首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Summary This paper characterizes Mesoscale Convective Systems (MCSs) during 2001 over Iberia and the Balearic Islands and their meteorological settings. Enhanced infrared Meteosat imagery has been used to detect their occurrence over the Western Mediterranean region between June and December 2001 according to satellite-defined criteria based on the MCS physical characteristics. Twelve MCSs have been identified. The results show that the occurrence of 2001 MCSs is limited to the August–October period, with September being the most active period. They tend to develop during the late afternoon or early night, with preferred eastern Iberian coast locations and eastward migrations. A cloud shield area of 50.000 km2 is rarely exceeded. When our results are compared with previous studies, it is possible to assert that though 2001 MCS activity was moderate, the convective season was substantially less prolonged than usual, with shorter MCS life cycles and higher average speeds. The average MCS precipitation rate was 3.3 mm·h−1 but a wide range of values varying from scarce precipitation to intense events of 130 mm·24 h−1 (6 September) were collected. The results suggest that, during 2001, MCS rainfall was the principal source of precipitation in the Mediterranean region during the convective season, but its impact varied according to the location. Synoptic analysis based on NCEP/NCAR reanalysis show that several common precursors could be identified over the Western Mediterranean Sea when the 2001 MCSs occurred: a low-level tongue of moist air and precipitable water (PW) exceeding 25 mm through the southern portion of the Western Mediterranean area, low-level zonal warm advection over 2 °C·24 h−1 towards eastern Iberia, a modest 1000–850 hPa equivalent potential temperature (θe) difference over 20 °C located close to the eastern Iberian coast, a mid level trough (sometimes a cut-off low) over Northern Africa or Southern Spain and high levels geostrophic vorticity advection exceeding 12·10−10 s−2 over eastern Iberia and Northern Africa. Finally, the results suggest that synoptic, orographic and a warm-air advection were the most relevant forcing mechanisms during 2001.  相似文献   

2.
Boundary-layer measurements made from the Swedish icebreaker Oden during the Arctic Ocean Experiment 2001 (AOE-2001) are analysed. They refer mainly to ice drift in the central Arctic during the period 2–21 August 2001. On board Oden a remote sensing array with a wind profiler, cloud radar and a scanning microwave radiometer, and a regular weather station operated continuously; soundings were also released during research stations. Turbulence and profile measurements on an 18-m mast were deployed on the ice, along with two sodar systems, a microbarograph array and a tethered sounding system. Surface flux and meteorological stations were also deployed on nearby ice floes. There is a clear diurnal cycle in radiation and also in wind speed, cloud base and visibility. It is absent in temperature and humidity, probably due to the very strong control by melting/ freezing ice and snow. In the advection of warm air, latent heat of melting maintains the surface temperature at 0 °C, while with a negative energy balance the latent heat of freezing of the salty ocean water acts to maintain the surface temperature > −2 °C. The constant presence of water at the surface maintains a relative humidity close to 100%, and this is also often facilitated by an increasing specific humidity through the capping inversion, making entrainment a moisture source. This ensures cloudy conditions, with low cloud and fog prevailing most of the time. Intrusions of warm and moist air from beyond the ice edge are frequent, but the local Arctic boundary layer remains at a relatively constant temperature, and is shallow and well mixed with strong capping inversions. Power spectra of surface-layer wind speed sometimes show large variance at low frequency. A scanning radiometer provides a monitoring of the vertical thermal structure with a spatial and temporal resolution not seen before in the Arctic. There are often two inversions, an elevated main inversion and a weak surface inversion, and occasionally additional inversions occur. Enhanced entrainment across the main inversion appears to occur during frontal passages. Variance of the scanning radiometer temperatures occurs in large pulses rather than varying smoothly, and the height to the maximum variance appears to be a reasonable proxy for the boundary-layer depth.  相似文献   

3.
A time series of microwave radiometric profiles over Arctic Canada’s Cape Bathurst (70°N, 124.5°W) flaw lead polynya region from 1 January to 30 June, 2008 was examined to determine the general characteristics of the atmospheric boundary layer in winter and spring. A surface based or elevated inversion was present on 97% of winter (January–March) days, and on 77% of spring (April–June) days. The inversion was the deepest in the first week of March (≈1100 m), and the shallowest in June (≈250 m). The mean temperature and absolute humidity from the surface to the top of the inversion averaged 250.1 K (−23.1°C), and 0.56 × 10−3 kg m−3 in winter, and in spring averaged 267.5 K (−5.6°C), and 2.77 × 10−3 kg m−3. The median winter atmospheric boundary-layer (ABL) potential temperature profile provided evidence of a shallow, weakly stable internal boundary layer (surface to 350 m) topped by an inversion (350–1,000 m). The median spring profile showed a shallow, near-neutral internal boundary layer (surface to 350 m) under an elevated inversion (600–800 m). The median ABL absolute humidity profiles were weakly positive in winter and negative in spring. Estimates of the convergence of sensible heat and water vapour from the surface that could have produced the turbulent internal boundary layers of the median profiles were 0.67 MJ m−2 and 13.1 × 10−3 kg m−2 for the winter season, and 0.66 MJ m−2 and 33.4 × 10−3 kg m−2 for the spring season. With fetches of 10–100 km, these accumulations may have resulted from a surface sensible heat flux of 15–185 W m−2, plus a surface moisture flux of 0.001–0.013 mm h−1 (or a latent heat flux of 0.7–8.8 W m−2) in winter, and 0.003–0.033 mm h−1 (or a latent heat flux of 2–22 W m−2) in spring.  相似文献   

4.
The Summer Surface Energy Balance of the High Antarctic Plateau   总被引:1,自引:0,他引:1  
The summertime surface energy balance (SEB) at Kohnen station, situated on the high Antarctic plateau (75°00′ S, 0°04′ E, 2892m above sea level) is presented for the period of 8 January to 9 February 2002. Shortwave and longwave radiation fluxes were measured directly; the former was corrected for problems associated with the cosine response of the instrument. Sensible and latent heat fluxes were calculated using the bulk method, and eddy-correlation measurements and the modified Bowen ratio method were used to verify these calculated fluxes. The calculated sub-surface heat flux was checked by comparing calculated to measured snow temperatures. Uncertainties in the measurements and energy-balance calculations are discussed. The general meteorological conditions were not extraordinary during the period of the experiment, with a mean 2-m air temperature of −27.5°C, specific humidity of 0.52×10−3kg kg−1 and wind speed of 4.1ms−1. The experiment covered the transition period from Antarctic summer (positive net radiation) to winter (negative net radiation), and as a result the period mean net radiation, sensible heat, latent heat and sub-surface heat fluxes were small with values of −1.1, 0.0, −1.0 and 0.7 Wm−2, respectively. Daily mean net radiation peaked on cloudy days (16 Wm−2) and was negative on clear-sky days (minimum of −19 W m−2). Daily mean sensible heat flux ranged from −8 to +10 Wm−2, latent heat flux from −4 to 0 Wm−2 and sub-surface heat flux from −8 to +7 Wm−2.  相似文献   

5.
Summary  Measurements of landscape-scale methane emission were made over an aapa mire near Kaamanen in Finnish Lapland (69° 8′ N, 27° 16′ E, 155 m ASL). Emissions were measured during the spring thaw, in summer and in autumn. No effect of water table position on CH4 emission was found as the water table remained at or above the surface of the peat. Methane emission fluxes increased with surface temperature from which an activation energy of −99 kJ mol−1 was obtained. Annual emission from the site, modelled from temperature regression and short-term flux measurements made in three separate years, was calculated to be 5.5 ± 0.4 g CH4 m−2 y−1 of which 0.6 ± 0.1 g CH4 m−2 y−1 (11%) was released during the spring thaw which lasted 20 to 30 days. The effect of global warming on the CH4 budget of the site was estimated using the central scenario of the SILMU (Finnish Research Programme on Climate Change) model which predicts annual mean temperature increases of 1.2, 2.4 and 4.4 °C in 2020, 2050 and 2100, respectively. Maximum enhancements in CH4 emission due to warming were calculated to be 18, 40 and 84% for 2020, 2050 and 2100, respectively. Actual increases may be smaller because prediction of changes in water table are highly uncertain. Received September 17, 1999 Revised October 16, 2000  相似文献   

6.
Mineral dust particles are known to be efficient ice nuclei in the atmosphere. Previous work has probed heterogeneous ice nucleation on various laboratory dust samples including Arizona Test Dust, kaolinite, montmorillonite, and illite as atmospheric dust surrogates. However, it has recently been suggested that NX illite may be a better representation of atmospheric dust. Hiranuma et al. (2015) performed a laboratory comparison for immersion ice nucleation on NX illite, but here we focus on depositional ice nucleation because of its importance in low temperature cirrus cloud formation. A Raman microscope setup was used to examine the ice-nucleating efficiency of NX illite. Organic coatings on the NX illite particles were also investigated using a mixture of 5 dicarboxylic acids (M5). The ratio of NX illite to M5 was varied from 1:10 to 100:1. It was found that NX illite efficiently nucleates ice with Sice = 1.07 ± 0.01 at ?47 °C, with Sice slightly increasing at lower temperatures. In contrast, pure M5 is a poorer ice nucleus with Sice = 1.30 ± 0.02 at ?40 °C, relatively independent of temperature. Further, it was found that M5 coatings on the order of several monolayers thick hindered the ice nucleating ability of NX illite. Optical images suggest that at colder temperatures (< ?50 °C) 1:1 NX illite:M5 particles and pure M5 particles nucleate ice depositionally, while at warmer temperatures (> ?50 °C) subsaturated immersion ice nucleation dominates. These experiments suggest that mineral dust particles may become less active towards ice nucleation as they age in the atmosphere.  相似文献   

7.
Surface-layer meteorological observations obtained from oceanic buoys over the Korean Strait and the Yellow Sea are used to estimate surface-layer turbulent fluxes of heat, moisture and momentum over the East-Asian Marginal Seas. Special emphasis is paid towards explanation of the impact of the Tsushima warm current flowing through the Korean Strait on air–sea interface fluxes. During the active phase of the Tsushima warm current, when the difference in sea surface temperature and air temperature becomes as large as 8°C, the sensible heat flux increases to a value of about 135 W m−2, while the latent heat flux is around 200 W m−2. The study attempts to broaden our understanding on the air-sea interaction processes over the Yellow Sea and Korean Strait.  相似文献   

8.
Climatic impacts of historical wetland drainage in Switzerland   总被引:1,自引:0,他引:1  
The effects of historical land-use and land-cover changes on the climate of the Swiss Plateau in the different seasons were investigated. In the 19th century, a civil engineering project was initiated to reshape the lake and river system on the Swiss Plateau in order to ban the frequent flooding during extreme weather events. The landscape modifications consisted primarily of a conversion of wetlands with extended peat soils into a highly productive agricultural landscape. Historical maps (1800–1850) served as a basis for the reconstruction of the past land use. The “Lokal-Modell” of the Consortium for Small-Scale Modelling was used to conduct eight one-month long high-resolution simulations (1.5 × 1.5 km2) with present and past landscape conditions. The modified soil and surface properties led to distinctly altered energy and moisture exchanges at the surface and as a consequence affected the local and regional climate. The climatic changes show different characteristics and magnitudes in the cold (October – March) as compared to the warm season (April – September). The landscape modifications led to an average daytime cooling between −0.12 °C (January) and −0.61 °C (April) and a night-time warming of 0.19 °C−0.34 °C. The differences in the mean monthly temperatures show a warming of 0.1 °C−0.2 °C in the cold season and a cooling of similar magnitude in most of the study area in the warm season. The modification of the radiation budget and the surface energy balance distinctly affected the convective activity in the study area in the warm season, but had only a weak effect on convectivity in the cold season. The cloud coverage in the warm season is therefore distinctly reduced compared to the past.  相似文献   

9.
This study quantifies the processes that take place in the layer between the mean building height and the measurement level of an energy balance micrometeorological tower located in the dense old core of a coastal European city. The contributions of storage, vertical advection, horizontal advection and radiative divergence for heat are evaluated with the available measurements and with a three-dimensional, high-resolution meteorological simulation that had been evaluated against observations. The study focused on a summer period characterized by sea-breeze flows that affect the city. In this specific configuration, it appears that the horizontal advection is the dominant term. During the afternoon when the sea breeze is well established, correction of the sensible heat flux with horizontal heat advection increases the measured sensible heat flux up to 100 W m−2. For latent heat flux, the horizontal moisture advection converted to equivalent latent heat flux suggests a decrease of 50 W m−2. The simulation reproduces well the temporal evolution and magnitude of these terms.  相似文献   

10.
Changes in mean temperature of the coldest (T c) and warmest month (T w), annual precipitation (P ann) and moisture index (α) were reconstructed from a continuous pollen record from Lake Baikal, Russia. The pollen sequence CON01-603-2 (53°57′N, 108°54′E) was recovered from a 386 m water depth in the Continent Ridge and dated to ca. 130–114.8 ky BP. This time interval covers the complete last interglacial (LI), corresponding to MIS 5e. Results of pollen analysis and pollen-based quantitative biome reconstruction show pronounced changes in the regional vegetation throughout the record. Shrubby tundra covered the area at the beginning of MIS 5e (ca. 130–128 ky), consistent with the end of the Middle Pleistocene glaciation. The late glacial climate was characterised by low winter and summer temperatures (T c ~ −38 to −35°C and T w~11–13°C) and low annual precipitation (P ann~300 mm). However, the wide spread of tundra vegetation suggests rather moist environments associated with low temperatures and evaporation (reconstructed α~1). Tundra was replaced by boreal conifer forest (taiga) by ca. 128 ky BP, suggesting a transition to the interglacial. Taiga-dominant phase lasted until ca. 117.4 ky BP, e.g. about 10 ky. The most favourable climate conditions occurred during the first half of the LI. P ann reached 500 mm soon after 128 ky BP. However, temperature changed more gradually. Maximum values of T c ~ −20°C and T w~16–17°C are reconstructed from about 126 ky BP. Conditions became gradually colder after ca. 121 ky BP. T c dropped to ~ −27°C and T w to ~15°C by 119.5 ky BP. The reconstructed increase in continentality was accompanied by a decrease in P ann to ~400–420 mm. However, the climate was still humid enough (α~0.9) to support growth of boreal evergreen conifers. A sharp turn towards a dry climate is reconstructed after ca. 118 ky BP, causing retreat of forest and spread of cool grass-shrub communities. Cool steppe dominated the vegetation in the area between ca. 117.5 ky and 114.8 ky BP, suggesting the end of the interglacial and transition to the last glacial (MIS 5d). Shift to the new glaciation was characterised by cool and very dry conditions with T c ~ −28 to −30°C, T w~14–15°C, P ann~250 mm and α~0.5.  相似文献   

11.
Results from large-eddy simulations and field measurements have previously shown that the velocity field is influenced by the boundary layer height, z i , during close to neutral, slightly unstable, atmospheric stratification. During such conditions the non-dimensional wind profile, φ m , has been found to be a function of both z/L and z i /L. At constant z/L, φ m decreases with decreasing boundary layer height. Since φ m is directly related to the parameterizations of the air–sea surface fluxes, these results will have an influence when calculating the surface fluxes in weather and climate models. The global impact of this was estimated using re-analysis data from 1979 to 2001 and bulk parameterizations. The results show that the sum of the global latent and sensible mean heat fluxes increase by 0.77 W m−2 or about 1% and the mean surface stress increase by 1.4 mN m−2 or 1.8% when including the effects of the boundary layer height in the parameterizations. However, some regions show a larger response. The greatest impact is found over the tropical oceans between 30°S and 30°N. In this region the boundary layer height influences the non-dimensional wind profile during extended periods of time. In the mid Indian Ocean this results in an increase of the mean annual heat fluxes by 2.0 W m−2 and an increase of the mean annual surface stress by 2.6 mN m−2.  相似文献   

12.
The introduced mathematical model takes into account the role of the kinetic fractionation effect in a supersaturation environment at the ice surface as liquid and solid phases coexist in mixed cloud. Using the model, the temperature effect of stable isotopes in precipitation is simulated under different cooling conditions. The rate of change of δ18O against temperature in the process of wet adiabatic cooling is smaller than in the process of isobaric cooling under the same humidity. The increasing supersaturation ratio at the ice surface, Si, leads to the strengthening of the kinetic fractionation effect. The kinetic fractionation function makes the synthesis fractionation factor decreased and the change of δ18O with temperature flatted, compared with that in the equilibrium state. The simulated results show that the slope parameter b and the intercept d of the meteoric water line (MWL), δD = bδ18O+d, in wet adiabatic cooling are both greater than those in isobaric cooling. The global MWL lies between the two MWLs simulated under wet adiabatic and isobaric cooling processes, respectively. The magnitudes of b and d are directly proportional to Si. The greater the Si, the stronger the kinetic fractionation effect, and thus the greater the b and d, and vice versa. However, b and d have low sensitivity to the liquid-water contents in the cloud. Using the kinetic fractionation model, the variation of stable isotopes in precipitation at Urumqi is simulated. The simulated stable isotopic ratio vs temperature and the δD vs δ18O curves are very consistent with the actual regressions and MWL at Uruimqi, respectively.  相似文献   

13.
The link between the sea-ice cover of the Amundsen Gulf and the overlying atmospheric boundary layer was explored on a weekly timestep from winter to summer 2008. The total sea-ice cover was around 97% (3% leads) from 7 January to 21 April. From 28 April to 12 May, the total sea-ice cover approached 100%. From May 19, the total sea-ice declined rapidly to its July minimum of 3%. During the winter, a turbulent internal boundary layer (IBL), attributed to the upward flux of sensible heat (mean = 46 W m−2), was present in most of the mean daily potential temperature profiles. The mean latent heat flux was 1.7 Wm−2. A turbulent IBL was also present in most of the mean daily profiles for early spring. Surface fluxes were not estimated. During late spring and early summer, a stable IBL, attributed to the downward flux of sensible heat (mean = −19 W m−2), was present in most of the potential temperature profiles. Both downward and upward fluxes of latent heat occurred in this period (means = −3.3 and 1.1 W m−2). The sensible heat flux estimates are consistent with the results of others; however, the latent heat flux estimates may be too small due to condensation/deposition within the IBL. The unconsolidated nature of the pack ice in the Amundsen Gulf, and the low sea-surface temperatures following break-up, were critical factors controlling the presence and type of IBL.  相似文献   

14.
Summary  Turbulent fluxes of CO2 were continuously measured by eddy correlation for three months in 1997 over a gramineous fen in a high-arctic environment at Zackenberg (74°28′12″N, 20°34′23″W) in NE-Greenland. The measurements started on 1 June, when there was still a 1–2 m cover of dry snow, and ended 26 August at a time that corresponds to late autumn at this high-arctic site. During the 20-day period with snow cover, fluxes of CO2 to the atmosphere were small, typically 0.005 mg CO2 m−2 s−1 (0.41 g CO2 m−2 d−1), wheres during the thawed period, the fluxes displayed a clear diurnal variation. During the snow-free period, before the onset of vegetation growth, fluxes of CO2 to the atmosphere were typically 0.1 mg CO2 m−2 s−1 in the afternoon, and daily sums reached values up to almost 9 g CO2 m−2 d−1. After 4 July, downward fluxes of CO2 increased, and on sunny days in the middle of the growing season, the net ecosystem exchange rates attained typical values of about −0.23 mg m−2 s−1 at midday and max values of daily sums of −12 g CO2 m−2 d−1. Throughout the measured period the fen ecosystem acted as a net-sink of 130 g CO2 m−2. Modelling the ecosystem respiration during the season corresponded well with eddy correlation and chamber measurements. On the basis of the eddy correlation data and the predicted respiration effluxes, an estimate of the annual CO2 balance the calender year 1997 was calculated to be a net-sink of 20 g CO2 m−2 yr−1. Received October 6, 1999 Revised May 2, 2000  相似文献   

15.
The results of one year’s monitoring in Srednja Bijambarska Cave (Bosnia and Herzegovina) are presented and discussed. Temporal variations of the carbon dioxide (CO2) concentration are controlled by the switching between two ventilation regimes driven by outside temperature changes. A regression model with a simple perfectly mixed volume applied to a cave sector (“Music hall”) resulted in an estimate of ventilation rates between 0.02 h−1 and 0.54 h−1. Carbon dioxide input per plan surface unit is estimated by the model at around 50 × 10−6 mh−1 during the winter season and up to more than 1000 × 10−6 mh−1 during the first temperature falls at the end of summer (0.62 μmoles m−2 s−1 and 12.40 μmoles m−2 s−1 for normal conditions respectively). These values have been found to be related to the cave ventilation rate and dependent on the availability of CO2 in the surrounding environment. For airflow close to zero the values of CO2 input per plan surface have a range in the order of magnitude of a few units × 10−6 mh−1. Based on two experiments, the anthropogenic contribution from cave visitors has been calculated, at between 0.35 lCO2 min−1 person−1 and 0.45 lCO2min−1person−1.  相似文献   

16.
2018年3月17日、27日,国产某型直升机在新疆五家渠地区成功完成2架次自然结冰试飞。利用NCEP/NCAR的1°×1°再分析资料、机测液态水含量资料结合常规气象资料,对2次结冰天气过程的天气环流形势、动力热力特征、液态水含量进行分析。结果表明:17日在高空冷涡、地面冷锋前的环流形势下,试飞高度层位于冷暖平流交汇处,温度为0~-4℃,比湿值为3~3.5 g/kg,处于强水汽辐合中心,并伴有弱上升运动,Ic积冰指数为20~30,云中液态水含量波动较大,飞机挂架上形成0.5 cm厚度的凇冰。27日在高空槽前和地面冷锋后的环流形势下,试飞高度层在弱冷平流中心附近,温度为0~-2℃,比湿值接近4.5 g/kg,处于弱水汽辐合中心边缘,伴有弱上升运动,Ic积冰指数为30~40,云中液态水含量稳定,飞机挂架上形成1~2 cm厚度的明冰。在气象保障中运用探空、云图、雷达、微波辐射计等资料有效预报了积冰区域及高度。  相似文献   

17.
Summary  Three cyclones developing between 28 August and 6 September 1995 were studied with respect to the temporal evolution of their water budget components. The cyclones were simulated with the regional model REMO. Water budget values were determined from hourly model output for circle areas with 500 km radius around the pressure minimum. The results show a maximum liquid water path of about 0.12 kg m−2 and a maximum ice water path of 0.16 kg m−2. In the vertical cloud structure the medium cloud layer disappears at the end of the life cycle for all three cyclones. The release of precipitation onto the Baltic Sea drainage basin is different for each cyclone. It lies between 13 and 22 · 1012 kg. This is about 50% of the total precipitation in the whole area for the strongest cyclone and 65% for the others. The P — E (precipitation minus evaporation) is 15 · 1012 kg for two of the cyclones and 10 · 1012 kg for the third one. Received August 7, 2000 Revised March 19, 2001  相似文献   

18.
In order to investigate Last Glacial Maximum and future climate, we “precalibrate” the intermediate complexity model GENIE-1 by applying a rejection sampling approach to deterministic emulations of the model. We develop ~1,000 parameter sets which reproduce the main features of modern climate, but not precise observations. This allows a wide range of large-scale feedback response strengths which generally encompass the range of GCM behaviour. We build a deterministic emulator of climate sensitivity and quantify the contributions of atmospheric (±0.93°C, 1σ) vegetation (±0.32°C), ocean (±0.24°C) and sea–ice (±0.14°C) parameterisations to the total uncertainty. We then perform an LGM-constrained Bayesian calibration, incorporating data-driven priors and formally accounting for structural error. We estimate climate sensitivity as likely (66% confidence) to lie in the range 2.6–4.4°C, with a peak probability at 3.6°C. We estimate LGM cooling likely to lie in the range 5.3–7.5°C, with a peak probability at 6.2°C. In addition to estimates of global temperature change, we apply our ensembles to derive LGM and 2xCO2 probability distributions for land carbon storage, Atlantic overturning and sea–ice coverage. Notably, under 2xCO2 we calculate a probability of 37% that equilibrium terrestrial carbon storage is reduced from modern values, so the land sink has become a net source of atmospheric CO2.  相似文献   

19.
The influence of the large-scale subsidence rate, S, on the stably stratified atmospheric boundary layer (ABL) over the Arctic Ocean snow/ice pack during clear-sky, winter conditions is investigated using a large-eddy simulation model. Simulations of two 24-h periods are conducted while varying S between 0, 0.001 and 0.002 ms−1, and the resulting quasi-equilibrium ABL structures and evolutions are examined. Simulations conducted with S = 0 yield a boundary layer that is deeper, more strongly mixed and cools more rapidly than the observations. Simulations conducted with S > 0 yield improved agreement with the observations in the ABL height, potential temperature gradients and bulk heating rates. We also demonstrate that S > 0 limits the continuous growth of the ABL observed during quasi-steady conditions, leading to the formation of a nearly steady ABL of approximately uniform depth and temperature. Subsidence reduces the magnitudes of the stresses, as well as the implied eddy-diffusivity coefficients for momentum and heat, while increasing the vertical heat fluxes considerably. Subsidence is also observed to increases the Richardson number to values in excess of unity well below the ABL top.  相似文献   

20.
Increased precipitation during the vegetation periods was observed in and further predicted for Inner Mongolia. The changes in the associated soil moisture may affect the biosphere-atmosphere exchange of greenhouse gases. Therefore, we set up an irrigation experiment with one watered (W) and one unwatered plot (UW) at a winter-grazed Leymus chinensis-steppe site in the Xilin River catchment, Inner Mongolia. UW only received the natural precipitation of 2005 (129 mm), whereas W was additionally watered after the precipitation data of 1998 (in total 427 mm). In the 3-hour resolution, we determined nitrous oxide (N20), methane (CH4) and carbon dioxide (CO2) fluxes at both plots between May and September 2005, using a fully automated, chamber-based measuring system. N20 fluxes in the steppe were very low, with mean emissions (±s.e.) of 0.9-4-0.5 and 0.7-4-0.5 μg N m^-2 h^-1 at W and UW, respectively. The steppe soil always served as a CH4 sink, with mean fluxes of -24.1-4-3.9 and -31.1-4- 5.3 μg C m^-2 h^-1 at W and UW. Nighttime mean CO2 emissions were 82.6±8.7 and 26.3±1.7 mg C m^-2 h^-1 at W and UW, respectively, coinciding with an almost doubled aboveground plant biomass at W. Our results indicate that the ecosystem CO2 respiration responded sensitively to increased water input during the vegetation period, whereas the effects on CH4 and N2O fluxes were weak, most likely due to the high evapotranspiration and the lack of substrate for N2O producing processes. Based on our results, we hypothesize that with the gradual increase of summertime precipitation in Inner Mongolia, ecosystem CO2 respiration will be enhanced and CH4 uptake by the steppe soils will be lightly inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号