首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present optical spectra of the nuclei of seven luminous ( P 178 MHz≳1025 W Hz−1 Sr−1) nearby ( z <0.08) radio galaxies, which mostly correspond to the FR II class. In two cases, Hydra A and 3C 285, the Balmer and λ 4000-Å break indices constrain the spectral types and luminosity classes of the stars involved, revealing that the blue spectra are dominated by blue supergiant and/or giant stars. The ages derived for the last burst of star formation in Hydra A are between 7 and 40 Myr, and in 3C 285 about 10 Myr. The rest of the narrow-line radio galaxies (four) have a λ 4000-Å break and metallic indices consistent with those of elliptical galaxies. The only broad-line radio galaxy in our sample, 3C 382, has a strong featureless blue continuum and broad emission lines that dilute the underlying blue stellar spectra. We are able to detect the Ca  ii triplet in absorption in the seven objects, with good quality data for only four of them. The strengths of the absorptions are similar to those found in normal elliptical galaxies, but these values are consistent both with stellar populations of roughly similar ages (as derived from the Balmer absorption and break strengths) and with mixed young+old populations.  相似文献   

2.
We present a new determination of the local volume-averaged star formation rate from the 1.4-GHz luminosity function of star forming galaxies. Our sample, taken from the   B ≤12  Revised Shapley–Ames catalogue (231 normal spiral galaxies over an effective area of 7.1 sr) has ≃100 per cent complete radio detections and is insensitive to dust obscuration and cirrus contamination. After removal of known active galaxies, the best-fitting Schechter function has a faint-end slope of  −1.27±0.07  in agreement with the local H α luminosity function, characteristic luminosity   L ∗=(2.6±0.7)×1022 W Hz−1  and density   φ ∗=(4.8±1.1)×10−4 Mpc−3.  The inferred local radio luminosity density of  (1.73±0.37±0.03)×1019 W Hz−1 Mpc−3  (Poisson noise, large-scale structure fluctuations) implies a volume-averaged star formation rate ∼2 times larger than the Gallego et al. H α estimate, i.e.   ρ 1.4 GHz=(2.10±0.45±0.04)×10−2 M yr−1 Mpc−3  for a Salpeter initial mass function from  0.1–125 M  and Hubble constant of 50 km s−1 Mpc−1. We demonstrate that the Balmer decrement is a highly unreliable extinction estimator, and argue that optical–ultraviolet (UV) star formation rates (SFRs) are easily underestimated, particularly at high redshift.  相似文献   

3.
We present the results of a study which uses the 3C RR sample of radio-loud active galactic nuclei to investigate the evolution of the black hole:spheroid mass ratio in the most massive early-type galaxies from  0 < z < 2  . Radio-loud unification is exploited to obtain virial (linewidth) black hole mass estimates from the 3C RR quasars, and stellar mass estimates from the 3C RR radio galaxies, thereby providing black hole and stellar mass estimates for a single population of early-type galaxies. At low redshift  ( z ≲ 1)  , the 3C RR sample is consistent with a black hole:spheroid mass ratio of   M bh/ M sph≃ 0.002  , in good agreement with that observed locally for quiescent galaxies of similar stellar mass  ( M sph≃ 5 × 1011 M)  . However, over the redshift interval  0 < z < 2  the 3C RR black hole:spheroid mass ratio is found to evolve as   M bh/ M sph∝ (1 + z )2.07±0.76  , reaching   M bh/ M sph≃ 0.008  by redshift   z ≃ 2  . This evolution is found to be inconsistent with the local black hole:spheroid mass ratio remaining constant at a moderately significant level (98 per cent). If confirmed, the detection of evolution in the 3C RR black hole:spheroid mass ratio further strengthens the evidence that, at least for massive early-type galaxies, the growth of the central supermassive black hole may be completed before that of the host spheroid.  相似文献   

4.
The evolution of number density, size and intrinsic colour is determined for a volume-limited sample of visually classified early-type galaxies selected from the Hubble Space Telescope /Advanced Camera for Surveys images of the Great Observatories Origins Deep Survey (GOODS) North and South fields (version 2). The sample comprises 457 galaxies over 320 arcmin2 with stellar masses above  3 × 1010 M  in the redshift range  0.4 < z < 1.2  . Our data allow a simultaneous study of number density, intrinsic colour distribution and size. We find that the most massive systems  (≳3 × 1011 M)  do not show any appreciable change in comoving number density or size in our data. Furthermore, when including the results from 2dF galaxy redshift survey, we find that the number density of massive early-type galaxies is consistent with no evolution between   z = 1.2  and 0, i.e. over an epoch spanning more than half of the current age of the Universe. We find large discrepancies between the predictions of semi-analytic models. Massive galaxies show very homogeneous intrinsic colour distributions, with nearly flat radial colour gradients, but with a significant negative correlation between stellar mass and colour gradient, such that red cores appear predominantly in massive galaxies. The distribution of half-light radii – when compared to   z ∼ 0  and   z > 1  samples – is compatible with the predictions of semi-analytic models relating size evolution to the amount of dissipation during major mergers.  相似文献   

5.
We present optical (∼3200 to ∼9000 Å) off-nuclear spectra of 26 powerful active galaxies in the redshift range 0.1≤ z ≤0.3, obtained with the Mayall and William Herschel 4-m class telescopes. The sample consists of radio-quiet quasars, radio-loud quasars (all with −23≥ M V ≥−26) and radio galaxies of Fanaroff–Riley Type II (with extended radio luminosities and spectral indices comparable to those of the radio-loud quasars). The spectra were all taken approximately 5 arcsec off-nucleus, with offsets carefully selected so as to maximize the amount of galaxy light falling into the slit, whilst simultaneously minimizing the amount of scattered nuclear light. The majority of the resulting spectra appear to be dominated by the integrated stellar continuum of the underlying galaxies rather than by light from the non-stellar processes occurring in the active nuclei, and in many cases a 4000-Å break feature can be identified. The individual spectra are described in detail, and the importance of the various spectral components is discussed. Stellar population synthesis modelling of the spectra will follow in a subsequent paper.  相似文献   

6.
A sample of 2712 radio-luminous galaxies is defined from the second data release of the Sloan Digital Sky Survey (SDSS) by cross-comparing the main spectroscopic galaxy sample with two radio surveys: the National Radio Astronomy Observatories (NRAO) Very Large Array (VLA) Sky Survey (NVSS) and the Faint Images of the Radio Sky at Twenty centimeters (FIRST) survey. The comparison is carried out in a multistage process and makes optimal use of both radio surveys by exploiting the sensitivity of the NVSS to extended and multicomponent radio sources in addition to the high angular resolution of the FIRST images. A radio source sample with 95 per cent completeness and 98.9 per cent reliability is achieved, far better than would be possible for this sample if only one of the surveys was used. The radio source sample is then divided into two classes: radio-loud active galactic nuclei (AGN) and galaxies in which the radio emission is dominated by star formation. The division is based on the location of a galaxy in the plane of 4000-Å break strength versus radio luminosity per unit stellar mass and provides a sample of 2215 radio-loud AGN and 497 star-forming galaxies brighter than 5 mJy at 1.4 GHz. A full catalogue of positions and radio properties is provided for these sources. The local radio luminosity function is then derived both for radio-loud AGN and for star-forming galaxies and is found to be in agreement with previous studies. By using the radio to far-infrared (FIR) correlation, the radio luminosity function of star-forming galaxies is also compared to the luminosity function derived in the FIR. It is found to agree well at high luminosities but less so at lower luminosities, confirming that the linearity of the radio to FIR correlation breaks down below about 1022 W Hz−1 at 1.4 GHz.  相似文献   

7.
We present results from two high-resolution hydrodynamical simulations of protocluster regions at   z ≃ 2.1  . The simulations have been compared to observational results for the so-called Spiderweb galaxy system, the core of a putative protocluster region at   z = 2.16  , found around a radio galaxy. The simulated regions have been chosen so as to form a poor cluster with   M 200≃ 1014  h −1 M  (C1) and a rich cluster with   M 200≃ 2 × 1015  h −1 M  (C2) at   z = 0  . The simulated protoclusters show evidence of ongoing assembly of a dominating central galaxy. The stellar mass of the brightest cluster galaxy of the C2 system is in excess with respect to observational estimates for the Spiderweb galaxy, with a total star formation rate which is also larger than indicated by observations. We find that the projected velocities of galaxies in the C2 cluster are consistent with observations, while those measured for the poorer cluster C1 are too low compared with the observed velocities. We argue that the Spiderweb complex resembles the high-redshift progenitor of a rich galaxy cluster. Our results indicate that the included supernovae feedback is not enough to suppress star formation in these systems, supporting the need of introducing active galactic nuclei feedback. According to our simulations, a diffuse atmosphere of hot gas in hydrostatic equilibrium should already be present at this redshift, and enriched at a level comparable to that of nearby galaxy clusters. The presence of this gas should be detectable with future deep X-ray observations.  相似文献   

8.
We present measurements of the clustering properties of galaxies in the field of redshift range 0.5 ≲ z ≲ 1.5 Ultra Steep Spectrum radio sources selected from the Sydney University Molonglo Sky Survey and the National Radio Astronomy Observatories Very Large Array Sky Survey. Galaxies in these USS fields were identified in deep near-infrared observations, complete down to   K s= 20  , using the IRIS2 instrument at the Anglo-Australian Telescope. We used the redshift distribution of   K s < 20  galaxies taken from Cimatti et al. (2002) to constrain the correlation length r 0. We find a strong correlation signal of galaxies with   K s < 20  around our USS sample. A comoving correlation length   r 0= 14.0 ± 2.8  h −1 Mpc  and γ= 1.98 ± 0.15 are derived in a flat cosmological model universe.
We compare our findings with those obtained in a cosmological N -body simulation populated with galform semi-analytic galaxies. We find that clusters of galaxies with masses in the range   M = 1013.4–14.2  h −1 M  have a cluster–galaxy cross-correlation amplitude comparable to those found between the USS hosts and galaxies. These results suggest that distant radio galaxies are excellent tracers of galaxy overdensities and pinpoint the progenitors of present day rich clusters of galaxies.  相似文献   

9.
A comparison between published field galaxy stellar mass functions (GSMFs) shows that the cosmic stellar mass density is in the range 4–8 per cent of the baryon density (assuming  Ωb= 0.045  ). There remain significant sources of uncertainty for the dust correction and underlying stellar mass-to-light ratio even assuming a reasonable universal stellar initial mass function. We determine the   z < 0.05  GSMF using the New York University Value-Added Galaxy Catalog sample of 49 968 galaxies derived from the Sloan Digital Sky Survey and various estimates of stellar mass. The GSMF shows clear evidence for a low-mass upturn and is fitted with a double Schechter function that has  α2≃−1.6  . At masses below  ∼108.5 M  , the GSMF may be significantly incomplete because of missing low-surface-brightness galaxies. One interpretation of the stellar mass–metallicity relation is that it is primarily caused by a lower fraction of available baryons converted to stars in low-mass galaxies. Using this principle, we determine a simple relationship between baryonic mass and stellar mass and present an 'implied baryonic mass function'. This function has a faint-end slope,  α2≃−1.9  . Thus, we find evidence that the slope of the low-mass end of the galaxy mass function could plausibly be as steep as the halo mass function. We illustrate the relationship between halo baryonic mass function → galaxy baryonic mass function → GSMF. This demonstrates the requirement for peak galaxy formation efficiency at baryonic masses  ∼1011 M  corresponding to a minimum in feedback effects. The baryonic-infall efficiency may have levelled off at lower masses.  相似文献   

10.
We have selected and analysed the properties of a sample of  2905 Ks < 21.5  galaxies in  ∼131 arcmin2  of the Great Observatories Origins Deep Survey (GOODS) Chandra Deep Field South (CDFS), to obtain further constraints on the evolution of Ks -selected galaxies with respect to the results already obtained in previous studies. We made use of the public deep multiwavelength imaging from the optical B through the infrared (IR) 4.5-μm bands, in conjunction with available spectroscopic and COMBO17 data in the CDFS, to construct an optimized redshift catalogue for our galaxy sample. We computed the Ks -band luminosity function and determined that its characteristic magnitude has a substantial brightening and a decreasing total density from   z = 0  to  〈 z 〉= 2.5  . We also analysed the colours and number density evolution of galaxies with different stellar masses. Within our sample, and in contrast to what is observed for less massive systems, the vast majority (∼85–90 per cent) of the most massive  ( M > 2.5 × 1011 M)  local galaxies appear to be in place before redshift   z ∼ 1  . Around 65–70 per cent of the total assemble between redshifts   z = 1  and 3 and most of them display extremely red colours, suggesting that plausible star formation in these very massive systems should mainly proceed in obscured, short-time-scale bursts. The remaining fraction (up to ∼20 per cent) could be in place at even higher redshifts   z = 3–4  , pushing the first epoch of formation of massive galaxies beyond the limits of current near-IR surveys.  相似文献   

11.
We compute two-point correlation functions and measure the shear signal due to galaxy–galaxy lensing for 80 000 optically identified and 5700 radio-loud active galactic nuclei (AGN) from Data Release 4 of the Sloan Digital Sky Survey. Halo occupation models are used to estimate halo masses and satellite fractions for these two types of AGN. The large sample size allows us to separate AGN according to the stellar mass of their host galaxies. We study how the halo masses of optical and radio AGN differ from those of the parent population at fixed   M *  . Halo masses deduced from clustering and from lensing agree satisfactorily. Radio AGN are found in more massive haloes than optical AGN: in our samples, their mean halo masses are  1.6 × 1013  and  8 × 1011  h −1 M  , respectively. Optical AGN follow the same relation between stellar mass and halo mass as galaxies selected without regard to nuclear properties, but radio-loud AGN deviate significantly from this relation. The dark matter haloes of radio-loud AGN are about twice as massive as those of control galaxies of the same stellar mass. This boost is independent of radio luminosity, and persists even when our analysis is restricted to field galaxies. The large-scale gaseous environment of the galaxy clearly plays a crucial role in producing observable radio emission. The dark matter halo masses that we derive for the AGN in our two samples are in good agreement with recent models in which feedback from radio AGN becomes dominant in haloes where gas cools quasi-statically.  相似文献   

12.
Using the spectroscopic sample of the Sloan Digital Sky Survey Data Release 1 (SDSS DR1), we measure how gas was transformed into stars as a function of time and stellar mass: the baryonic conversion tree (BCT). There is a clear correlation between early star formation activity and present-day stellar mass: the more massive galaxies have formed approximately 80 per cent of their stars at   z > 1  , while for the less massive ones the value is only approximately 20 per cent. By comparing the BCT with the dark matter merger tree, we find indications that star formation efficiency at   z > 1  had to be approximately a factor of two higher than today (∼10 per cent) in galaxies with present-day stellar mass larger than  2 × 1011 M  , if this early star formation occurred in the main progenitor. Therefore, the λ cold dark matter (LCDM) paradigm can accommodate a large number of red objects. On the other hand, in galaxies with present-day stellar mass less than  1011 M  , efficient star formation seems to have been triggered at   z ∼ 0.2  . We show that there is a characteristic mass  ( M *∼ 1010 M)  for feedback efficiency (or lack of star formation). For galaxies with masses lower than this, feedback (or star formation suppression) is very efficient while for higher masses it is not. The BCT, determined here for the first time, should be an important observable with which to confront theoretical models of galaxy formation.  相似文献   

13.
We announce the discovery of an extended emission-line region associated with a high-redshift type-2 quasi-stellar object (QSO). The halo, which was discovered in our new wide-field narrow-band survey, resides at   z = 2.85  in the Spitzer First Look Survey region and is extended over ∼80 kpc. Deep very long baseline interferometry (VLBI) observations imply that approximately 50 per cent of the radio emission is extended on scales >200 pc. The inferred active galactic nuclei (AGN) luminosity is sufficient to ionize the extended halo, and the optical emission is consistent with being triggered coevally with the radio source. The Lyα halo is as luminous as those found around high-redshift radio galaxies; however, the active nucleus is several orders of magnitude less luminous at radio wavelengths than those Fanarof–Riley type II (FRIIs) more commonly associated with extended emission-line regions. AMS05 appears to be a high-redshift analogue to the radio-quiet quasar E1821+643 which is core dominated, but which also exhibits extended Fanarof–Riley type I (FRI)-like structure and contains an optically powerful AGN. We also find evidence for more quiescent kinematics in the Lyα emission line in the outer regions of the halo, reminiscent of the haloes around the more powerful FRIIs. The optical to mid-infrared spectral energy distribution is well described by a combination of an obscured QSO  ( L bol∼ 3.4 ± 0.2 × 1013 L)  and a 1.4 Gyr old simple stellar population with mass  ∼3.9 ± 0.3 × 1011 M  .  相似文献   

14.
We present optical spectra and near-infrared imaging of a sample of 31 serendipitous X-ray sources detected in the field of Chandra observations of the A 2390 cluster of galaxies. The sources have  0.5–7 keV  fluxes of  (0.6–8)×10-14 erg cm-2 s-1  and lie around the break in the  2–10 keV  source counts. They are therefore typical of sources dominating the X-ray Background in that band. 12 of the 15 targets for which we have optical spectra show emission lines at a range of line luminosities, and half of these show broad lines. These active galaxies and quasars have soft X-ray spectra. Including photometric redshifts and published spectra, we have redshifts for 17 of the sources, ranging from   z ∼0.2  up to   z ∼3  , with a peak between   z =1–2  . 10 of our sources have hard X-ray spectra indicating a spectral slope flatter than that of a typical unabsorbed quasar. Two hard sources that are gravitationally lensed by the foreground cluster are obscured quasars, with intrinsic  2–10 keV  luminosities of  (0.2–3)×1045 erg s-1  , and absorbing columns of   N H>1023 cm-2  . Both of these sources were detected in the mid-infrared by ISOCAM on the Infrared Space Observatory , which when combined with radiative transfer modelling leads to the prediction that the bulk of the reprocessed flux emerges at ∼100 μm.  相似文献   

15.
We present the results of a continuing survey to detect Lyα emitting galaxies at redshifts   z ∼ 9  : the ' z equals nine' (ZEN) survey. We have obtained deep VLT Infrared Spectrometer and Array Camera observations in the narrow J -band filter NB119 directed towards three massive lensing clusters: Abell clusters 1689, 1835 and 114. The foreground clusters provide a magnified view of the distant Universe and permit a sensitive test for the presence of very high redshift galaxies. We search for   z ∼ 9 Lyα  emitting galaxies displaying a significant narrow-band excess relative to accompanying J -band observations that remain undetected in Hubble Space Telescope ( HST )/Advanced Camera for Surveys (ACS) optical images of each field. No sources consistent with this criterion are detected above the unlensed 90 per cent point-source flux limit of the narrow-band image,   F NB= 3.7 × 10−18 erg s−1 cm−2  . To date, the total coverage of the ZEN survey has sampled a volume at   z ∼ 9  of approximately 1700 comoving Mpc3 to a Lyα emission luminosity of  1043 erg s−1  . We conclude by considering the prospects for detecting   z ∼ 9 Lyα  emitting galaxies in light of both observed galaxy properties at   z < 7  and simulated populations at   z > 7  .  相似文献   

16.
We use a  0.040 < z < 0.085  sample of 37 866 star-forming galaxies from the Fourth Data Release of the Sloan Digital Sky Survey to investigate the dependence of gas-phase chemical properties on stellar mass and environment. The local density, determined from the projected distances to the fourth and fifth nearest neighbours, is used as an environment indicator. Considering environments ranging from voids, i.e.  log Σ≲−0.8  , to the periphery of galaxy clusters, i.e.  log Σ≈ 0.8  , we find no dependence of the relationship between galaxy stellar mass and gas-phase oxygen abundance, along with its associated scatter, on local galaxy density. However, the star-forming gas in galaxies shows a marginal increase in the chemical enrichment level at a fixed stellar mass in denser environments. Compared with galaxies of similar stellar mass in low-density environments, they are enhanced by a few per cent for massive galaxies to about 20 per cent for galaxies with stellar masses  ≲109.5 M  . These results imply that the evolution of star-forming galaxies is driven primarily by their intrinsic properties and is largely independent of their environment over a large range of local galaxy density.  相似文献   

17.
We present XMM data for the supercluster A901/2, at   z ∼ 0.17  , which is combined with deep imaging and 17-band photometric redshifts (from the COMBO-17 survey), two degree field (2dF) spectra and Spitzer 24 μm data, to identify active galactic nuclei (AGN) in the supercluster. The 90 ksec XMM image contains 139 point sources, of which 11 are identified as supercluster AGN with   L X(0.5−7.5 keV) > 1.7 × 1041 erg cm−2 s−1  . The host galaxies have   M R < −20  and only two of eight sources with spectra could have been identified as AGN by the detected optical emission lines. Using a large sample of 795 supercluster galaxies, we define control samples of massive galaxies with no detected AGN. The local environments of the AGN and control samples differ at ≳98 per cent significance. The AGN host galaxies lie predominantly in areas of moderate projected galaxy density and with more local blue galaxies than the control sample, with the exception of one very bright type I AGN very near the centre of a cluster. These environments are similar to, but not limited to, cluster outskirts and blue groups. Despite the large number of potential host galaxies, no AGN are found in regions with the highest galaxy density (excluding some cluster cores where emission from the intra-cluster medium obscures moderate luminosity AGN). AGN are also absent from the areas with lowest galaxy density. We conclude that the prevalence of cluster AGN is linked to their environment.  相似文献   

18.
We present the optical identifications of a 95-μm ISOPHOT sample in the Lockman hole over an area of approximately half a deg2. The Rodighiero et al. catalogue includes 36 sources, making up a complete flux-limited sample for   S 95 μm≥ 100 mJy  . Reliable sources were detected, with decreasing but well-controlled completeness, down to   S 95 μm≃ 20 mJy  . We have combined mid-infrared (IR) and radio catalogues in this area to identify the potential optical counterparts of the far-IR sources. We found 14 radio and 13 15-μm associations, 10 of which have both associations. For the 11 sources with spectroscopic redshift, we have performed a spectrophotometric analysis of the observed spectral energy distributions (SEDs). Four of these 95-μm sources have been classified as faint IR (FIR) galaxies  ( L FIR < 1. e 11 L)  , six as luminous IR galaxies (LIRGs) and only one as an ultraluminous IR galaxy (ULIRG). We have discussed the redshift distribution of these objects, comparing our results with evolutionary model predictions 95 and 175 μm. Given their moderate distances (the bulk of the closest spectroscopically identified objects lying at   z < 0.2  ), their luminosities and star formation rates (SFR; median value  ∼ 10 M yr−1  ), the sources unveiled by ISOPHOT at 95 μm seem to correspond to the low redshift  ( z < 0.3)  FIRBACK 175-μm population, composed of dusty, star-forming galaxies with moderate SFRs. We computed and compared different SFR estimators, and found that the SF derived from the bolometric IR luminosity is well correlated with that computed from the radio and mid-IR fluxes.  相似文献   

19.
A submillimetre survey of the star formation history of radio galaxies   总被引:1,自引:0,他引:1  
We present the results of the first major systematic submillimetre survey of radio galaxies spanning the redshift range 1< z <5. The primary aim of this work is to elucidate the star formation history of this sub class of elliptical galaxies by tracing the cosmological evolution of dust mass. Using SCUBA on the JCMT, we have obtained 850-μm photometry of 47 radio galaxies to a consistent rms depth of 1 mJy, and have detected dust emission in 14 cases. The radio galaxy targets have been selected from a series of low-frequency radio surveys of increasing depth (3CRR, 6CE, etc.), in order to allow us to separate the effects of increasing redshift and increasing radio power on submillimetre luminosity. Although the dynamic range of our study is inevitably small, we find clear evidence that the typical submillimetre luminosity (and hence dust mass) of a powerful radio galaxy is a strongly increasing function of redshift; the detection rate rises from ≃15 per cent at z <2.5 to ≳75 per cent at z >2.5, and the average submillimetre luminosity rises at a rate ∝(1+ z )3 out to z ≃4. Moreover, our extensive sample allows us to argue that this behaviour is not driven by underlying correlations with other radio galaxy properties such as radio power, radio spectral index, or radio source size/age. Although radio selection may introduce other more subtle biases, the redshift distribution of our detected objects is in fact consistent with the most recent estimates of the redshift distribution of comparably bright submillimetre sources discovered in blank field surveys. The evolution of submillimetre luminosity found here for radio galaxies may thus be representative of massive ellipticals in general.  相似文献   

20.
We investigate the role that dry mergers play in the build-up of massive galaxies within the cold dark matter paradigm. Implementing an empirical shut-off mass scale for star formation, we find a nearly constant dry merger rate of  ∼6 × 10−5 Mpc−3 Gyr−1  at   z ≤ 1  and a steep decline at larger z . Less than half of these mergers are between two galaxies that are morphologically classified as early-types, and the other half is mostly between an early- and late-type galaxy. Latter are prime candidates for the origin of tidal features around red elliptical galaxies. The introduction of a transition mass scale for star formation has a strong impact on the evolution of galaxies, allowing them to grow above a characteristic mass scale of   M *, c ∼ 6.3 × 1010 M  by mergers only. As a consequence of this transition, we find that around   M *, c   , the fraction of 1:1 mergers is enhanced with respect to unequal mass major mergers. This suggests that it is possible to detect the existence of a transition mass scale by measuring the relative contribution of equal mass mergers to unequal mass mergers as a function of galaxy mass. The evolution of the high-mass end of the luminosity function is mainly driven by dry mergers at low z . We however find that only 10–20 per cent of galaxies more massive than   M *, c   experience dry major mergers within their last Gyr at any given redshift   z ≤ 1  .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号