record. Analysis of deterministic models, sedimentary body relative chronology and distribution suggest that these architectural complexes result from distinctive phases in bedform development. It also clearly shows that construction of the megadune was achieved by expansion from a core, and that its development was characterized by sustained growth and strong longitudinal dynamics, without net accumulation. This study indicates how sustained bedform growth, rather than accretion, can be a critical factor conditioning linear bedform architecture towards a more ‘classic’ (bimodal bounding surface and cross‐bedding dip directions) concentric sedimentary architecture style. Furthermore, this research reveals how this style of architecture could only be relatively common in the geological record when related to bedform topography preservation.  相似文献   

7.
A two-dimensional analytical model is developed for the morphodynamics of aeolian dunes. The basis of the model is the sediment continuity equation, which is solved using a linearized sediment transport formula. The air flow over the topography is calculated with a steady-state boundary-layer model. This results in a series of analytical expressions for the shear stress, sediment transport, topography through time, and growth and migration of a sine-shaped dune. These expressions give quantitative relationships between bedform behavior (i.e., growth and migration) and factors such as wind velocity and surface roughness. In this way it can be seen that growth and migration rates increase for higher wind velocity, higher surface roughness and higher wave numbers (i.e., shorter wave lengths).  相似文献   

8.
Mountney  & Howell 《Sedimentology》2000,47(4):825-849
Sets of aeolian cross‐strata within the Cretaceous Etjo Formation of NW Namibia are bounded by a hierarchy of surfaces, the origin of which are ascribed to one of four processes related to aeolian bedform and erg behaviour. The base of the main aeolian succession is characterized by a basin‐wide erosional supersurface that formed in response to a period of aeolian deflation before the onset of the main phase of erg building. Interdune migration surfaces formed by draa migration are planar in sections parallel to the palaeowind and are inclined at up to 5° in an upwind direction (SW). Perpendicular to the palaeowind, interdune surfaces form 500‐m‐wide troughs, signifying crestline sinuosity within the original bedforms. Superimposition surfaces are inclined at 5–10° in a downwind direction and indicate the migration of crescentic oblique dunes over larger, slipfaceless transverse draa. Reactivation surfaces associated with minor changes in dune slipface orientation are distinct from other bounding surface types because overlying cross‐strata lie parallel to them, rather than downlap onto them. Analysis of the geometry of these bounding surfaces, together with the orientation of the cross‐strata within the sets that they bound, has enabled the detailed morphology of the original bedforms to be reconstructed. The maximum preserved thickness of individual aeolian sets varies systematically across the basin, from 52 m in the basin depocentre to only 8 m at the basin margin. The set architecture indicates that this spatial variation is primarily the result of decreased angles of bedform climb at the basin margin, rather than the presence of smaller bedforms. Similarly, a temporal reduction in the angle‐of‐climb, rather than a reduction in bedform size, is considered to be responsible for an upward decrease in preserved set thickness. Reductions in bedform climb angle reflect progressive loss of accommodation space as the accumulating erg filled the basin.  相似文献   

9.
Wet aeolian systems, in which the water table or its capillary fringe are in contact with the accumulation surface, such that moisture influences sedimentation, are well‐known from modern aeolian systems and several ancient preserved successions are recognized from outcrop. One common mechanism by which accumulation of wet aeolian system deposits occurs is via a progressive rise in the relative water‐table level that is coincident with ongoing dune and interdune migration, the angle of dune climb being determined by the ratio between the rate of relative water‐table rise and the rate of downwind migration of the bedforms. Accumulations of wet aeolian system deposits tend to be characterized by units of climbing dune strata separated by units of damp or wet interdune strata. For simple geometric configurations, where the size of the dune and interdune units, the rate of bedform migration and the rate of aggradation all remain constant over space and time, the resulting accumulation has a simple architecture characterized by sets of uniform thickness inclined at a constant angle. However, the dynamic nature of most aeolian dune systems means that such simple configurations are unlikely in nature. The complexity inherent in these systems is accounted for here by a numerical model in which key controlling parameters, including dune and interdune wavelength and spacing, migration rate and aggradation rate, are allowed to vary systematically both spatially (from a dune‐field centre to its margin) and temporally (in response to changes in sediment availability or water‐table level). The range of synthetic stratigraphic architectures generated by the model accounts for all the best‐known examples of aeolian dune and interdune stratigraphic configurations documented from the stratigraphic record. Modelling results have enabled the erection of a scheme for the classification of dune system type whereby the many elaborate stratal architectures known to exist in nature can effectively be accounted for by only four parameters that are allowed to vary over space and time: dune and interdune wavelength and spacing, rate of bedform migration and rate of accumulation. Results have applied implications, including the modelling of reservoir heterogeneity and the prediction of fluid flow pathways of hydrocarbons, water, CO2 and contaminants in subsurface reservoirs and aquifers, in which low permeability interdune units might act as baffles or barriers.  相似文献   

10.
The ability to predict bedform migration in rivers is critical for estimating bed material load, yet there is no relation for predicting bedform migration (downstream translation) that covers the full range of conditions under which subcritical bedforms develop. Here, the relation between bedform migration rates and transport stage is explored using a field and several flume data sets. Transport stage is defined as the non‐dimensional Shields stress divided by its value at the threshold for sediment entrainment. Statistically significant positive correlations between both ripple and dune migration rates and transport stage are found. Stratification of the data by the flow depth to grain‐size ratio improved the amount of variability in migration rates that was explained by transport stage to ca 70%. As transport stage increases for a given depth to grain‐size ratio, migration rates increase. For a given transport stage, the migration rate increases as the flow depth to grain‐size ratio gets smaller. In coarser sediment, bedforms move faster than in finer sediment at the same transport stage. Normalization of dune migration rates by the settling velocity of bed sediment partially collapses the data. Given the large amount of variability that arises from combining data sets from different sources, using different equipment, the partial collapse is remarkable and warrants further testing in the laboratory and field.  相似文献   

11.
Bedform geometry is widely recognized to be a function of transport stage. Bedform aspect ratio (height/length) increases with transport stage, reaches a maximum, then decreases as bedforms washout to a plane bed. Bedform migration rates are also linked to bedform geometry, in so far as smaller bedforms in coarser sediment tend to migrate faster than larger bedforms in finer sediment. However, how bedform morphology (height, length and shape) and kinematics (translation and deformation) change with transport stage and suspension have not been examined. A series of experiments is presented where initial flow depth and grain size were held constant and the transport stage was varied to produce bedload dominated, mixed‐load dominated and suspended‐load dominated conditions. The results show that the commonly observed pattern in bedform aspect ratio occurs because bedform height increases then decreases with transport stage, against a continuously increasing bedform length. Bedform size variability increased with transport stage, leading to less uniform bedform fields at higher transport stage. Total translation‐related and deformation‐related sediment fluxes all increased with transport stage. However, the relative contribution to the total flux changed. At the bedload dominated stage, translation‐related and deformation‐related flux contributed equally to the total flux. As the transport stage increased, the fraction of the total load contributed by translation increased and the fraction contributed by deformation declined because the bedforms got bigger and moved faster. At the suspended‐load dominated transport stage, the deformation flux increased and the translation flux decreased as a fraction of the total load, approaching one and zero, respectively, as bedforms washed out to a plane bed.  相似文献   

12.
Open‐framework gravel (OFG) in river deposits is important because of its exceptionally high permeability, resulting from the lack of sediment in the pore spaces between the gravel grains. Fluvial OFG occurs as planar strata and cross strata of varying scale, and is interbedded with sand and sandy gravel. The origin of OFG has been related to: (1) proportion of sand available relative to gravel; (2) separation of sand from gravel during a specific flow stage and sediment transport rate (either high, falling or low); (3) separation of sand from gravel in bedforms superimposed on the backs of larger bedforms; (4) flow separation in the lee of dunes or unit bars. Laboratory flume experiments were undertaken to test and develop these theories for the origin of OFG. Bed sediment size distribution (sandy gravel with a mean diameter of 1·5 mm) was kept constant, but flow depth, flow velocity and aggradation rate were varied. Bedforms produced under these flow conditions were bedload sheets, dunes and unit bars. The fundamental cause of OFG is the sorting of sand from gravel associated with flow separation at the crest of bedforms, and further segregation of grain sizes during avalanching on the steep lee side. Sand in transport near the bed is deposited in the trough of the bedform, whereas bed‐load gravel avalanches down the leeside and overruns the sand in the trough. The effectiveness of this sorting mechanism increases as the height of the bedform increases. Infiltration of sand into the gravel framework is of minor importance in these experiments, and occurs mainly in bedform troughs. The geometry and proportion of OFG in fluvial deposits are influenced by variation in height of bedforms as they migrate, superposition of small bedforms on the backs of larger bedforms, aggradation rate, and changes in sediment supply. If the height of a bedform increases as it migrates downstream, so does the amount of OFG. Changes in the character of OFG on the lee‐side of unit bars depend on grain‐size sorting in the superimposed bedforms (dunes and bedload sheets). Thick deposits of cross‐stratified OFG require high bedforms (dunes, unit bars) and large amounts of aggradation. These conditions might be expected to occur during high falling stages in the deeper parts of river channels adjacent to compound‐bar tails and downstream of confluence scours. Increase in the amount of sand supplied relative to gravel reduces the development of OFG. Such increases in sand supply may be related to falling flow stage and/or upstream erosion of sandy deposits.  相似文献   

13.
Aeolian dune fields characterized by partly vegetated bedforms undergoing active construction and with interdune depressions that lie at or close to the water table are widespread on Skei?arársandur, Southern Iceland. The largest aeolian dune complex on the sandur covers an area of 80 km2 and is characterized by four distinct landform types: (i) spatially isolated aeolian dunes; (ii) extensive areas of damp and wet (flooded) interdune flat with small fluvial channels; (iii) small aeolian dune fields composed of assemblages of bedforms with simple morphologies and small, predominantly damp, interdune corridors; and (iv) larger aeolian dune fields composed of assemblages of complex bedforms floored by older aeolian dune deposits that are themselves raised above the level of the surrounding wet sandur plain. The morphology of each of these landform areas reflects a range of styles of interaction between aeolian dune, interdune and fluvial processes that operate coevally on the sandur surface. The geometry, scale, orientation and facies composition of sets of strata in the cores of the aeolian dunes, and their relationship to adjoining interdune strata, have been analysed to explain the temporal behaviour of the dunes in terms of their mode of initiation, construction, pattern of migration, style of accumulation and nature of preservation. Seasonal and longer‐term flooding‐induced changes in water table level have caused episodic expansion and contraction of the wet interdune ponds. Most of the dunes are currently undergoing active construction and migration and, although sediment availability is limited because of the high water table, substantial aeolian transport must occur, especially during winter months when the surface of the wet interdune ponds is frozen and sand can be blown across the sandur without being trapped by surface moisture. Bedforms within the larger dune fields have grown to a size whereby formerly damp interdune flats have been reduced to dry enclosed depressions and dry aeolian system accumulation via bedform climb is ongoing. Despite regional uplift of the proximal sandur surface in response to glacial retreat and unloading over the past century, sediment compaction‐induced subsidence of the distal sandur is progressively placing aeolian deposits below the water table and is enabling the accumulation of wet aeolian systems and increasing the likelihood of their long‐term preservation. Wet, dry and stabilizing aeolian system types all co‐exist on Skei?arársandur and the dunes are variously undergoing coeval construction, accumulation, bypass, stabilization and destruction as a result of interactions between localized factors.  相似文献   

14.
起伏地形对可控源音频大地电磁(CSAMT)响应具有强烈的影响,因此在CSAMT数据处理解释时需要考虑地形。同时,实际的地下地质情况和地表的地形情况通常比较复杂,地质结构和地形大部分情况下都是三维的。在水平地表三维有限差分CSAMT数值模拟算法的基础上,推导了利用地下交错网格采样点处的总磁场计算起伏地形下空气-地下介质分界面处的总电场和总磁场的表达式,从而实现了起伏地形下三维CSAMT数值模拟算法。在算法实现过程中,采用伪δ函数代替麦克斯韦方程中的场源项和直接计算总场的策略,避免了原有的将总场分离成背景场和二次场的策略在复杂地质条件下难以选择合适背景电阻率的问题。为了直接模拟总场,起伏地形下三维CSAMT数值模拟算法给出了新的三维正演方程的边界条件。将模拟水平地表三维异常体和三维山峰地形两个理论模型得到的响应结果与前人算法的计算结果进行对比,验证了所实现算法的正确性和有效性。  相似文献   

15.
The sedimentary record of aeolian sand systems extends from the Archean to the Quaternary, yet current understanding of aeolian sedimentary processes and product remains limited. Most preserved aeolian successions represent inland sand‐sea or dunefield (erg) deposits, whereas coastal systems are primarily known from the Cenozoic. The complexity of aeolian sedimentary processes and facies variability are under‐represented and excessively simplified in current facies models, which are not sufficiently refined to reliably account for the complexity inherent in bedform morphology and migratory behaviour, and therefore cannot be used to consistently account for and predict the nature of the preserved sedimentary record in terms of formative processes. Archean and Neoproterozoic aeolian successions remain poorly constrained. Palaeozoic ergs developed and accumulated in relation to the palaeogeographical location of land masses and desert belts. During the Triassic, widespread desert conditions prevailed across much of Europe. During the Jurassic, extensive ergs developed in North America and gave rise to anomalously thick aeolian successions. Cretaceous aeolian successions are widespread in South America, Africa, Asia, and locally in Europe (Spain) and the USA. Several Eocene to Pliocene successions represent the direct precursors to the present‐day systems. Quaternary systems include major sand seas (ergs) in low‐lattitude and mid‐latitude arid regions, Pleistocene carbonate and Holocene–Modern siliciclastic coastal systems. The sedimentary record of most modern aeolian systems remains largely unknown. The majority of palaeoenvironmental reconstructions of aeolian systems envisage transverse dunes, whereas successions representing linear and star dunes remain under‐recognized. Research questions that remain to be answered include: (i) what factors control the preservation potential of different types of aeolian bedforms and what are the characteristics of the deposits of different bedform types that can be used for effective reconstruction of original bedform morphology; (ii) what specific set of controlling conditions allow for sustained bedform climb versus episodic sequence accumulation and preservation; (iii) can sophisticated four‐dimensional models be developed for complex patterns of spatial and temporal transition between different mechanisms of accumulation and preservation; and (iv) is it reasonable to assume that the deposits of preserved aeolian successions necessarily represent an unbiased record of the conditions that prevailed during episodes of Earth history when large‐scale aeolian systems were active, or has the evidence to support the existence of other major desert basins been lost for many periods throughout Earth history?  相似文献   

16.
《Sedimentology》2018,65(1):96-122
This paper characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground‐based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross‐stratification to determine palaeocurrents. On the basis of bedset geometry and inclination, grain‐size distribution and bedform migration direction, this study concludes that the Shaler outcrop probably records the accretion of a fluvial barform. The majority of the outcrop consists of large‐scale trough cross‐bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the north‐east, across the surface of a bar that migrated south‐east. Stacked cosets of dune cross‐bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggest that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.  相似文献   

17.
Although drumlins and other subglacial bedforms are well-studied features, controls on their formation and morphometry have remained elusive. Of current interest is the hypothesis that elongate bedforms (length:width ratios ≥ 10) indicate fast ice flow, and perhaps the location of past ice streams. This hypothesis is explored by analysing drumlins from the New York State drumlin field. A subset of 548 drumlins between Oneida Lake and Lake Ontario was digitized using 10-m grid cell digital elevation data. Because bedform elongation is greatest along the axis of a reconstructed lobe and increases down flowline, elongate bedforms are best explained by fast ice flow. The swath of elongate bedforms between lakes Ontario and Oneida, the boundaries of which do not coincide with topography, may signify the location of an ice stream during deglaciation.  相似文献   

18.
A grid of seismic reflection lines has been used to image basal topography and infer basal conditions and flow processes beneath ~140 km2 of Rutford Ice Stream, West Antarctica. The subglacial topography in this region consists of two troughs flanking a central high and the bed is composed of water-saturated sediments. The two troughs are filled with deforming sediment, whereas the bed in the central region appears to undergo a transition from largely deforming conditions upstream to basal sliding downstream. The deforming bed is very flat along flow, but undulates across flow. Sliding areas show rougher bed topography. Cross-stream bed topography is characterised by streamlined mounds of deforming sediment aligned in the ice flow direction. These bedforms occur superimposed on the bed in regions of both basal sliding and sediment deformation. In places, they form finger-like mounds of material, which extend into the sliding region further downstream. Mean bedform height is 22 m, mean width is 267 m, and many of them extend for at least 1–2 km along flow. We interpret most of these bedforms as drumlins and one as a mega-scale glacial lineation. The juxtaposition of different basal conditions is consistent with models proposed from terrestrial studies in which the glacier bed is a mosaic of stable and deforming bed areas, variable both spatially and temporally. Any theory of subglacial sediment rheology must also be able to account for our conclusion that, at any given time, pervasive deformation extends at least a few metres into the bed and can persist over a considerable area (many km2). Bedform geometry and basal conditions concur with interpretations of former ice streams, with evidence for increasing elongation ratio with distance downstream. However, those studies also identified bedrock cropping out at the ice-bed interface, for which there is no evidence on Rutford Ice Stream.  相似文献   

19.
2.5维起伏地表条件下坐标变换法直流电场数值模拟   总被引:3,自引:1,他引:2  
研究起伏地表对视电阻率分布的影响是进行地形校正的基础。由于很难处理不规则边界,计算简洁且效率高的有限差分方法很少用于解决起伏地表问题。为了解决该问题,引入曲化平思想,实现了一种基于坐标变换法的起伏地表条件下的直流电场数值模拟方法。方法从传统的2.5维基本方程及边界条件出发,通过坐标变换将起伏地表问题转化为水平地表问题,并利用有限差分法求解水平地表问题,最后再通过坐标映射得到起伏地表条件下的电位和视电阻率分布。精度分析及计算实例表明:本方法实现简洁,计算误差主要集中在震源附近,整个计算区域内的平均相对误差为1.39%,计算结果满足起伏地表条件下的电位和视电阻率的分布规律。  相似文献   

20.
A distinct suite of sand bedforms has been observed to occur in laboratory flows with limited sand supply. As sand supply to the bed progressively increases one observes sand ribbons, discrete barchans and, eventually, channel spanning dunes; but there are relatively few observations of this sequence from natural river channels. Furthermore, there are few observations of transitions from limited sand supply to abundant supply in the field. Bedforms developed under limited, but increasing, sand supply downstream of the abrupt gravel–sand transition in the Fraser River, British Columbia, are examined using multi‐beam swath‐bathymetry obtained at high flow. This is an ideal location to study supply‐limited bedforms because, due to a break in river slope, sand transitions from washload upstream of the gravel–sand transition to bed material load downstream. Immediately downstream, barchanoid and isolated dunes are observed. Most of the bedform field has gaps in the troughs, consistent with sand moving over a flat immobile or weakly mobile gravel bed. Linear, alongstream bedform fields (trains of transverse dunes formed on locally thick, linear deposits of sand) exhibit characteristics of sand ribbons with superimposed bedforms. Further downstream, channel spanning dunes develop where the bed is composed entirely of sand. Depth scaling of the dunes does not emerge in this data set. Only where the channel has accumulated abundant sand on the bed do the dunes exhibit scaling congruent with previous data compilations. The observations suggest that sediment supply plays an important, but often overlooked, role in bedform scaling in rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号