首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IPCC AR6报告中控温1.5℃和2℃的低排放情景需要在21世纪中叶以后实现净负CO2排放,这需要在很大程度上依赖CO2移除措施。AR6对CO2移除的主要评估结论如下:CO2移除有潜力从大气中去除CO2(高信度);如果CO2移除量超过CO2排放量,将实现净负CO2排放,降低大气CO2浓度,减缓海洋酸化(高信度);通过CO2移除方法从大气中去除的CO2会部分被海洋和陆地释放的CO2抵消(非常高信度);如果净负CO2排放可以实现并且持续,CO2引起的全球升温趋势将会逐渐扭转,但是气候系统的其他变化(例如海平面升高)仍会在未来的几十年到千年尺度上持续(高信度);不同CO2移除方法会对生物化学循环和气候产生广泛的影响,这些影响会加强或减弱CO2移除的降温潜力,并且影响水资源、食物生产和生物多样性(高信度)。  相似文献   

2.
Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric ??target?? concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the projected concentration pathways of aerosol in the next decades control the evolution of surface ocean biogeochemistry in the second half of this century more than the specific pathways of atmospheric CO2 concentrations.  相似文献   

3.
Using a global carbon cycle model (GLOCO) that considers seven terrestrial biomes, surface and deep ocean layers based on the HILDA model and a single mixed atmosphere, we analyzed the response of atmospheric CO2 concentration and oceanic DIC and DOC depth profiles to additions of carbon to the atmosphere and ocean. The rate of transport of carbon to the deepest oceanic layers is rather insensitive to the atmosphereic-ocean surface gas exchange coefficient over a wide range, hence discrepancies between researchers on the precise global average value of this coefficient do not significantly affect predictions of atmospheric response to anthropogenic inputs. Upwelling velocity, on the other hand, amplifies oceanic response by increasing primary production in the upper ocean layers, resulting in a larger flux into DOC and sediments and increased carbon storage; experiments to reduce the uncertainty in this parameter would be valuable.The location of the carbon addition, whether it is released in the atmosphere or in the middle of the oceanic thermocline, has a significant impact on the maximum atmospheric CO2 concentration (pCO2) subsequently reached, suggesting that oceanic burial of a significant fraction of carbon emissions (e.g. via clathrate hydrides) may be an important management option for limiting pCO2 buildup. Our analysis indicates that the effectiveness of ocean burial decreases asymptotically below about 1000 m depth. With a constant emissions scenario (at 1990 levels), pCO2 at year 2100 is reduced from 501 ppmv considering all emissions go to the atmosphere, to 422 ppmv with ocean burial at a depth of 1000 m of 50% of the fossil fuel emissions. An alternative scenario looks at stabilizing pCO2 at 450 ppmv; with no ocean burial of fossil fuel emissions, the rate of emissions has to be cut drastically after the year 2010, whereas oceanic burial of 2 GtC/yr allows for a smoother transition to alternative energy sources.  相似文献   

4.
The increase of atmospheric CO2 concentrations due to anthropogenic activities is substantially damped by the ocean, whose CO2 uptake is determined by the state of the ocean, which in turn is influenced by climate change. We investigate the mechanisms of the ocean’s carbon uptake within the feedback loop of atmospheric CO2 concentration, climate change and atmosphere/ocean CO2 flux. We evaluate two transient simulations from 1860 until 2100, performed with a version of the Max Planck Institute Earth System Model (MPI-ESM) with the carbon cycle included. In both experiments observed anthropogenic CO2 emissions were prescribed until 2000, followed by the emissions according to the IPCC Scenario A2. In one simulation the radiative forcing of changing atmospheric CO2 is taken into account (coupled), in the other it is suppressed (uncoupled). In both simulations, the oceanic carbon uptake increases from 1 GT C/year in 1960 to 4.5 GT C/year in 2070. Afterwards, this trend weakens in the coupled simulation, leading to a reduced uptake rate of 10% in 2100 compared to the uncoupled simulation. This includes a partial offset due to higher atmospheric CO2 concentrations in the coupled simulation owing to reduced carbon uptake by the terrestrial biosphere. The difference of the oceanic carbon uptake between both simulations is primarily due to partial pressure difference and secondary to solubility changes. These contributions are widely offset by changes of gas transfer velocity due to sea ice melting and wind changes. The major differences appear in the Southern Ocean (?45%) and in the North Atlantic (?30%), related to reduced vertical mixing and North Atlantic meridional overturning circulation, respectively. In the polar areas, sea ice melting induces additional CO2 uptake (+20%).  相似文献   

5.
IPCC确定的几种未来大气CO2浓度水平对人为CO2排放的限制   总被引:1,自引:0,他引:1  
用三维海洋碳循环模式和一个简单的陆地生物圈模式计算了IPCC(政府间气候变化委员会)未来大气CO2情景中海洋和生物圈的吸收,并结合土地变化的资料得出燃料的排放值。结果表明:尽管在所有的构想下,为了使大气中CO2浓度达到稳定必须减少排放,但对应不同的IPCC未来大气CO2情景,对人为CO2排放的限制是很不相同的。  相似文献   

6.
Carbon sequestration is increasingly being promoted as a potential response to the risks of unrestrained emissions of CO2, either in place of or as a complement to reductions in the use of fossil fuels. However, the potential role of carbon sequestration as an (at-least partial) substitute for reductions in fossil fuel use can be properly evaluated only in the context of a long-term acceptable limit (or range of limits) to the increase in atmospheric CO2 concentration, taking into account the response of the entire carbon cycle to artificial sequestration. Under highly stringent emission-reduction scenarios for non-CO2 greenhouse gases, 450 ppmv CO2 is the equivalent, in terms of radiative forcing of climate,to a doubling of the pre-industrial concentration of CO2. It is argued in this paper that compliance with the United Nations Framework Convention on Climate Change (henceforth, the UNFCCC) implies that atmospheric CO2 concentration should be limited, or quickly returned to, a concentration somewhere below 450 ppmv. A quasi-one-dimensional coupled climate-carbon cycle model is used to assess the response of the carbon cycle to idealized carbon sequestration scenarios. The impact on atmospheric CO2 concentration of sequestering a given amount of CO2 that would otherwise be emitted to the atmosphere, either in deep geological formations or in the deep ocean, rapidly decreases over time. This occurs as a result of a reduction in the rate of absorption of atmospheric CO2 by the natural carbon sinks (the terrestrial biosphere and oceans) in response to the slower buildup of atmospheric CO2 resulting from carbon sequestration. For 100 years of continuous carbon sequestration, the sequestration fraction (defined as the reduction in atmospheric CO2 divided by the cumulative sequestration) decreases to 14% 1000 years after the beginning of sequestration in geological formations with no leakage, and to 6% 1000 years after the beginning of sequestration in the deep oceans. The difference (8% of cumulative sequestration) is due to an eflux from the ocean to the atmosphere of some of the carbon injected into the deep ocean.The coupled climate-carbon cycle model is also used to assess the amount of sequestration needed to limit or return the atmospheric CO2 concentration to 350–400 ppmv after phasing out all use of fossil fuels by no later than 2100. Under such circumstances, sequestration of 1–2 Gt C/yr by the latter part of this century could limit the peak CO2 concentration to 420–460 ppmv, depending on how rapidly use of fossilfuels is terminated and the strength of positive climate-carbon cycle feedbacks. To draw down the atmospheric CO2 concentration requires creating negative emissions through sequestration of CO2 released as a byproduct of the production of gaseous fuels from biomass primary energy. Even if fossil fuel emissions fall to zero by 2100, it will be difficult to create a large enough negative emission using biomass energy to return atmospheric CO2 to 350 ppmv within 100 years of its peak. However, building up soil carbon could help in returning CO2 to 350 ppmv within 100 years of its peak. In any case, a 100-year period of climate corresponding to the equivalent of a doubled-CO2 concentration would occur before temperatures decreased. Nevertheless, returning the atmospheric CO2concentration to 350 ppmv would reduce longterm sea level rise due to thermal expansion and might be sufficient to prevent the irreversible total melting of the Greenland ice sheet, collapse of the West Antarctic ice sheet, and abrupt changes in ocean circulation that might otherwise occur given a prolonged doubled-CO2 climate. Recovery of coral reef ecosystems, if not already driven to extinction, could begin.  相似文献   

7.
This paper synthesizes results of the multi-model Energy Modeling Forum 27 (EMF27) with a focus on climate policy scenarios. The study included two harmonized long-term climate targets of 450 ppm CO2-e (enforced in 2100) and 550 pm CO2-e (not-to-exceed) as well as two more fragmented policies based on national and regional emissions targets. Stabilizing atmospheric GHG concentrations at 450 and 550 ppm CO2-e requires a dramatic reduction of carbon emissions compared to baseline levels. Mitigation pathways for the 450 CO2-e target are largely overlapping with the 550 CO2-e pathways in the first half of the century, and the lower level is achieved through rapid reductions in atmospheric concentrations in the second half of the century aided by negative anthropogenic carbon flows. A fragmented scenario designed to extrapolate current levels of ambition into the future falls short of the emissions reductions required under the harmonized targets. In a more aggressive scenario intended to capture a break from observed levels of stringency, emissions are still somewhat higher in the second half due to unabated emissions from non-participating countries, emphasizing that a phase-out of global emissions in the long term can only be reached with full global participation. A key finding is that a large range of energy-related CO2 emissions can be compatible with a given long-term target, depending on assumptions about carbon cycle response, non-CO2 and land use CO2 emissions abatement, partly explaining the spread in mitigation costs.  相似文献   

8.
A new complex earth system model consisting of an atmospheric general circulation model, an ocean general circulation model, a three-dimensional ice sheet model, a marine biogeochemistry model, and a dynamic vegetation model was used to study the long-term response to anthropogenic carbon emissions. The prescribed emissions follow estimates of past emissions for the period 1751–2000 and standard IPCC emission scenarios up to the year 2100. After 2100, an exponential decrease of the emissions was assumed. For each of the scenarios, a small ensemble of simulations was carried out. The North Atlantic overturning collapsed in the high emission scenario (A2) simulations. In the low emission scenario (B1), only a temporary weakening of the deep water formation in the North Atlantic is predicted. The moderate emission scenario (A1B) brings the system close to its bifurcation point, with three out of five runs leading to a collapsed North Atlantic overturning circulation. The atmospheric moisture transport predominantly contributes to the collapse of the deep water formation. In the simulations with collapsed deep water formation in the North Atlantic a substantial cooling over parts of the North Atlantic is simulated. Anthropogenic climate change substantially reduces the ability of land and ocean to sequester anthropogenic carbon. The simulated effect of a collapse of the deep water formation in the North Atlantic on the atmospheric CO2 concentration turned out to be relatively small. The volume of the Greenland ice sheet is reduced, but its contribution to global mean sea level is almost counterbalanced by the growth of the Antarctic ice sheet due to enhanced snowfall. The modifications of the high latitude freshwater input due to the simulated changes in mass balance of the ice sheet are one order of magnitude smaller than the changes due to atmospheric moisture transport. After the year 3000, the global mean surface temperature is predicted to be almost constant due to the compensating effects of decreasing atmospheric CO2 concentrations due to oceanic uptake and delayed response to increasing atmospheric CO2 concentrations before.  相似文献   

9.
We discuss the potential variations of the biological pump that can be expected from a change in the oceanic circulation in the ongoing global warming. The biogeochemical model is based on the assumption of a perfect stoichiometric composition (Redfield ratios) of organic material. Upwelling nutrients are transformed into organic particles that sink to the deep ocean according to observed profiles. The physical circulation model is driven by the warming pattern as derived from scenario computations of a fully coupled ocean-atmosphere model. The amplitude of the warming is determined from the varying concentration of atmospheric CO2. The model predicts a pronounced weakening of the thermohaline overturning. This is connected with a reduction of the transient uptake capacity of the ocean. It yields also a more effective removal of organic material from the surface which partly compensates the physical effects of solubility. Both effects are rather marginal for the evolution of atmospheric pCO2. Running climate models and carbon cycle models separately seems to be justified. Received: 9 August 1995 / Accepted: 22 April 1996  相似文献   

10.
Ocean iron fertilization has been proposed as a method to mitigate anthropogenic climate change, and there is continued commercial interest in using iron fertilization to generate carbon credits. It has been further speculated that ocean iron fertilization could help mitigate ocean acidification. Here, using a global ocean carbon cycle model, we performed idealized ocean iron fertilization simulations to place an upper bound on the effect of iron fertilization on atmospheric CO2 and ocean acidification. Under the IPCC A2 CO2 emission scenario, at year 2100 the model simulates an atmospheric CO2 concentration of 965 ppm with the mean surface ocean pH 0.44 units less than its pre-industrial value of 8.18. A globally sustained ocean iron fertilization could not diminish CO2 concentrations below 833 ppm or reduce the mean surface ocean pH change to less than 0.38 units. This maximum of 0.06 unit mitigation in surface pH change by the end of this century is achieved at the cost of storing more anthropogenic CO2 in the ocean interior, furthering acidifying the deep-ocean. If the amount of net carbon storage in the deep ocean by iron fertilization produces an equivalent amount of emission credits, ocean iron fertilization further acidifies the deep ocean without conferring any chemical benefit to the surface ocean.  相似文献   

11.
Global warming caused by anthropogenic CO2 emissions is expected to reduce the capability of the ocean and the land biosphere to take up carbon. This will enlarge the fraction of the CO2 emissions remaining in the atmosphere, which in turn will reinforce future climate change. Recent model studies agree in the existence of such a positive climate–carbon cycle feedback, but the estimates of its amplitude differ by an order of magnitude, which considerably increases the uncertainty in future climate projections. Therefore we discuss, in how far a particular process or component of the carbon cycle can be identified, that potentially contributes most to the positive feedback. The discussion is based on simulations with a carbon cycle model, which is embedded in the atmosphere/ocean general circulation model ECHAM5/MPI-OM. Two simulations covering the period 1860–2100 are conducted to determine the impact of global warming on the carbon cycle. Forced by historical and future carbon dioxide emissions (following the scenario A2 of the Intergovernmental Panel on Climate Change), they reveal a noticeable positive climate–carbon cycle feedback, which is mainly driven by the tropical land biosphere. The oceans contribute much less to the positive feedback and the temperate/boreal terrestrial biosphere induces a minor negative feedback. The contrasting behavior of the tropical and temperate/boreal land biosphere is mostly attributed to opposite trends in their net primary productivity (NPP) under global warming conditions. As these findings depend on the model employed they are compared with results derived from other climate–carbon cycle models, which participated in the Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP).
T. J. RaddatzEmail:
  相似文献   

12.
The uptake and storage of anthropogenic carbon in the North Atlantic is investigated using different configurations of ocean general circulation/carbon cycle models. We investigate how different representations of the ocean physics in the models, which represent the range of models currently in use, affect the evolution of CO2 uptake in the North Atlantic. The buffer effect of the ocean carbon system would be expected to reduce ocean CO2 uptake as the ocean absorbs increasing amounts of CO2. We find that the strength of the buffer effect is very dependent on the model ocean state, as it affects both the magnitude and timing of the changes in uptake. The timescale over which uptake of CO2 in the North Atlantic drops to below preindustrial levels is particularly sensitive to the ocean state which sets the degree of buffering; it is less sensitive to the choice of atmospheric CO2 forcing scenario. Neglecting physical climate change effects, North Atlantic CO2 uptake drops below preindustrial levels between 50 and 300 years after stabilisation of atmospheric CO2 in different model configurations. Storage of anthropogenic carbon in the North Atlantic varies much less among the different model configurations, as differences in ocean transport of dissolved inorganic carbon and uptake of CO2 compensate each other. This supports the idea that measured inventories of anthropogenic carbon in the real ocean cannot be used to constrain the surface uptake. Including physical climate change effects reduces anthropogenic CO2 uptake and storage in the North Atlantic further, due to the combined effects of surface warming, increased freshwater input, and a slowdown of the meridional overturning circulation. The timescale over which North Atlantic CO2 uptake drops to below preindustrial levels is reduced by about one-third, leading to an estimate of this timescale for the real world of about 50 years after the stabilisation of atmospheric CO2. In the climate change experiment, a shallowing of the mixed layer depths in the North Atlantic results in a significant reduction in primary production, reducing the potential role for biology in drawing down anthropogenic CO2.  相似文献   

13.
We use recent advances in time series econometrics to estimate the relation among emissions of CO2 and CH4, the concentration of these gases, and global surface temperature. These models are estimated and specified to answer two questions; (1) does human activity affect global surface temperature and; (2) does global surface temperature affect the atmospheric concentration of carbon dioxide and/or methane. Regression results provide direct evidence for a statistically meaningful relation between radiative forcing and global surface temperature. A simple model based on these results indicates that greenhouse gases and anthropogenic sulfur emissions are largely responsible for the change in temperature over the last 130 years. The regression results also indicate that increases in surface temperature since 1870 have changed the flow of carbon dioxide to and from the atmosphere in a way that increases its atmospheric concentration. Finally, the regression results for methane hint that higher temperatures may increase its atmospheric concentration, but this effect is not estimated precisely.  相似文献   

14.
Empirical investigations have indicated that projections of future atmospheric carbon dioxide concentrations of a quality quite adequate for practical questions regarding the environmental threat of anthropogenic carbon dioxide emissions and its relationship to energy use policy could be made with the simple assumption that a constant fraction of these emissions would be retained by the atmosphere. By analysis of the structural behavior of equations describing the transfer of carbon and carbon dioxide between their several reservoirs we have been able to demonstrate that this characteristic can be explained to result from approximately linear behavior and exponentially growing carbon dioxide release rates, combined with fitting of carbon cycle model parameters to the last twenty years of observed atmospheric carbon dioxide growth. These conclusions are independent of the details of carbon cycle model structure for projections up to 100 years into the future as long as the growth in atmospheric carbon dioxide release rates is sufficiently high, of the order of 1.5% per annum or more, as referenced to p re-industrial (steady state) conditions. At low rates of growth, when the longer response times of the carbon cycling system become important, for most energy use projections the resultant CO2 induced climate changes are small and the uncertainties in predicted atmospheric carbon dioxide level are thus not important. A possible exception to this condition occurs for scenarios of future fossil fuel use rates designed to avoid atmospheric CO2 levels exceeding a chosen threshold. In this instance details of carbon cycle model structure could significantly affect conclusions that might be drawn concerning future energy use policies; however, it is possible that such a result stems from inappropriate specification of a criterion for an environmental threat, rather than from inherent inadequacy of current carbon cycle models. Recent carbon cycle model developments postulate transfer processes of carbon into the deep ocean, large carbon storage reservoir at rates much higher than in the models we have analysed. If the existence of such mechanisms is confirmed, and they are found to be sufficiently rapid and large, some of our conclusions regarding the use of the constant fractional retention assumption may have to be modified. Currently at the Gas Research Institute, 8600 West Bryn, Mawr Ave., Chicago, IL 60631, U.S.A.  相似文献   

15.
The RCP greenhouse gas concentrations and their extensions from 1765 to 2300   总被引:16,自引:2,他引:14  
We present the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended Concentration Pathways (ECPs). These projections include all major anthropogenic greenhouse gases and are a result of a multi-year effort to produce new scenarios for climate change research. We combine a suite of atmospheric concentration observations and emissions estimates for greenhouse gases (GHGs) through the historical period (1750?C2005) with harmonized emissions projected by four different Integrated Assessment Models for 2005?C2100. As concentrations are somewhat dependent on the future climate itself (due to climate feedbacks in the carbon and other gas cycles), we emulate median response characteristics of models assessed in the IPCC Fourth Assessment Report using the reduced-complexity carbon cycle climate model MAGICC6. Projected ??best-estimate?? global-mean surface temperature increases (using inter alia a climate sensitivity of 3°C) range from 1.5°C by 2100 for the lowest of the four RCPs, called both RCP3-PD and RCP2.6, to 4.5°C for the highest one, RCP8.5, relative to pre-industrial levels. Beyond 2100, we present the ECPs that are simple extensions of the RCPs, based on the assumption of either smoothly stabilizing concentrations or constant emissions: For example, the lower RCP2.6 pathway represents a strong mitigation scenario and is extended by assuming constant emissions after 2100 (including net negative CO2 emissions), leading to CO2 concentrations returning to 360 ppm by 2300. We also present the GHG concentrations for one supplementary extension, which illustrates the stringent emissions implications of attempting to go back to ECP4.5 concentration levels by 2250 after emissions during the 21st century followed the higher RCP6 scenario. Corresponding radiative forcing values are presented for the RCP and ECPs.  相似文献   

16.
Using a coupled climate?Ccarbon cycle model, fossil fuel carbon dioxide (CO2) emissions are derived through a reverse approach of prescribing atmospheric CO2 concentrations according to observations and future projections, respectively. In the second half of the twentieth century, the implied fossil fuel emissions, and also the carbon uptake by land and ocean, are within the range of observational estimates. Larger discrepancies exist in the earlier period (1860?C1960), with small fossil fuel emissions and uncertain emissions from anthropogenic land cover change. In the IPCC SRES A1B scenario, the simulated fossil fuel emissions more than double until 2050 (17 GtC/year) and then decrease to 12 GtC/year by 2100. In addition to A1B, an aggressive mitigation scenario was employed, developed within the European ENSEMBLES project, that peaks at 530 ppm CO2(equiv) around 2050 and then decreases to approach 450 ppm during the twenty-second century. Consistent with the prescribed pathway of atmospheric CO2 in E1, the implied fossil fuel emissions increase from currently 8 GtC/year to about 10 by 2015 and decrease thereafter. In the 2050s (2090s) the emissions decrease to 3.4 (0.5) GtC/year, respectively. As in previous studies, our model simulates a positive climate?Ccarbon cycle feedback which tends to reduce the implied emissions by roughly 1 GtC/year per degree global warming. Further, our results suggest that the 450 ppm stabilization scenario may not be sufficient to fulfill the European Union climate policy goal of limiting the global temperature increase to a maximum of 2°C compared to pre-industrial levels.  相似文献   

17.
Ocean-circulation model of the carbon cycle   总被引:8,自引:0,他引:8  
A three-dimensional model of the natural carbon cycle in the oceans is described. The model is an extension of the inorganic ocean-circulation carbon cycle model of Maier-Reimer and Hasselmann (1987) to include the effect of the ocean biota. It is based on a dynamic, general circulation model of the world oceans. Chemical species important to the carbon cycle are advected by the current field of the general circulation model. Mixing occurs through numerical diffusivity (related to finite box size), a small explicit horizontal diffusivity, and a convective adjustment. An atmospheric box exchanges CO2 with the surface ocean. There is no land biota provided in the present version of the model. The effect of the ocean biota on ocean chemistry is represented in a simple way and model distributions of chemical species are compared with distributions observed during the GEOSECS and other expeditions. Offprint requests to: R Bacastow  相似文献   

18.
Responses of ocean circulation and ocean carbon cycle in the course of a global glaciation from the present Earth conditions are investigated by using a coupled climate-biogeochemical model. We investigate steady states of the climate system under colder conditions induced by a reduction of solar constant from the present condition. A globally ice-covered solution is obtained under the solar constant of 92.2% of the present value. We found that because almost all of sea water reaches the frozen point, the ocean stratification is maintained not by temperature but by salinity just before the global glaciation (at the solar constant of 92.3%). It is demonstrated that the ocean circulation is driven not by the surface cooling but by the surface freshwater forcing associated with formation and melting of sea ice. As a result, the deep ocean is ventilated exclusively by deep water formation in southern high latitudes where sea ice production takes place much more massively than northern high latitudes. We also found that atmospheric CO2 concentration decreases through the ocean carbon cycle. This reduction is explained primarily by an increase of solubility of CO2 due to a decrease of sea surface temperature, whereas the export production weakens by 30% just before the global glaciation. In order to investigate the conditions for the atmospheric CO2 reduction to cause global glaciations, we also conduct a series of simulations in which the total amount of carbon in the atmosphere?Cocean system is reduced from the present condition. Under the present solar constant, the results show that the global glaciation takes place when the total carbon decreases to be 70% of the present-day value. Just before the glaciation, weathering rate becomes very small (almost 10% of the present value) and the organic carbon burial declines due to weakened biological productivity. Therefore, outgoing carbon flux from the atmosphere?Cocean system significantly decreases. This suggests the atmosphere?Cocean system has strong negative feedback loops against decline of the total carbon content. The results obtained here imply that some processes outside the atmosphere?Cocean feedback loops may be required to cause global glaciations.  相似文献   

19.
Summary A series of sensitivity runs have been performed with a coupled climate–carbon cycle model. The climatic component consists of the climate model of intermediate complexity IAP RAS CM. The carbon cycle component is formulated as a simple zero-dimensional model. Its terrestrial part includes gross photosynthesis, and plant and soil respirations, depending on temperature via Q 10-relationships (Lenton, 2000). Oceanic uptake of anthropogenic carbon is formulated is a bi-linear function of tendencies of atmospheric concentration of CO2 and globally averaged annual mean sea surface temperature. The model is forced by the historical industrial and land use emissions of carbon dioxide for the second half of the 19th and the whole of the 20th centuries, and by the emission scenario SRES A2 for the 21st century. For the standard set of the governing parameters, the model realistically captures the main features of the Earth’s observed carbon cycle. A large number of simulations have been performed, perturbing the governing parameters of the terrestrial carbon cycle model. In addition, the climate part is perturbed, either by zeroing or artificially increasing the climate model sensitivity to the doubling of the atmospheric CO2 concentration. Performing the above mentioned perturbations, it is possible to mimic most of the range found in the C4MIP simulations. In this way, a wide range of the climate–carbon cycle feedback strengths is obtained, differing even in the sign of the feedback. If the performed simulations are subjected to the constraints of a maximum allowed deviation of the simulated atmospheric CO2 concentration (pCO2(a)) from the observed values and correspondence between simulated and observed terrestrial uptakes, it is possible to narrow the corresponding uncertainty range. Among these constraints, considering pCO2(a) and uptakes are both important. However, the terrestrial uptakes constrain the simulations more effectively than the oceanic ones. These constraints, while useful, are still unable to rule out both extremely strong positive and modest negative climate–carbon cycle feedback.  相似文献   

20.
An evaluation of oceanic containment strategies for anthropogenic carbon dioxide is presented. Energy conservation is also addressed through an input hydrocarbon-fuel consumption function. The effectiveness of the proposed countermeasures is determined from atmospheric CO2 concentration predictions. A previous box model with a diffusive deep ocean is adapted and applied to the concept of fractional CO2 injection in 500 m deep waters. Next, the contributions of oceanic calcium carbonate sediment dissolution, and of deep seawater renewal, are included. Numerical results show that for CO2 direct removal measures to be effective, large fractions of anthropogenic carbon dioxide have to be processed. This point favors fuel pre-processing concepts. The global model also indicates that energy conservation, i.e. a hydrocarbon-fuel consumption slowdown, remains the most effective way to mitigate the greenhouse effect, because it offers mankind a substantial time delay to implement new energy production alternatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号