首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specific features of the amplification and mutual transformation of wave modes in a linear regime have been revealed based on an analysis of the numerical solution to the set of equations describing the interaction of the magnetized Rossby wave and the inertial wave with the spatially inhomogeneous zonal wind (shear flow) in the ionospheric D, E, and F regions. It has been established that the presence of the geomagnetic field and Hall and Pedersen currents in the ionosphere improves the interaction and energy exchange between the waves and shear flow.  相似文献   

2.
The dispersion and transport of single inertial particles through an oscillatory turbulent aquatic environment are examined numerically by a Lagrangian particle tracking model using a series of idealised test cases. The turbulent mixing is incorporated into the Lagrangian model by the means of a stochastic scheme in which the inhomogeneous turbulent quantities are governed by a one-dimensional k- ε turbulence closure scheme. This vertical mixing model is further modified to include the effects of surface gravity waves including Coriolis-Stokes forcing, wave breaking, and Langmuir circulations. To simplify the complex interactions between the deterministic and the stochastic phases of flow, we assume a time-invariant turbulent flow field and exclude the hydrodynamic biases due to the effects of ambient mean current. The numerical results show that the inertial particles acquire perturbed oscillations traced out as time-varying sinking/rising orbits in the vicinity of the sea surface under linear and cnoidal waves and acquire a non-looping single arc superimposed with the high-frequency fluctuations beneath the nonlinear solitary waves. Furthermore, we briefly summarise some recipes through the course of this paper on the implementation of the stochastic particle tracking models to realistically describe the drift and suspension of inertial particles throughout the water column.  相似文献   

3.
In this work, the results of comparative analysis of morphological regularities of right-polarized (R type) and left-polarized (L type) isolated bursts of ipcl pulsations (irregular pulsations continuous long period) with an anomalously large amplitude in the region of the daytime polar cusp, as well as conditions of their excitation, are presented. It has been found that R and L bursts are similar in the maximum amplitude level, wave packet duration, spectral composition, magnitude of ellipticity, diurnal variation shape, and other characteristics. At the same time, bursts of the R and L type are excited at different degrees of plasma turbulence in the generation region, at different IMF orientations in the plane of ecliptic, as well as in the plane perpendicular to it, and at different dynamics of the parameter β (characterizing the ratio of the thermal pressure to the magnetic pressure) and Alfvén Mach number Ma. It is supposed that the generation of isolated bursts of the R and L types can be related to the amplification of the plasma turbulence level due to the development of wind instability at the front boundary of the magnetosphere, and features of their polarization can be interpreted in the scope of the model of nonlinear propagation of Alfvén waves.  相似文献   

4.
The observation of extreme waves at FINO 1 during storm Britta on the 1st November 2006 has initiated a series of research studies regarding the mechanisms behind. The roles of stability and the presence of the open cell structures have been previously investigated but not conclusive. To improve our understanding of these processes, which are essential for a good forecast of similarly important events offshore, this study revisits the development of storm Britta using an atmospheric and wave coupled modeling system, wind and wave measurements from ten stations across the North Sea, cloud images and Synthetic Aperture Radar (SAR) data. It is found here that a standard state-of-the-art model is capable of capturing the important characteristics of a major storm like Britta, including the storm path, storm peak wind speed, the open cells, and peak significant wave height (H s ) for open sea. It was also demonstrated that the impact of the open cells has negligible contribution to the development of extreme H s observed at FINO 1. At the same time, stability alone is not sufficient in explaining the development of extreme H s . The controlling conditions for the development of Britta extreme H s observed at FINO 1 are the persistent strong winds and a long and undisturbed fetch over a long period.  相似文献   

5.
A numerical study is conducted to investigate the impact of climate changes on ocean surface gravity waves over the eastern Canadian shelf (ECS). The “business-as-usual” climate scenario known as Representative Concentration Pathway RCP8.5 is considered in this study. Changes in the ocean surface gravity waves over the study region for the period 1979–2100 are examined based on 3 hourly ocean waves simulated by the third-generation ocean wave model known as WAVEWATCHIII. The wave model is driven by surface winds and ice conditions produced by the Canadian Regional Climate Model (CanRCM4). The whole study period is divided into the present (1979–2008), near future (2021–2050) and far future (2071–2100) periods to quantify possible future changes of ocean waves over the ECS. In comparison with the present ocean wave conditions, the time-mean significant wave heights (H s ) are expected to increase over most of the ECS in the near future and decrease over this region in the far future period. The time-means of the annual 5% largest H s are projected to increase over the ECS in both near and far future periods due mainly to the changes in surface winds. The future changes in the time-means of the annual 5% largest H s and 10-m wind speeds are projected to be twice as strong as the changes in annual means. An analysis of inverse wave ages suggests that the occurrence of wind seas is projected to increase over the southern Labrador and central Newfoundland Shelves in the near future period, and occurrence of swells is projected to increase over other areas of the ECS in both the near and far future periods.  相似文献   

6.
Simultaneous observations of high-latitude long-period irregular pulsations at frequencies of 2.0–6.0 mHz (ipcl) and magnetic field disturbances in the solar wind plasma at low geomagnetic activity (Kp ~ 0) have been studied. The 1-s data on the magnetic field registration at Godhavn (GDH) high-latitude observatory and the 1-min data on the solar wind plasma and IMF parameters for 2011–2013 were used in an analysis. Ipcl (irregular pulsations continuous, long), which were observed against a background of the IMF Bz reorientation from northward to southward, have been analyzed. In this case other solar wind plasma and IMF parameters, such as velocity V, density n, solar wind dynamic pressure P = ρV2 (ρ is plasma density), and strength magnitude B, were relatively stable. The effect of the IMF Bz variation rate on the ipcl spectral composition and intensity has been studied. It was established that the ipcl spectral density reaches its maximum (~10–20 min) after IMF Bz sign reversal in a predominant number of cases. It was detected that the ipcl average frequency (f) is linearly related to the IMF Bz variation rate (ΔBzt). It was shown that the dependence of f on ΔBzt is controlled by the α = arctan(By/Bx) angle value responsible for the MHD discontinuity type at the front boundary of magnetosphere. The results made it possible to assume that the formation of the observed ipcl spectrum, which is related to the IMF Bz reorientation, is caused by solar wind plasma turbulence, which promotes the development of current sheet instability and surface wave amplification at the magnetopause.  相似文献   

7.
We consider a transversely isotropic medium with vertical axis of symmetry (VTI). Rayleigh wave displacement components in a homogeneous VTI medium contain exp(±krjz), where z is the vertical coordinate, k is the wave number, and j?=?1, 2; rj may be considered as depth-decay factor. In a VTI medium, rj can be a real or imaginary as in an isotropic medium, or it can be a complex depending on the elastic parameters of the VTI medium; if complex, r1 and r2 are complex conjugates. In a homogeneous VTI half space, Rayleigh wave displacement is significantly modified with a phase shift when rj changes from real to complex with variation of VTI parameters; at the transition, the displacement becomes zero when r1?=?r2. In a liquid layer over a VTI half space, Rayleigh waves are dispersive. Here, also Rayleigh wave displacement significantly modified with a phase shift when rj changes from real to complex with a decrease of period. At very low period, phase velocity of Rayleigh waves becomes less than P-wave velocity in the liquid layer giving rise to Scholte waves (interface waves). The amplitudes of Scholte waves with a VTI half space are found to be significantly larger than those with an isotropic half space.  相似文献   

8.
Wave breaking and wave runup/rundown have a major influence on nearshore hydrodynamics, morphodynamics and beach evolution. In the case of wave breaking, there is significant mixing of air and water at the wave crest, along with relatively high kinetic energy, so prediction of the free surface is complicated. Most hydrodynamic studies of surf and swash zone are derived from single-phase flow, in which the role of air is ignored. Two-phase flow modeling, consisting of both phases of water and air, may be a good alternative numerical modeling approach for simulating nearshore hydrodynamics and, consequently, sediment transport. A two-phase flow tool can compute more realistically the shape of the free surface, while the effects of air are accounted for. This paper used models based on two-dimensional, two-phase Reynolds-averaged Navier–Stokes equations, the volume-of-fluid surface capturing technique and different turbulence closure models, i.e., kε, kω and re-normalized group (RNG). Our numerical results were compared with the available experimental data. Comparison of the employed method with a model not utilizing a two-phase flow modeling demonstrates that including the air phase leads to improvement in simulation of wave characteristics, especially in the vicinity of the breaking point. The numerical results revealed that the RNG turbulence model yielded better predictions of nearshore zone hydrodynamics, although the kε model also gave satisfactory predictions. The model provides new insights for the wave, turbulence and means flow structure in the surf and swash zones.  相似文献   

9.
An alternative model for the nonlinear interaction term Snl in spectral wave models, the so called generalized kinetic equation (Janssen J Phys Oceanogr 33(4):863–884, 2003; Annenkov and Shrira J Fluid Mech 561:181–207, 2006b; Gramstad and Stiassnie J Fluid Mech 718:280–303, 2013), is discussed and implemented in the third generation wave model WAVEWATCH-III. The generalized kinetic equation includes the effects of near-resonant nonlinear interactions, and is therefore able, in theory, to describe faster nonlinear evolution than the existing forms of Snl which are based on the standard Hasselmann kinetic equation (Hasselmann J Fluid Mech 12:481–500, 1962). Numerical simulations with WAVEWATCH have been carried out to thoroughly test the performance of the new form of Snl, and to compare it to the existing models for Snl in WAVEWATCH; the DIA and WRT. Some differences between the different models for Snl are observed. As expected, the DIA is shown to perform less well compared to the exact terms in certain situations, in particular for narrow wave spectra. Also for the case of turning wind significant differences between the different models are observed. Nevertheless, different from the case of unidirectional waves where the generalized kinetic equation represents a obvious improvement to the standard forms of Snl (Gramstad and Stiassnie 2013), the differences seems to be less pronounced for the more realistic cases considered in this paper.  相似文献   

10.
A spectral analysis of simultaneous diurnal variations in the E z component of the quasi-static electric field in the near-Earth atmosphere, VLF radio noise, and the horizontal component of the geomagnetic field, observed at Kamchatka in September 1999, has been performed. These geophysical parameters are indirectly used to study wave processes in the near-Earth atmosphere and in the ionospheric D and dynamo regions within the band of periods of internal gravity waves (T = 0.5?3.5 h). The correlation method in the frequency region is used to analyze the interrelation between the wave processes in these atmospheric regions. The power cross-spectra of various pairs of geophysical parameters have been studied depending on meteorological, seismic, and geomagnetic activities. It is shown that the oscillations in the power spectra in the T ~ 1–1.5 h band of periods are caused by the sources of internal gravity waves in the near-Earth atmosphere and by the remote sources above the dynamo region of the ionosphere within the T ~ 1.5–3 h band of periods.  相似文献   

11.
A recently proposed model of foam impact on the air–sea drag coefficient C d has been employed for the estimation of the effective foam-bubble radius R b variation with wind speed U10 in hurricane conditions. The model relates C d (U10) with the effective roughness length Z eff (U10) represented as a sum of aerodynamic roughness lengths of the foam-free and foam-covered sea surfaces Z w (U10) and Z f (U10) weighted with the foam coverage coefficient α f (U10). This relation is treated for known phenomenological distributions C d (U10), Z w (U10), and α f (U10) at strong wind speeds as an inverse problem for the effective roughness parameter of foam-covered sea surface Z f (U10). The present study is aimed at the estimation of the effective roughness of the sea surface assuming that the measurement data for the effective drag coefficient are known. The effective foam-bubble size is found as a function of the wind speed.  相似文献   

12.
Bubble size distribution in surface wave breaking entraining process   总被引:1,自引:0,他引:1  
From the similarity theorem, an expression of bubble population is derived as a function of the air en-trainment rate, the turbulent kinetic energy (TKE) spectrum density and the surface tension. The bubble size spectrum that we obtain has a dependence of a?2.5 nd on the bubble radius, in which nd is positive and dependent on the form of TKE spectrum within the viscous dissipation range. To relate the bubble population with wave parameters, an expression about the air entrainment rate is deduced by intro-ducing two statistical relations to wave breaking. The bubble population vertical distribution is also derived, based on two assumptions from two typical observation results.  相似文献   

13.
Parameters of the interplanetary magnetic field and solar wind plasma during periods of 163 isolated substorms have been studied. It is shown that the solar wind velocity V and plasma density N remain approximately constant for at least 3 h before substorm onset Т o and 1 h after Т o . On average, the velocity of the solar wind exhibits a stable trend toward anticorrelation with its density over the whole data array. However, the situation is different if the values of V and N are considered with respect to the intensity of substorms observed during that period. With the growth of substorm intensity, quantified as the maximum absolute value of AL index, an increase in both the solar wind plasma velocity and density, at which these substorms appear, is obsreved. It has been found that the magnitude of the solar wind dynamic pressure P is closely related to the magnetosphere energy load defined as averaged values of the Kan–Lee electric field EKL and Newell parameter dΦ/dt averaged for 1 h interval before Т o . The growth of the dynamic pressure is accompanied by an increase in the load energy necessary for substorm generation. This interrelation between P and values of EKL and dΦ/dt is absent in other, arbitrarily chosen periods. It is believed that the processes accompanying increasing dynamic pressure of the solar wind result in the formation of magnetosphere conditions that increasingly impede substorm generation. Thus, the larger is P, the more solar wind energy must enter the Earth’s magnetosphere during the period of the growth phase for substorm generation. This energy is later released during the period of the substorm expansion phase and creates even more intense magnetic bays.  相似文献   

14.
Presently, there are a lot of observations on the significant impact of strong remote earthquakes on underground water and local seismicity. Teleseismic wave trains of strong earthquakes give rise to several hydraulic effects in boreholes, namely permanent water level changes and water level oscillations, which closely mimic the seismograms (hydro-seismograms). Clear identical anomalies in the deep borehole water levels have been observed on a large part of the territory of Georgia during passing of the S and Love–Rayleigh teleseismic waves (including also multiple surface Rayleigh waves) of the 2011 Tohoku M9 earthquake. The analysis carried out in order to find dynamically triggered events (non-volcanic tremors) of the Tohoku earthquake by the accepted methodology has not revealed a clear tremor signature in the test area: the Caucasus and North Turkey. The possible mechanisms of some seismic signals of unknown origin observed during passage of teleseismic waves of Tohoku earthquake are discussed.  相似文献   

15.
Intense quasimonchromatic geomagnetic pulsations with a period of ~15 min, observed on the Earth’s surface in the near-noon sector at the beginning of the recovery phase of a very strong (Dst min = ?260 nT) magnetic storm of May 15, 2005, are analyzed. The variations were registered at auroral latitudes only in the X field component, and wave activity shifted into the postnoon sector of the polar cap an hour later; in this case pulsations were observed in the X and Y field components. Within the magnetosphere the source of magnetic pulsations could be the surface waves on the magnetopause caused by the pulse of the solar wind magnetic pressure. Geomagnetic pulsations in the polar cap, observed in phase at different latitudes, could apparently reflect quasiperiodic variations in the NBZ system of field-aligned currents. Such variations can originate due to the series of pulsed reconnections in the postnoon outer cusp at large (~20 nT) positive B z values and large (about ?40 nT) negative values of IMF B x .  相似文献   

16.
The regularities of the variations in the IMF B z component have been studied based on the data on the solar wind streams and their solar sources. Isolated solar wind streams such as magnetic clouds and shock layers before them, undisturbed heliospheric current sheets (HCSs), leading edges and bodies of high-speed streams from coronal holes (HSSs from CHs) have been considered. It has been revealed that each type of isolated streams in the interplanetary medium has it own features in the variations in the value and direction of the B z component related to the stream immanent properties and conditions of propagation in the interplanetary plasma. The appearance of the southward B z component is obligatory for all these streams which are, therefore, geoeffective.  相似文献   

17.
ADCP and temperature chain measurements have been used to estimate the rate of energy input by wind stress to the water surface in the south basin of Windermere. The energy input from the atmosphere was found to increase markedly as the lake stratified in spring. The efficiency of energy transfer (Eff), defined as the ratio of the rate of working in near-surface waters (RW) to that above the lake surface (P 10), increased from ~0.0013 in vertically homogenous conditions to ~0.0064 in the first 40 days of the stratified regime. A maximum value of Eff~0.01 was observed when, with increasing stratification, the first mode internal seiche period decreased to match the diurnal wind period of 24 h. The increase in energy input, following the onset of stratification was reflected in enhancement of the mean depth-varying kinetic energy without a corresponding increase in wind forcing. Parallel estimates of energy dissipation in the bottom boundary layer, based on determination of the structure function show that it accounts for ~15% of RW in stratified conditions. The evolution of stratification in the lake conforms to a heating stirring model which indicates that mixing accounts for ~21% of RW. Taken together, these estimates of key energetic parameters point the way to the development of full energy budgets for lakes and shallow seas.  相似文献   

18.
Turbulence measurements were collected in the bottom boundary layer of the California inner shelf near Point Sal, CA, for 2 months during summer 2015. The water column at Point Sal is stratified by temperature, and internal bores propagate through the region regularly. We collected velocity, temperature, and turbulence data on the inner shelf at a 30-m deep site. We estimated the turbulent shear production (P), turbulent dissipation rate (ε), and vertical diffusive transport (T), to investigate the near-bed local turbulent kinetic energy (TKE) budget. We observed that the local TKE budget showed an approximate balance (P?≈?ε) during the observational period, and that buoyancy generally did not affect the TKE balance. On a finer resolution timescale, we explored the balance between dissipation and models for production and observed that internal waves did not affect the balance in TKE at this depth.  相似文献   

19.
Actual evapotranspiration(ET_a) over the Tibetan Plateau(TP) is an important component of the water cycle,and greatly influences the water budgets of the TP lake basins.Quantitative estimation of ET_a within lake basins is fundamental to physically understanding ET_a changes,and thus will improve the understanding of the hydro logical processes and energy balance throughout the lake basins.In this study,the spatiotemporal dynamic changes of ET_α within the Lake Selin Co(the TP's largest lake) and its surrounding small lakes and land area during 2003-2012 are examined at the basin scale.This was carried out using the well-established Water and Energy Budget-based Distributed Hydrological Model(WEB-DHM) for the land area,the Penman method for the water area when unfrozen,and a simple sublimation estimation approach for the water area when frozen.The relationships between ET_a changes and controlling factors are also discussed.Results indicate that the simulated land ET_a from the WEB-DHM reasonably agrees with the estimated ET_a values from the nonlinear complementary relationship model using appropriately calibrated parameter values at a point scale.Land ET_a displayed a non-significant increase of 7.03 mm year~(-1),and largely depends on precipitation.For the water area,the combined effects of reduced wind speed and net radiation offset the effect of rising temperature and vapor pressure deficit,and contributed to a non-significant decrease in evaporation of 4.17 mm year~(-1).Sensitivity analysis shows that vapor pressure deficit and wind speed are the most sensitive variables to the changes of evaporation from the water area.  相似文献   

20.
The dynamics of wave disturbances in the ionospheric E region in the band of periods of thermal tidal waves and waves of planetary scales (T = 48, 72, and 192 h) has been studied based on the variations in the horizontal component of the geomagnetic field, observed at Paratunka and Barrow observatories in September–October 1999. It has been found that, at midlatitudes during high geomagnetic activity, the intensity of oscillations in the power spectra with T = 24 and 12 h varies with a periodicity of 16 days different from the periodicity of changes in the ΣKp index. The maximal deviations of these periods from the values under quiet conditions coincide with the maximal changes in the ΣKp index. The variations in the 48–192 h band of periods (especially with T ~192 h) intensify simultaneously with increasing geomagnetic activity. The intensity of this harmonic is several times as high as that of the harmonic with T ~ 24 h. The periodicity of changes in the harmonics intensity within the 48–192 h band coincides with the periodicity of changes in the ΣKp index. In the polar ionosphere, the effect of high geomagnetic activity is observed as an increase in the variations with a quasi-period of T ~ 24 h and as an appearance of variations in the 48–192 h band with the periodicity coinciding with the maximums in the ΣKp index variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号