首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
2.
3.
Multiple scattering is usually ignored in migration algorithms, although it is a genuine part of the physical reflection response. When properly included, multiples can add to the illumination of the subsurface, although their crosstalk effects are removed. Therefore, we introduce full‐wavefield migration. It includes all multiples and transmission effects in deriving an image via an inversion approach. Since it tries to minimize the misfit between modeled and observed data, it may be considered a full waveform inversion process. However, full‐wavefield migration involves a forward modelling process that uses the estimated seismic image (i.e., the reflectivities) to generate the modelled full wavefield response, whereas a smooth migration velocity model can be used to describe the propagation effects. This separation of modelling in terms of scattering and propagation is not easily achievable when finite‐difference or finite‐element modelling is used. By this separation, a more linear inversion problem is obtained. Moreover, during the forward modelling, the wavefields are computed separately in the incident and scattered directions, which allows the implementation of various imaging conditions, such as imaging reflectors from below, and avoids low‐frequency image artefacts, such as typically observed during reverse‐time migration. The full wavefield modelling process also has the flexibility to image directly the total data (i.e., primaries and multiples together) or the primaries and the multiples separately. Based on various numerical data examples for the 2D and 3D cases, the advantages of this methodology are demonstrated.  相似文献   

4.
Surface removal and internal multiple removal are explained by recursively separating the primary and multiple responses at each depth level with the aid of wavefield prediction error filtering. This causal removal process is referred to as “data linearization.” The linearized output (primaries only) is suitable for linear migration algorithms. Next, a summary is given on the migration of full wavefields (primaries + multiples) by using the concept of secondary sources in each subsurface gridpoint. These secondary sources are two‐way and contain the gridpoint reflection and the gridpoint transmission properties. In full wavefield migration, a local inversion process replaces the traditional linear imaging conditions. Finally, Marchenko redatuming is explained by iteratively separating the full wavefield response from above a new datum and the full wavefield response from below a new datum. The redatuming output is available for linear migration (Marchenko imaging) or, even better, for full wavefield migration. Linear migration, full wavefield migration, and Marchenko imaging are compared with each other. The principal conclusion of this essay is that multiples should not be removed, but they should be utilized, yielding two major advantages: (i) illumination is enhanced, particularly in the situation of low signal‐to‐noise primaries; and (ii) both the upper side and the lower side of reflectors are imaged. It is also concluded that multiple scattering algorithms are more transparent if they are formulated in a recursive depth manner. In addition to transparency, a recursive depth algorithm has the flexibility to enrich the imaging process by inserting prior geological knowledge or by removing numerical artefacts at each depth level. Finally, it is concluded that nonlinear migration algorithms must have a closed‐loop architecture to allow successful imaging of incomplete seismic data volumes (reality of field data).  相似文献   

5.
Borehole seismic addresses the need for high‐resolution images and elastic parameters of the subsurface. Full‐waveform inversion of vertical seismic profile data is a promising technology with the potential to recover quantitative information about elastic properties of the medium. Full‐waveform inversion has the capability to process the entire wavefield and to address the wave propagation effects contained in the borehole data—multi‐component measurements; anisotropic effects; compressional and shear waves; and transmitted, converted, and reflected waves and multiples. Full‐waveform inversion, therefore, has the potential to provide a more accurate result compared with conventional processing methods. We present a feasibility study with results of the application of high‐frequency (up to 60 Hz) anisotropic elastic full‐waveform inversion to a walkaway vertical seismic profile data from the Arabian Gulf. Full‐waveform inversion has reproduced the majority of the wave events and recovered a geologically plausible layered model with physically meaningful values of the medium.  相似文献   

6.
The state-of-the-art joint migration inversion faces the so-called amplitude-versus-offset challenge, due to adopting over-simplified one-way propagation, reflection and transmission operators to avoid over-parameterization in the inversion process. To overcome this challenge, we apply joint migration inversion to horizontally layered media (or 1.5-dimensional media) and parameterize the solution space via density and velocity models. In this scenario, one-way propagation, reflection and transmission operators required by the joint migration inversion process can be analytically and correctly derived from the subsurface models, so the amplitude-versus-offset challenge is successfully overcome. We introduce a new concept, which is named ‘inverse propagation’, into our 1.5-dimensional amplitude-versus-offset joint migration inversion. It can correctly reconstruct subsurface wavefields by using a surface-recorded receiver wavefield with all the influence of transmission, reflection and multiples accounted for. A synthetic example is used to demonstrate the correctness of the inverse propagation. This work is the foundation to further develop the 1.5-dimensional amplitude-versus-offset joint migration inversion technology.  相似文献   

7.
Wavefield reconstruction inversion (WRI) is an improved full waveform inversion theory that has been proposed in recent years. WRI method expands the searching space by introducing the wave equation into the objective function and reconstructing the wavefield to update model parameters, thereby improving the computing efficiency and mitigating the influence of the local minimum. However, frequency-domain WRI is difficult to apply to real seismic data because of the high computational memory demand and requirement of time-frequency transformation with additional computational costs. In this paper, wavefield reconstruction inversion theory is extended into the time domain, the augmented wave equation of WRI is derived in the time domain, and the model gradient is modified according to the numerical test with anomalies. The examples of synthetic data illustrate the accuracy of time-domain WRI and the low dependency of WRI on low-frequency information.  相似文献   

8.
Depth migration consists of two different steps: wavefield extrapolation and imaging. The wave propagation is firmly founded on a mathematical frame-work, and is simulated by solving different types of wave equations, dependent on the physical model under investigation. In contrast, the imaging part of migration is usually based on ad hoc‘principles’, rather than on a physical model with an associated mathematical expression. The imaging is usually performed using the U/D concept of Claerbout (1971), which states that reflectors exist at points in the subsurface where the first arrival of the downgoing wave is time-coincident with the upgoing wave. Inversion can, as with migration, be divided into the two steps of wavefield extrapolation and imaging. In contrast to the imaging principle in migration, imaging in inversion follows from the mathematical formulation of the problem. The image with respect to the bulk modulus (or velocity) perturbations is proportional to the correlation between the time derivatives of a forward-propagated field and a backward-propagated residual field (Lailly 1984; Tarantola 1984). We assume a physical model in which the wave propagation is governed by the 2D acoustic wave equation. The wave equation is solved numerically using an efficient finite-difference scheme, making simulations in realistically sized models feasible. The two imaging concepts of migration and inversion are tested and compared in depth imaging from a synthetic offset vertical seismic profile section. In order to test the velocity sensitivity of the algorithms, two erroneous input velocity models are tested. We find that the algorithm founded on inverse theory is less sensitive to velocity errors than depth migration using the more ad hoc U/D imaging principle.  相似文献   

9.
时间二阶积分波场的全波形反演   总被引:4,自引:4,他引:0       下载免费PDF全文
陈生昌  陈国新 《地球物理学报》2016,59(10):3765-3776
通过对波场的时间二阶积分运算以增强地震数据中的低频成分,提出了一种可有效减小对初始速度模型依赖性的地震数据全波形反演方法—时间二阶积分波场的全波形反演方法.根据散射理论中的散射波场传播方程,推导出时间二阶积分散射波场的传播方程,再利用一阶Born近似对时间二阶积分散射波场传播方程进行线性化.在时间二阶积分散射波场传播方程的基础上,利用散射波场反演地下散射源分布,再利用波场模拟的方法构建地下入射波场,然后根据时间二阶积分散射波场线性传播方程中散射波场与入射波场、速度扰动间的线性关系,应用类似偏移成像的公式得到速度扰动的估计,以此建立时间二阶积分波场的全波形迭代反演方法.最后把时间二阶积分波场的全波形反演结果作为常规全波形反演的初始模型可有效地减小地震波场全波形反演对初始模型的依赖性.应用于Marmousi模型的全频带合成数据和缺失4Hz以下频谱成分的缺低频合成数据验证所提出的全波形反演方法的正确性和有效性,数值试验显示缺失4Hz以下频谱成分数据的反演结果与全频带数据的反演结果没有明显差异.  相似文献   

10.
Using both image and data domains to perform velocity inversion can help us resolve the long and short wavelength components of the velocity model, usually in that order. This translates to integrating migration velocity analysis into full waveform inversion. The migration velocity analysis part of the inversion often requires computing extended images, which is expensive when using conventional methods. As a result, we use pre‐stack wavefield (the double‐square‐root formulation) extrapolation, which includes the extended information (subsurface offsets) naturally, to make the process far more efficient and stable. The combination of the forward and adjoint pre‐stack wavefields provides us with update options that can be easily conditioned to improve convergence. We specifically use a modified differential semblance operator to split the extended image into a residual part for classic differential semblance operator updates and the image (Born) modelling part, which provides reflections for higher resolution information. In our implementation, we invert for the velocity and the image simultaneously through a dual objective function. Applications to synthetic examples demonstrate the features of the approach.  相似文献   

11.
A crucial point in the processing of 3D seismic data is the migration step, both because of its 3D nature and the computational cost involved. The efficiency and accuracy of 3D migration are determined by the wavefield extrapolation technique employed. Wavefield extrapolation based on second-order differential operators of variable-length is very efficient and accurate at the same time. Compared to migration based on the McClellan transform and operator splitting, the use of variable-length second-order differential operators offers significant advantages. The 3D migration operator has an almost perfect circular symmetry. No positioning errors in the 45° azimuth between the in-line and cross-line directions are evident. The method is, in practice, only limited by spatial aliasing and does not require expensive interpolation of data to reduce numerical artifacts. This reduces the computational cost of 3D one-pass depth migration by a large factor.  相似文献   

12.
The estimation of a velocity model from seismic data is a crucial step for obtaining a high‐quality image of the subsurface. Velocity estimation is usually formulated as an optimization problem where an objective function measures the mismatch between synthetic and recorded wavefields and its gradient is used to update the model. The objective function can be defined in the data‐space (as in full‐waveform inversion) or in the image space (as in migration velocity analysis). In general, the latter leads to smooth objective functions, which are monomodal in a wider basin about the global minimum compared to the objective functions defined in the data‐space. Nonetheless, migration velocity analysis requires construction of common‐image gathers at fixed spatial locations and subsampling of the image in order to assess the consistency between the trial velocity model and the observed data. We present an objective function that extracts the velocity error information directly in the image domain without analysing the information in common‐image gathers. In order to include the full complexity of the wavefield in the velocity estimation algorithm, we consider a two‐way (as opposed to one‐way) wave operator, we do not linearize the imaging operator with respect to the model parameters (as in linearized wave‐equation migration velocity analysis) and compute the gradient of the objective function using the adjoint‐state method. We illustrate our methodology with a few synthetic examples and test it on a real 2D marine streamer data set.  相似文献   

13.
Wave-equation migration velocity analysis. I. Theory   总被引:2,自引:0,他引:2  
We present a migration velocity analysis (MVA) method based on wavefield extrapolation. Similarly to conventional MVA, our method aims at iteratively improving the quality of the migrated image, as measured by the flatness of angle‐domain common‐image gathers (ADCIGs) over the aperture‐angle axis. However, instead of inverting the depth errors measured in ADCIGs using ray‐based tomography, we invert ‘image perturbations’ using a linearized wave‐equation operator. This operator relates perturbations of the migrated image to perturbations of the migration velocity. We use prestack Stolt residual migration to define the image perturbations that maximize the focusing and flatness of ADCIGs. Our linearized operator relates slowness perturbations to image perturbations, based on a truncation of the Born scattering series to the first‐order term. To avoid divergence of the inversion procedure when the velocity perturbations are too large for Born linearization of the wave equation, we do not invert directly the image perturbations obtained by residual migration, but a linearized version of the image perturbations. The linearized image perturbations are computed by a linearized prestack residual migration operator applied to the background image. We use numerical examples to illustrate how the backprojection of the linearized image perturbations, i.e. the gradient of our objective function, is well behaved, even in cases when backprojection of the original image perturbations would mislead the inversion and take it in the wrong direction. We demonstrate with simple synthetic examples that our method converges even when the initial velocity model is far from correct. In a companion paper, we illustrate the full potential of our method for estimating velocity anomalies under complex salt bodies.  相似文献   

14.
大步长波场深度延拓的理论   总被引:23,自引:4,他引:19       下载免费PDF全文
波场延拓是地震偏移成像的基础. 快速进行目标区波场延拓对石油勘探中急需发展的深部地震勘探和无组合海量地震数据的成像有重要意义. 在目标区成像中,目前已有的波场延拓方法,包括基于走时计算的Dix方法和射线追踪方法,以及基于小步长波场递推的方法,在适应复杂介质、计算精度和计算效率的某一方面还不能完全满足实际需要. 本文提出一种基于“算子相位”李代数积分的快速计算延拓算子的方法,称为大步长波场延拓方法. 在该方法中,指向目标区的波场延拓算子象征的复相位被表示成波数的线性组合. 线性组合的系数是层速度函数及其导数的深度积分,计算和存储较为方便. 波场延拓算子通过相移算子加校正的方法,利用快速Fourier变换在空间域和波数域予以实现. 利用动力学等价关系导出了便于计算的表达式. 本文比较了算子主象征函数用一步法展开和用两步法展开的精度,从而说明大步长方法的精度要高于递推方法. 在横向和纵向线性变化介质中,将大步长方法的脉冲响应与递推法做了比较,说明大步长延拓算子的走时精度主要取决于相移因子中的横向变速校正项;且在各种近似下,大步长算子发生的频散都非常小.  相似文献   

15.
重磁电震联合反演研究进展与展望   总被引:6,自引:3,他引:6       下载免费PDF全文
重磁电震等地球物理勘探成果的联合反演是解决复杂地质问题所用的综合地球物理解释方法,是目前可信的定量的综合地球物理解释技术,是联合应用多种地球物理信息,通过反演地质体的岩石物性和几何参数来求得同一个地下地质和地球物理模型的技术.本文综述了从上世纪80年代以来,地球物理场联合反演技术取得的长足发展,主要表现在两个方面:一是在地球物理场综合应用基础上,发展了两两地球物理参数之间互为约束的反演的技术,二是是反映了联合反演计算方法的进步,如线性与非线性反演比较、反演方法选择等.综述了联合反演的思路与对策,提出了联合反演的发展方向.  相似文献   

16.
全波形反演是一种高精度的反演方法,其目标函数是一个强非线性函数,易受局部极值影响,而且反演过程计算量较大.波场重构反演是近几年提出的一种改进的全波形反演理论.该反演方法通过将波动方程作为惩罚项引入到目标函数中,通过拓宽解的寻找空间减弱了局部极小值的影响,而且反演过程不需要计算伴随波场,提高了计算效率.但该反演方法一直缺少准确的惩罚因子算法,直接影响到该方法的准确度.本文将波场重构反演拓展到时间域并利用梯度法进行波场重构.频率域的惩罚因子用来加强波动方程的约束,而时间域惩罚因子表现为调节模拟波场和实际波场的权重因子.为此,我们根据约束优化理论,在波动方程准确以及重构波场与反演参数解耦的假设下,提出以波动方程为目标函数的新的惩罚因子算法.根据波形反演在应用时普遍存在的噪音干扰、子波错误和低频信息缺失的情况下,应用部分Sigsbee2A模型合成数据对本文提出的算法进行实验.数值实验结果表明:基于新的惩罚因子算法,在其他信息不准确的情况下,波场重构反演可以给出高精度的反演结果.  相似文献   

17.
应用多分量地震资料进行成像时通常需要先做波场分离,然后再对分离的波型进行成像。其中,波场分离可以在空间域或波数域实现。然而,由于用交错网格有限差分进行弹性波场数值模拟时,用来进行波数域波场分离的质点振动速度分量定义在不同网格节点上,本文提出了利用波数域插值方法来估算同一网格节点所需质点振动速度值;进而给出了先进行波数域插值后进行波场分离的波数域保幅波场分离方案。数值实验结果表明波数域插值方法具有较高的插值精度且保幅波场分离方法具有较好的保幅性,将本文方法进一步应用于弹性波逆时偏移可以获得保幅性较好的成像结果且对存在一定程度速度误差情况具有较好的适应性。  相似文献   

18.
Migration velocity analysis and waveform inversion   总被引:3,自引:0,他引:3  
Least‐squares inversion of seismic reflection waveform data can reconstruct remarkably detailed models of subsurface structure and take into account essentially any physics of seismic wave propagation that can be modelled. However, the waveform inversion objective has many spurious local minima, hence convergence of descent methods (mandatory because of problem size) to useful Earth models requires accurate initial estimates of long‐scale velocity structure. Migration velocity analysis, on the other hand, is capable of correcting substantially erroneous initial estimates of velocity at long scales. Migration velocity analysis is based on prestack depth migration, which is in turn based on linearized acoustic modelling (Born or single‐scattering approximation). Two major variants of prestack depth migration, using binning of surface data and Claerbout's survey‐sinking concept respectively, are in widespread use. Each type of prestack migration produces an image volume depending on redundant parameters and supplies a condition on the image volume, which expresses consistency between data and velocity model and is hence a basis for velocity analysis. The survey‐sinking (depth‐oriented) approach to prestack migration is less subject to kinematic artefacts than is the binning‐based (surface‐oriented) approach. Because kinematic artefacts strongly violate the consistency or semblance conditions, this observation suggests that velocity analysis based on depth‐oriented prestack migration may be more appropriate in kinematically complex areas. Appropriate choice of objective (differential semblance) turns either form of migration velocity analysis into an optimization problem, for which Newton‐like methods exhibit little tendency to stagnate at nonglobal minima. The extended modelling concept links migration velocity analysis to the apparently unrelated waveform inversion approach to estimation of Earth structure: from this point of view, migration velocity analysis is a solution method for the linearized waveform inversion problem. Extended modelling also provides a basis for a nonlinear generalization of migration velocity analysis. Preliminary numerical evidence suggests a new approach to nonlinear waveform inversion, which may combine the global convergence of velocity analysis with the physical fidelity of model‐based data fitting.  相似文献   

19.
It is important to include the viscous effect in seismic numerical modelling and seismic migration due to the ubiquitous viscosity in an actual subsurface medium. Prestack reverse‐time migration (RTM) is currently one of the most accurate methods for seismic imaging. One of the key steps of RTM is wavefield forward and backward extrapolation and how to solve the wave equation fast and accurately is the essence of this process. In this paper, we apply the time‐space domain dispersion‐relation‐based finite‐difference (FD) method for visco‐acoustic wave numerical modelling. Dispersion analysis and numerical modelling results demonstrate that the time‐space domain FD method has great accuracy and can effectively suppress numerical dispersion. Also, we use the time‐space domain FD method to solve the visco‐acoustic wave equation in wavefield extrapolation of RTM and apply the source‐normalized cross‐correlation imaging condition in migration. Improved imaging has been obtained in both synthetic and real data tests. The migration result of the visco‐acoustic wave RTM is clearer and more accurate than that of acoustic wave RTM. In addition, in the process of wavefield forward and backward extrapolation, we adopt adaptive variable‐length spatial operators to compute spatial derivatives to significantly decrease computing costs without reducing the accuracy of the numerical solution.  相似文献   

20.
基于L2范数的常规全波形反演目标函数是一个强非线性泛函,在反演过程中容易陷入局部极小值.本文提出归一化能量谱目标函数来缓解全波形反演过程中的强非线性问题,同时能够有效地缓解噪声和震源子波不准等因素的影响.能量谱目标函数是通过匹配观测数据与模拟数据随频率分布的能量信息来实现最小二乘反演的,其忽略了地震数据波形与相位变化的细节特征,这在反演的过程中能够有效缓解波形匹配错位等问题.数值测试结果表明,基于归一化能量谱目标函数在构建初始速度模型、抗噪性和缓解震源子波依赖等方面都优于归一化全波形反演目标函数.金属矿模型测试结果表明,即使地震数据缺失低频分量,基于归一化能量谱目标函数的全波形反演方法在像金属矿这样的强散射介质反演问题上同样具有一定的优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号