首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Groundwater is not a sustainable resource, unless abstraction is balanced by recharge. Identifying the sources of recharge in a groundwater basin is critical for sustainable groundwater management. We studied the importance of river water recharge to groundwater in the south‐eastern San Joaquin Valley (24,000 km2, population 4 million). We combined dissolved noble gas concentrations, stable isotopes, tritium, and carbon‐14 analyses to analyse the sources, mechanisms, and timescales of groundwater recharge. Area‐representative groundwater sampling and numerical model input data enabled a stable isotope mass balance and quantitative estimates of river and local recharge. River recharge, identified by a lighter stable isotope signature, represents 47 ± 4% of modern groundwater in the San Joaquin Valley (recharged after 1950) but only 26 ± 4% of premodern groundwater (recharged before 1950). This implies that the importance of river water recharge in the San Joaquin valley has nearly doubled and is likely the result of a 40% increase in total recharge, caused by river water irrigation return flows and increased stream depletion and river recharge due to groundwater pumping. Compared with the large and long‐duration capacity for water storage in the subsurface, storage of water in rivers is limited in time and volume, as evidenced by cold river recharge temperatures resulting from fast infiltration and recharge. Groundwater banking of seasonal surface water flows and expansion of managed aquifer recharge practices therefore appear to be a natural and promising method for increasing the resilience of the San Joaquin Valley water supply system.  相似文献   

2.
Pesticides used to maintain golf course turf can threaten ground water. This concern is particularly important in most of New York's Long Island, where generally sandy soils overlie a sole source aquifer. This study uses two methods to evaluate the potential for pesticides that are commonly used on Long Island's golf courses to leach to ground water.
Adapting the Pesticide Root Zone Model (PRZM). Release 1. for dense turf and applying site-specific soil data, certain pesticides, including metalaxyl and trichlorfon, are identified as potential problem leachers. PRZM simulations also identify the Long Island soils, including the sandy Plymouth and Carver soils, which arc most vulnerable to leaching.
When adequate input data for PRZM is unavailable, the ground water ubiquity score (GUS) method may be useful. GUS teachability classifications of pesticides commonly applied on Long Island golf courses, and of pesticides actually detected in ground water samples taken on Long Island, agree with PRZM predictions and the field data. The GUS method is applied to the evaluation of the leaching potential of pesticide degradation products (DCPA, maneb, and mancozeb metabolites), and the degradation products are shown to be a greater threat to ground water than their parent compounds.
These methods are potentially useful in designing ground water monitoring programs and for guiding the pesticide use and selection decisions of golf course managers.  相似文献   

3.
Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley, California, have exceeded federal and state drinking water standards during the last 20 years. The San Joaquin Valley is located within the Central Valley of California and is one of the most productive agricultural areas in the world. Increased irrigation and pumping associated with agricultural and urban development during the last 100 years have changed the chemistry and magnitude of groundwater recharge, and increased the rate of downward groundwater movement. Strong correlations between U and bicarbonate suggest that U is leached from shallow sediments by high bicarbonate water, consistent with findings of previous work in Modesto, California. Summer irrigation of crops in agricultural areas and, to lesser extent, of landscape plants and grasses in urban areas, has increased Pco2 concentrations in the soil zone and caused higher temperature and salinity of groundwater recharge. Coupled with groundwater pumping, this process, as evidenced by increasing bicarbonate concentrations in groundwater over the last 100 years, has caused shallow, young groundwater with high U concentrations to migrate to deeper parts of the groundwater system that are tapped by public-supply wells. Continued downward migration of U-affected groundwater and expansion of urban centers into agricultural areas will likely be associated with increased U concentrations in public-supply wells. The results from this study illustrate the potential long-term effects of groundwater development and irrigation-supported agriculture on water quality in arid and semiarid regions around the world.  相似文献   

4.
The extensive use of pesticides for increasing the agricultural production is affecting the quality of groundwater. The objectives of this article are to (i) develop pesticide relative leaching ranks for well sites, (ii) develop maps for human health risks due to pesticide applications, and (iii) identify the most significant parameters in pesticide simulations for groundwater vulnerability assessment. The methods include (i) development of acifluorfen relative leaching ranks for 25 well sites using ArcPRZM‐3, (ii) development of health risk maps using model simulated maximum dissolved bentazon concentrations on the basis of USA drinking water quality guidelines, (iii) sensitivity analysis for 14 ArcPRZM‐3 input parameters using the Plackett–Burman method. ArcPRZM‐3 is a user‐friendly system for spatial modeling of pesticide leaching from surface to groundwater. Thirteen acifluorfen relative leaching potential ranks were developed in which the pesticide leaching decrease from 1 to 13. The model predicted ranks for well 34 and well 9 were 2nd and 3rd, respectively, and acifluorfen was detected in both wells during the physical monitoring. The percentages of high health risks in the agricultural areas were 48.38 and 72.72% for Randolph and Independence Counties, respectively. The most significant parameters were thickness of horizon compartment, runoff curve number of antecedent moisture condition II for cropping, soil bulk density, and total application of pesticide. The irrigation, soil permeability, and numerical dispersion could impact the pesticide leaching in soils toward groundwater. The ArcPRZM‐3 system could be efficiently applied for spatial modeling and mapping of pesticide concentrations for groundwater vulnerability assessment on a large scale.  相似文献   

5.
The current study documents the fate of current-use pesticides in an agriculturally-dominated central California coastal estuary by focusing on the occurrence in water, sediment and tissue of resident aquatic organisms. Three fungicides (azoxystrobin, boscalid, and pyraclostrobin), one herbicide (propyzamide) and two organophosphate insecticides (chlorpyrifos and diazinon) were detected frequently. Dissolved pesticide concentrations in the estuary corresponded to the timing of application while bed sediment pesticide concentrations correlated with the distance from potential sources. Fungicides and insecticides were detected frequently in fish and invertebrates collected near the mouth of the estuary and the contaminant profiles differed from the sediment and water collected. This is the first study to document the occurrence of many current-use pesticides, including fungicides, in tissue. Limited information is available on the uptake, accumulation and effects of current-use pesticides on non-target organisms. Additional data are needed to understand the impacts of pesticides, especially in small agriculturally-dominated estuaries.  相似文献   

6.
Pesticides in Nebraska's Ground Water   总被引:1,自引:0,他引:1  
More than 2263 well water samples were collected throughout Nebraska and analyzed for pesticides. Thirteen and one-half percent contained detectable levels of atrazine, but only 22 wells exceeded the health advisory of 3.0 ppb. Although the samples came from almost every county in the state, this sampling is not based solely on a randomly selected group of wells. The highest frequency of detections occurred in irrigated corn-growing areas with less than 50 feet to ground water. These areas were sampled at a greater frequency than the less vulnerable areas. Cyanazine, together with the additional triazines — simazine, propazine, prometone, and ametryne, also were detected in some well waters; however, their frequency of detection was well below that of atrazine. The triazine metribuzin was not detected.
Alachlor, propachlor, and metolachlor also were detected in trace levels in several wells. Five of 2072 samples analyzed for alachlor exceeded the health advisory of 0.4 ppb. Almost all of the contaminated wells were in vulnerable areas. The relatively high frequency of propachlor detections occurred in predominately irrigated corn-growing areas, rather than in areas where propachlor is traditionally applied.
The factors that appear most directly involved in the observed distribution of pesticides in ground water are the intensity of areal usage, pesticide persistence and mobility, irrigation, soil drainage capacity, and depth to ground water.
Fifteen pesticide residues were detected during this study. If ethylene dibromide and carbon tetrachloride, which were detected in ground water adjacent to grain elevators are included, a total of 17 pesticide residues have been detected in Nebraska's ground water.  相似文献   

7.
The water budget in clay shale terrain is controlled by a complex interaction between the vertisol soil layer, the underlying fractured rock, land use, topography, and seasonal trends in rainfall and evapotranspiration. Rainfall, runoff, lateral flow, soil moisture, and groundwater levels were monitored over an annual recharge cycle. Four phases of soil–aquifer response were noted over the study period: (1) dry‐season cracking of soils; (2) runoff initiation, lateral flow and aquifer recharge; (3) crack closure and down‐slope movement of subsurface water, with surface seepage; (4) a drying phase. Surface flow predominated within the watershed (25% of rainfall), but lateral flow through the soil zone continued for most of the year and contributed 11% of stream flow through surface seepage. Actual flow through the fractured shale makes up a small fraction of the water budget but does appear to influence surface seepage by its effect on valley‐bottom storage. When the valley soil storage is full, lateral flow exits onto the valley‐bottom surface as seasonal seeps. Well response varied with depth and hillslope position. FLOWTUBE model results and regional recharge estimates are consistent with an aquifer recharge of 1·6% of annual precipitation calculated from well heights and specific yield of the shale aquifer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Specific electrical conductivity (SEC), total dissolved solids (TDS), and silica (SiO2) are ground-water quality parameters routinely measured in a laboratory. Electrical conductivity measurements are made quickly and are less costly than TDS measurements. Once the relationship between the parameters is determined by regression analysis, TDS can be estimated quickly from the SEC and SiO2 measurements. Water quality data from 25 city wells in Fresno, California, and historical ground-water quality data from the adjacent San Joaquin River/Kings River alluvial interfan (central San Joaquin Valley, California), the Kaweah River alluvial fan, and the Kern River alluvial fan (southern San Joaquin Valley) were used in this investigation. For the specific hydrologic areas studied, the model's TDS predictive ability is improved when SiO2 is included with SEC as the independent variables.  相似文献   

9.
In?ltration tests, soil mapping and soil property analysis were used to assess the effect of within‐storm rainfall conditions on spatial patterns of surface characteristics relevant for runoff generation, continuity and erosion in the Zin Valley Badlands. Runoff and erosion differ strongly between ridges and slopes. Soils at both locations are susceptible to sealing, but on the sideslopes deep desiccation cracks inhibit continuous ?ow, even during high magnitude rainstorms. The discontinuous nature of runoff has a feedback on surface conditions. Erosion on the ridges maintains shallow soils prone to sealing while in?ltration and deposition on the sideslopes enhance soil depth, a prerequisite for stable desiccation cracks. Some runoff generated on the ridges is transmitted to the valley via rills. On straight sideslopes, rills are single and often discontinuous, indicating limited frequency of continuous runoff. Along concave valley heads, rill systems are well integrated and continuous, concentrating runoff and reducing in?ltration losses along slopes. The longitudinal, V‐shaped valley morphology of small catchments in the Zin Valley Badlands re?ects the long‐term effect of different erosion rates in valley heads and on sideslopes. Over time, valley incision lengthened the sideslopes, reducing the portion of annual rainfall that was runoff‐effective. Once sideslopes reached a critical length that inhibited frequent continuous ?ow, a colluvium with an increased in?ltration capacity developed, reducing runoff frequency even further. Consequently, erosion on the valley sideslopes decreased. Continuous ?ow from ridges to the valley channel remained more common in integrated rill systems in concavities and valley heads, leading to more erosion and retreat of the valley heads. The spatial patterns of runoff and erosion in the Zin Valley Badlands demonstrate that landscape development is strongly affected by processes that lead to differentiation of soil properties on hillslopes with uniform lithology. The patterns of surface characteristics and their role in landscape development are strongly dependent on rainfall conditions, highlighting the need for geomorphologists to identify the dynamic spatial and temporal scales relevant for landscape development. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Regional estimation of total recharge to ground water in Nebraska   总被引:4,自引:0,他引:4  
Naturally occurring long-term mean annual recharge to ground water in Nebraska was estimated by a novel water-balance approach. This approach uses geographic information systems (GIS) layers of land cover, elevation of land and ground water surfaces, base recharge, and the recharge potential in combination with monthly climatic data. Long-term mean recharge > 140 mm per year was estimated in eastern Nebraska, having the highest annual precipitation rates within the state, along the Elkhorn, Platte, Missouri, and Big Nemaha River valleys where ground water is very close to the surface. Similarly high recharge values were obtained for the Sand Hills sections of the North and Middle Loup, as well as Cedar River and Beaver Creek valleys due to high infiltration rates of the sandy soil in the area. The westernmost and southwesternmost parts of the state were estimated to typically receive < 30 mm of recharge a year.  相似文献   

11.
The topography and geomorphology of the sand dunes and interdunal valleys in the Nebraska Sand Hills play important roles in regional water cycle by influencing groundwater recharge and evapotranspiration (ET). In this study, groundwater recharge, associated with precipitation and ET as well as soil hydraulics, and its spatial variations owing to the topography of dunes and valleys are examined. A method is developed to describe the recharge as a function of the storage capacity of dunes of various heights. After the method is tested using observations from a network of wells in the Sand Hills, it is used in the MODFLOW model to simulate and describe recharge effects on groundwater table depth at two different dune-valley sites. Analysis of modeled groundwater budget shows that the groundwater table depth in the interdunal valleys is critically influenced by vertical groundwater flows from surrounding dunes. At the site of higher dunes there are steadier and larger vertical groundwater flows in the dunes from their previous storage of precipitation. These vertical flows change to be horizontal converging groundwater flows and create upwelling in the interdunal valleys, where larger ET loss at the surface further enhances groundwater upwelling. Such interdunal valley is the major concentration area of the surface water and groundwater flow in the Sand Hills. At the site of shallow dunes and a broad interdunal valley the supply of groundwater from the dunes is trivial and inadequate to support upwelling of groundwater in the valley. The groundwater flows downward in the valley, and the valley surface is dry. Weak ET loss at the surface has a smaller effect on the groundwater storage than the precipitation recharge, making such area a source for groundwater.  相似文献   

12.
A rapid-screening technique was developed to identify lithologies that best disperse artificial recharge via surface infiltration and minimize effects on ground water chemistry. The technique prospectively evaluates basin infiltration rates and water chemistry influences by integrating geotechnical, hydraulic, and water quality data with column test data and numerical modeling. The technique was validated using field data collected from surface infiltration basins designed to recharge ground water pumped from the Pipeline pit gold mine in Nevada. Observed recharge rates at these infiltration sites correlated most significantly with depth to groundwater, with basins in coarse-grained lithologies performing better (0.45 to 0.85 m/day) than those with fine-grained layers (< 0.30 m/day). Observed water quality resulting from leaching of the previously unsaturated vadose zone showed a transitory (< six months) increase in solute concentrations followed by a decrease to baseline conditions, a phenomenon also observed in column tests that leached native soils with local ground water. Leaching of fine-grained soils with evaporites resulted in greater solute concentrations (TDS > 2000 mg/L) than coarse-grained soils (< 1200 mg/L). The results of HYDRUS_2D simulations using the accumulated data as input were in agreement with observed ground water chemistry downgradient of the infiltration basins for a variety of lithologies. Sites for infiltration basins can be rapidly screened to include areas with greatest depth to groundwater and in coarsest alluvial sediments, and impact to ground water chemistry can be reliably predicted using computer modeling and column test results.  相似文献   

13.
The behavior of the herbicides isoproturon (IPU) and chlortoluron (CTU) in ground water and shallow unsaturated zone sediments were evaluated at a site situated on the Chalk in southern England. Concentrations of IPU in ground water samples varied from < 0.05 to 0.23 microgram/L over a five-year period of monitoring, and were found to correlate with application of the pesticide. Concentrations of pesticides in ground water samples collected during periods of rising water table were significantly higher than pumped samples and suggest that rapidly infiltrating recharge water contains higher herbicide concentrations than the native ground water. Significant variations in herbicide concentrations were observed over a three-month period in ground water samples collected by an automated system, with concentrations of IPU ranging from 0.1 to 0.5 microgram/L, and concentrations of a recent application of CTU ranging from 0.2 to 0.8 microgram/L. Different extraction methods were used to assess pore water concentrations of herbicides in the unsaturated zone, and samples were analyzed by standard HPLC analysis and immunoassay (ELISA) methods. These data indicated highly variable concentrations of herbicide ranging from 4 to 200 g/ha for HPLC and 0.01 to 0.04 g/ha for ELISA, but indicate a general pattern of decreasing concentrations with depth. The results of this study indicate that transport of IPU and CTU through the unsaturated zone to shallow ground water occurs and that this transport increases immediately following herbicide application. Measured concentrations of herbicides are generally lower than specified by the European Union Drinking Water Directive, but are observed to spike above this limit. These results imply that, while delivery of pesticides to ground water can occur as a result of normal agricultural practices, the impact on potable supplies is likely to be negligible due to the potential for degradation during the relatively long travel time through the unsaturated zone and high degree of dilution that occurs within the aquifer. As a result of the wide variation in concentrations detected by different techniques, it is suggested that for future site investigations more than one sampling strategy be employed to characterize the occurrence of pesticide residues and elucidate the transport mechanisms.  相似文献   

14.
It is very interesting and meaningful to investigate the rainfall-groundwater recharge process under the humid climatic condition of Japan, where mean annual precipitation is about 1600 mm. The present study has investigated soil water movement in the unsaturated zones of a volcanic ash layer, called the ‘Kanto Loam formation’, using environmental tritium as a tracer. The site selected is a flat ground surface on a terraced upland which has a deep unsaturated zone (about 20 m) with a relatively high water content (about 70 per cent) consisting of nearly uniform Kanto Loam formation. The tritium concentrations in groundwater, soil waters having different matric potentials, precipitation, and the seepage water moving through the formation into a man-made cave were measured to characterize the rainfall-groundwater recharge process and the effect of large pore spaces in the formation mentioned by previous studies. Because of the humid climate of Japan, there appears to be a unique soil water flow characteristic which may involve percolation through large pore spaces during heavy rainfall. However, in a fine grained and high water content soil like the Kanto Loam formation, the existence of this flow through large pore spaces does not have a significant effect upon the whole recharge process. The recharge model of displacement flow with dispersion is useful in estimating the tritium concentration profile of soil water. The calculated result shows a recharge rate of 2.5 mm/day. The value obtained reflects the hydrological characteristics of the uplands covered with volcanic ash.  相似文献   

15.
Abstract

Standard hydrological methods have been used to evaluate the water resources of a volcanic area that comprises the Lower Basin of the Rio Grande de San Miguel, El Salvador. The area of investigation included study of approximately 645 square kilometers.

The lower San Miguel Basin consists of a faulted valley situated at the base of a series of old and recent volcanoes bounding the valley on the East, a tuff block to the South, and consolidated volcanics (lahars) on the West and North. The valley fill consists of pyroclastics which diminish in particle size with distance from the volcanoes (Lapilli to ash), in the southern portion; however, the pyroclastics may be interbedded with lake deposits.

A principal objective of the evaluation was to assess the feasibility of irrigating 10,000 hectares of the valley. Results based upon the period of study suggest that almost half of the annual precipitation infiltrates into the ground. Of this quantity, about one third is accounted for by the existing hydrological balance between recharge and depletion. The remainder moves from the valley to the San Miguel River as ground-water runoff and, if retained, is sufficient in quantity to meet the full anticipated irrigation demand.  相似文献   

16.
Water resources in the arid southwestern United States are frequently the subject of conflict from competing private and public interests. Legal remedies may remove impasses, but the technical analysis of the problem often determines the future success of legal solutions. In Owens Valley, California, the source of water for the Los Angeles Aqueduct (LAA) is flow diverted from the Owens River and its tributaries and ground water from valley aquifers. Future management of ground water delivered to the LAA needs technical support regarding quantity available, interconnection of shallow and confined aquifers, impact on local springs, and rate of recharge. Ground water flow models and ground water composition are tools already in use, but these have large uncertainty for local interpretations. This study conducted targeted sampling of springs and wells to evaluate the hydrologic system to corroborate conceptual and numerical models. The effort included measurement of intrinsic isotopic composition at key locations in the aquifers. The stable isotopic data of boron (delta(11)B), sulfur (delta(34)S), oxygen (delta(18)O), hydrogen (delta D), and tritium ((3)H) supported by basic chemical data provided rules for characterizing the upper and the lower aquifer system, confirmed the interpretation of ground water flow near faults and flow barriers, and detected hydraulic connections between the LAA and the perennial springs at key locations along the unlined reach of the LAA. This study exemplifies the use of forensic isotopic approaches as independent checks on the consistency of interpretations of conceptual models of a ground water system and the numerical hydrologic simulations.  相似文献   

17.
A study using multiple techniques provided insight into tectonic influences on ground water systems; the results can help to understand ground water systems in the tectonically active western United States and other parts of the world. Ground water in the San Bernardino Valley (Arizona, United States and Sonora, Mexico) is the main source of water for domestic use, cattle ranching (the primary industry), and the preservation of threatened and endangered species. To improve the understanding of ground water occurrence, movement, and sustainability, an investigation was conducted using a number of complementary methods, including major ion geochemistry, isotope hydrology, analysis of gases dissolved in ground water, aquifer testing, geophysics, and an examination of surface and subsurface geology. By combining information from multiple lines of investigation, a more complete picture of the basin hydrogeology was assembled than would have been possible using fewer methods. The results show that the hydrogeology of the San Bernardino Valley is markedly different than that of its four neighboring basins in the United States. The differences include water quality, chemical evolution, storage, and residence time. The differences result from the locally unique geology of the San Bernardino Valley, which is due to the presence of a magmatically active accommodation zone (a zone separating two regions of normal faults with opposite dips). The geological differences and the resultant hydrological differences between the San Bernardino Valley and its neighboring basins may serve as a model for the distinctive nature of chemical evolution of ground water in other basins with locally distinct tectonic histories.  相似文献   

18.
19.
Dieback of native Eucalyptus largiflorens forests is an increasing problem on the floodplains of the lower River Murray, southern Australia. Salinisation of floodplain soils, as a result of the changed hydrological management of the River Murray, appears to be a primary cause of the dieback. Regulation of the River Murray has reduced the frequency of large flood events by a factor of approximately three and caused groundwater levels beneath floodplains to rise. The higher water tables have resulted in increased discharge of the naturally saline groundwater in the floodplains by evapotranspiration, and the decreased incidence of large floods has reduced floodwater recharge and hence leaching of salt from floodplain soils. Use of soil physical properties for a range of floodplain soils, combined with measurements of groundwater discharge from bare and vegetated sites, suggests that the time-scale for complete soil salinisation can, at worst, be less than 20 years. Moreover, salt accumulation at most sites will continue to occur as the present flooding regime (of which there is limited scope for improvement) appears incapable of providing the leaching required to counteract accumulation. The analyses carried out here suggest that the ‘critical’ water table depth (below which groundwater discharge is balanced or exceeded by floodwater recharge) needs to be increased by 14–55% (the more clayey the soil, the larger the increase) to prevent salt accumulation. Failure to implement schemes which lower the water tables beneath the floodplain may, in the long term, cause serious damage to these important riparian forests.  相似文献   

20.
The use of electrical methods for estimating spatial patterns of groundwater recharge was evaluated at a field site in southeastern Australia. Here, recharge increased from less than 0.2 mm year−1 under native Eucalyptus vegetation, to between 1 and 14 mm year−1 under dryland agriculture. This increase in recharge results in progressive leaching of salts in the soil profile. Differences in recharge can be estimated from differences in depth of leaching. The estimated recharge rates are correlated with soil texture, with higher recharge rates generally occurring through sandier soils. The relationships of recharge to salt content and soil texture both contribute to lower apparent electrical conductivities for higher recharge rates.

The effect of recharge rate on measured apparent electrical conductivities was modelled for various geophysical devices (including frequency-domain (FEM) and time-domain (TEM) electromagnetic instruments and direct current resistivity). The soil-texture effect was shown to have a greater effect than the solute leaching effect in determining the correlation between recharge and apparent electrical conductivity. Analysis of sensitivity to geological noise showed that variations in soil type below 2 m could disguise any correlation.

Correlations between recharge rate, measured at core sites from chloride tracer techniques, and apparent electrical conductivity, measured with FEM electromagnetic devices, supported the conclusions of the model. For DC resistivity and TEM methods, correlations between recharge and apparent electrical conductivity were not significant, although for resistivity this may be due partly to the small number of measurements made. The FEM device most sensitive to variations in recharge had an operating frequency of 9.8 kHz. At lower frequencies the sensitivity is reduced, as the instruments are sensing too deeply. The poor correlations for TEM, as compared with FEM, are due probably to the relatively deeper penetration of the TEM instrument used in the study, rather than any inherent differences between the techniques.

Because the major reason for the correlation between recharge and apparent electrical conductivity is soil texture, in this area the geophysical devices are mostly mapping soil type.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号