首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Observations of the pair of galaxies VV 330 with the SCORPIO multimode instrument on the 6-m Special Astrophysical Observatory telescope are presented. Large-scale velocity fields of the ionized gas in Hα and brightness distributions in continuum and Hα have been constructed for both galaxies with the help of a scanning Fabry-Perot interferometer. Long-slit spectroscopy is used to study the stellar kinematics. Analysis of the data obtained has revealed a complex structure in each of the pair components. Three kinematic subsystems have been identified in UGC 5600: a stellar disk, an “inner gas ring” turned with respect to the disk through ~80°, and an outer gas disk. The stellar and outer gas disks are noncoplanar. Possible scenarios for the formation of the observed multicomponent kinematic galactic structure are considered, including the case where the large-scale velocity field of the gas is represented by the kinematic model of a disk with a warp. The velocity field in the second galaxy of the pair, UGC 5609, is more regular. A joint analysis of the data on the photometric structure and the velocity field has shown that this is probably a late-type spiral galaxy whose shape is distorted by the gravitational interaction, possibly, with UGC 5600.  相似文献   

2.
We present our observations of the galaxy UGS 5600 with a long-slit spectrograph (UAGS) and a multipupil field spectrograph (MPFS) attached to the 6-m Special Astrophysical Observatory telescope. Radial-velocity fields of the stellar and gaseous components were constructed for the central region and inner ring of the galaxy. We proved the existence of two nearly orthogonal kinematic subsystems and conclude that UGC 5600 is a galaxy with an inner polar ring. In the circumnuclear region, we detected noncircular stellar motions and suspected the existence of a minibar. The emission lines are shown to originate in H II regions. We estimated the metallicity from the intensity ratio of the [N II]λ6583 and Hα lines to be nearly solar, which rules out the possibility that the polar ring was produced by the accretion of gas from a dwarf companion.  相似文献   

3.
We present the results of our spectroscopic and morphological studies of the galaxy UGC 7388 with the 8.1-m Gemini North telescope. Judging by its observed characteristics, UGC 7388 is a giant late-type spiral galaxy seen nearly edge-on. The main body of the galaxy is surrounded by two faint (μ B ~ 24 m /□″ and μ B ~ 25 · m 5/□″) extended (~ 20–30 kpc) loop-like structures. A large-scale rotation of the brighter loop about the main galaxy has been detected. We discuss the assumption that the tidal disruption of a relatively massive companion is observed in the case of UGC 7388. A detailed study and modeling of the observed structure of this unique galaxy can give important information about the influence of the absorption of massive companions on the galactic disks and about the structure of the dark halo around UGC 7388.  相似文献   

4.
We present the results of our study of the stellar kinematics in the elliptical galaxy UGC 5119, which has previously been suspected to be a polar-ring galaxy. We have detected a rapidly rotating disk in the central region (r ≤ 3.2 kpc) of the galaxy’s main body and found a radial velocity gradient along its minor axis (in the putative ring). We conclude that UGC 5119 is a medium-luminosity elliptical galaxy with a rapidly rotating disk component and a stellar (probably polar) ring. We have calculated the Lick indices of the Hβ, Mggb, Fe 5270, and Fe 5335 absorption lines and compared them with evolutionary synthesis models. Differences in the [Mg/Fe] ratios, metallicities, and ages of the stars have been found: the young stellar population with a solar [Mg/Fe] ratio and a high metallicity dominates in the circumnuclear region (r ≤ 1 kpc), while the old one with a low metal abundance dominates in the ring.  相似文献   

5.
We present our photometric BV Rc observations of UGC 5119, a candidate polar-ring galaxy. We have determined its absolute magnitude, \(M_{0,B} = - 20\mathop m\limits_. 3\), and total color indices, \((B - V)_t^0 = + 0\mathop m\limits_. 73 \pm 0\mathop m\limits_. 10\) and \((V - R_c )_t^0 = + 0\mathop m\limits_. 54 \pm 0\mathop m\limits_. 10\). A Fourier analysis of the shape of its isophotes shows that UGC 5119 is most likely an elliptical galaxy with a disk component in the central part and a “boxy” feature on the periphery. At distances larger than 8″, the galaxy exhibits a turn of its major axis and a change in the phase of the fourth harmonic. Assuming the position angle of the major axis to be constant, a stellar ringlike structure is distinguished in the galaxy. The age of the ring stars is the same as that of the stars in the host galaxy. The distinguished ringlike structure cannot be attributed to typical polar rings rich in gas and in young stars.  相似文献   

6.
We present the results of photometric and spectroscopic observations of UGC 4892—a candidate for polar-ring galaxies. We show that the feature in the brightness distribution described by Whitmore et al. (1990) as a possible polar ring is actually a companion galaxy that interacts with the giant main galaxy. The velocity fields of the gas and stellar components can be explained by assuming that the gas lost by the companion galaxy and captured by the main galaxy forms a gaseous stream rotating around the latter in a plane almost perpendicular to its principal plane.  相似文献   

7.
We present the results of 12CO(1-0) and 12CO(2-1) observations on UGC 1347 obtained with BIMA and the IRAM 30 m telescope. UGC 1347 is a member of the Abell 262 cluster. In Abell 262, a nearby spiral rich cluster, the signs of galaxy interaction and therefore the mechanisms which play an important role in galaxy evolution within clusters can be studied with high spatial resolution. Aside from its bright central region, UGC 1347 features a second prominent source at the southern tip of the bar, which has been identified as region with recent enhanced star formation. The CO observations prove the existence of reservoirs of cold molecular gas at the positions of both bright regions.  相似文献   

8.
We present the first observations of molecular line emission in NGC 3718 with the IRAM 30m and the Plateau de Bure Interferometer. This galaxy is an excellent example for a strongly warped gas disk harboring an active galactic nucleus (AGN). An impressive dust lane is crossing the nucleus and a warp is developing into a polar ring. The molecular gas content is found to be typical of an elliptical galaxy with a relatively low molecular gas mass content (∼ 4 × 108 M ). The molecular gas distribution is found to warp from the inner disk together with the HI distribution. The CO data were also used to improve the kinematic modeling in the inner part of the galaxy, based on the so-called tilted ring-model. The nature of NGC 3718 is compared with its northern sky `twin' Centaurus A and the possible recent swallowing of a small-size gas-rich spiral is discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
We present the results of our photometric (BV R) and spectroscopic CCD observations of NGC 304 and NGC 7625, candidate polar-ring galaxies, performed with the 6-m Special Astrophysical Observatory telescope. For NGC 304, such a study has been carried out for the first time. We have obtained basic integrated characteristics of the galaxies and determined their morphological types (S0 for NGC 304 and Sa for NGC 7625). The absolute magnitudes of the galaxies, M B = ?20m.81 for NGC 304 and M B = ?19m.34 for NGC7625, are indicative of their fairly high luminosities. The disk and bulge parameters have been determined forNGC 304 (µ0 = 20m.60, h = 3.86 kpc, µ e = 21m.59, r e = 1.26 kpc in the B band); these correspond to the parameters of S0-type objects. The rotation velocity for NGC 304 (200 km s?1) reaches its maximum at a galactocentric distance of 3.1 kpc, which yields a mass estimate for the galaxy of 2.8 × 1010 \(\mathcal{M}_ \odot \). The observed photometric features at the center of NGC 304 indicate that it may have an inner ring structure, although we have failed to confirm the existence of two kinematic systems based on our spectroscopic observations. In NGC 7625, the disk makes a dominant contribution to the total brightness. The derived integrated color indices (B-V = 0m.81 and V-R = 0m.61) agree with previous determinations of other authors. We have estimated the учештсешщт in the inner galactic regions. In the outer regions, we have detected structures with bluer colors (B-V = 0m.60), which may be indicative of a polar ring with a minor stellar component.  相似文献   

10.
The Fabry-Perot scanning interferometer mounted on the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences is used to study the distribution and kinematics of ionized gas in the peculiar galaxy Arp 212 (NGC 7625, IIIZw 102). Two kinematically distinct subsystems—the inner disk and outer emission filaments—are found within the optical radius of the galaxy. The first subsystem, at galactocentric distances r < 3.5 kpc, rotates in the plane of the stellar disk. The inner part of the ionized-gas disk (r<1.5–2 kpc) exactly coincides with the previously known disk consisting of molecular gas. The second subsystem of ionized gas is located at galactocentric distances 2–6 kpc. This subsystem rotates in a plane tilted by a significant angle to the stellar disk. The angle of orbital inclination in the outer disk increases with galactocentric distance and reaches 50° at r ≈ 6 kpc. The ionized fraction of the gaseous disk does not show up beyond this galactocentric distance, but we believe that the HI disk continues to warp and approaches the plane that is polar with respect to the inner disk of the galaxy. Hence Arp 212 can be classified as a galaxy with a polar ring (or a polar disk). The observed kinematics of the ionized and neutral gas can be explained assuming that the distribution of gravitational potential in the galaxy is not spherically symmetric. Most probably, the polar ring have formed via accretion of gas from the dwarf satellite galaxy UGC 12549.  相似文献   

11.
We have considered polar ring galaxy candidates, the images of which can be found in the SDSS survey. The sample of 78 galaxies includes the most reliable candidates from the SPRC and PRC catalogs, some of which already have kinematic confirmations. We analyze the distributions of studied objects by the angle between the polar ring and the central disk, and by the optical diameter of the outer ring structures. In the vast majority of cases, the outer structures lie in the plane close to polar (within 10°–20°) which indicates the stability of the corresponding orbits in the gravitational potential of the halo. Moderately inclined outer structures are observed only in about 6% of objects which probably indicates their short lifetime. In such an unstable configuration, the polar ring would often cross the disk of the galaxy, being smaller than it in the diameter. We show that the inner polar structures and outer large-scale polar rings form a single family in the distribution of diameters normalized to the optical size of the galaxy. At the same time, this distribution is bimodal, as the number of objects with d ring = (0.4–0.7) d disk is small. Such a shape of size distribution is most likely due to the fact that the stability of polar orbits in the inner regions of galaxies is maintained by the bulge or the bar, while in the outer regions it is provided by the spheroidal (or triaxial) halo.  相似文献   

12.
We exclude hydrogen-burning stars, of any mass above the hydrogen-burning limit and any metallicity, as significant contributors to the massive haloes deduced from rotation curves to dominate the outer parts of spiral galaxies. We present and analyse images of four nearly edge-on bulgeless spiral galaxies (UGC 711, NGC 2915, UGC 12426, UGC 1459) obtained with ISOCAM (The CAMera instrument on board the Infrared Space Observatory ) at 14.5 and 6.75 μm. Our sensitivity limit for detection of any diffuse infrared emission associated with the dark haloes in these galaxies is a few tens of μJy per 6 × 6 arcsec2 pixel, with this limit currently set by remaining difficulties in modelling the non-linear behaviour of the detectors. All four galaxies show zero detected signal from extended non-disc emission, consistent with zero halo-like luminosity density distribution. The 95 per cent upper limit on any emission, for NGC 2915 in particular, allows us to exclude very low mass main-sequence stars ( M  > 0.08 M⊙) and young brown dwarfs (≲1 Gyr) as significant contributors to dark matter in galactic haloes. Combining our results with those of the Galactic microlensing surveys, which exclude objects with M  < 0.01 M⊙, excludes almost the entire possible mass range of compact baryonic objects from contributing to Galactic dark matter.  相似文献   

13.
We analyze data from the SAURON integral-field spectrograph of the William Herschel 4-m telescope for five lenticular galaxies in which we previously found chemically decoupled nuclei from observations with the Multipupil Fiber Spectrograph of the 6-m Special Astrophysical Observatory telescope. In a larger field of view, we confirmed the presence of peaks of the equivalent width of the Mg Ib λ5175 absorption line in the nuclei of all five galaxies. However, the structure of the chemically decoupled regions turned out to be highly varied even in such a small sample: from compact unresolved knots to disks with an extent of several hundred parsecs and, in one case, a triaxial compact minibar-type structure. We confirmed the presence of an inner gaseous polar ring in NGC 7280 and found it in NGC 7332. In their outer parts, the planes of these polar rings are warped toward the plane of stellar rotation in such a way that the gas counterrotates with respect to the stars. This behavior of the gas in a triaxial potential was predicted by several theoretical models.  相似文献   

14.
The non‐linear dynamics of bending instability and vertical structure of a galactic stellar disc embedded into a spherical halo are studied with N‐body numerical modelling. Development of the bending instability in stellar galactic disc is considered as the main factor that increases the disc thickness. Correlation between the disc vertical scale height and the halo‐to‐disc mass ratio is predicted from the simulations. The method of assessment of the spherical‐to‐disc mass ratio for edge‐on spiral galaxies with a small bulge is considered. Modelling of eight edge‐on galaxies: NGC 891, NGC 4738, NGC 5170, UGC 6080, UGC 7321, UGC 8286, UGC 9422 and UGC 9556 is performed. Parameters of stellar discs, dark haloes and bulges are estimated. The lower limit of the dark‐to‐luminous mass ratio in our galaxies is of the order of one within the limits of their stellar discs. The dark haloes dominate by mass in the galaxies with very thin stellar discs (NGC 5170, UGC 7321 and UGC 8286) (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We present the results of study of the ionized gas velocity fields in 28 nearby (systemic velocity below 1000 km s?1) dwarf galaxies. The observations were made at the 6-m BTA telescope of the SAO RAS with the scanning Fabry-Perot interferometer in the Hα emission line. We were able to measure regular circular rotation parameters in 25 galaxies. As a rule, rotation velocities measured in HII are in a good agreement with the data on the HI kinematics at the same radii. Three galaxies reveal position angles of the kinematic axis in the HII velocity fields that strongly (tens of degrees) differ from the measurements in neutral hydrogen at large distances from the center or from the orientation of the major axis of optical isophotes. The planes of the gaseous and stellar disks in these galaxies most likely do not coincide. Namely, in DDO99 the gaseous disk is warped beyond the optical radius, and in UGC3672 and UGC8508 the inclination of orbits of gas clouds varies in the inner regions of galaxies. It is possible that the entire ionized gas in UGC8508 rotates in the plane polar to the stellar disk.  相似文献   

16.
17.
We present the HI observations of 94 flat spiral galaxies from RFGC (Revised Flat Galaxy Catalog) and 14 galaxies from 2MFGC (the 2MASS selected Flat Galaxy Catalog) performed with the 100-m radio telescope in Effelsberg (Germany). HI fluxes, heliocentric radial velocities, and HI line widths are given for 65 detected galaxies. We present a mosaic of HI profiles. We calculated some of the global parameters of the galaxies and analyzed the linear correlations between them. The ratios of the total (indicative) masses of the galaxies to their luminosities lie within the range 0.4–8.2 with a mean of 3.8 (M/L), and the mean mass fraction of neutral hydrogen is 13%. Upper limits are given for the radio fluxes from 43 undetected galaxies.  相似文献   

18.
A galaxy that is a good candidate for polar-ring galaxies has been detected in the Hubble Ultra Deep Field (HUDF). The galaxy HUDF 1619 (V ≈ 25 m , z ~ 1) is the most distant object of this type known to date. A large-scale structure crosses the highly warped disk of the main galaxy seen almost edge-on at an angle of about 70°. The luminosity of this structure (the possible polar ring) reaches ~1/3 of the luminosity of the central galaxy. A strong absorption lane is seen in the region where this structure is projected onto the disk of the central object. There are two galaxies of comparable luminosity adjacent to HUDF 1619 (in projection). One of them may be the donor galaxy the interaction with which gave rise to the ring structure.  相似文献   

19.
It is shown in the present paper that properties of the spiral wave in the Galaxy are determined by the mass distribution of its flat subsystem rather than by the full mass distribution. Then it turns out that better agreement with the observed spiral pattern furnish the ‘long’ waves in contrast to the ‘short’ waves in the Linet al. (1969) theory. With the surface density σI=40M /ps 2 which is taken in the first approximation as independent on the galacto-centric distance, and the pattern velocityΩ p=23 km/s kps, the evaluated spiral pattern fits surprisingly well with the Weaver (1970) map of the HI-distribution in the Galaxy, and is in good agreement with the Kerr (1969) map. The inner Lindblad resonance occurs at 2 kps from the Galaxy center, where Weaver has placed the ring condensation of the gas, and the outer resonance lies close by 14 kps. At the outer resonance the nonlinear phenomena are expected, which lead to chaotization of the regular structure. This seems to be consistent with the Weaver (1970) and Kerr (1969) maps. The hypothesis is suggested which associates the generating mechanism of spiral waves with the rotating bar of old stars in the center of the Galaxy. Depending on the velocity of the bar rotation and the bar length, different combinations of the normal wave pattern and bar-like structure may occur, which possibly explains the great variety of transition forms between normal and barred spirals. In the proposed theory the packet of spiral waves moves from the inner Lindblad resonance outwards and could be permanently maintained by the ‘generator’ in the center of the Galaxy. Therefore, the difficulty associated with the rapid obliteration of the packet (Toomre, 1969) does not arise.  相似文献   

20.
Surface BVRI photometry is presented for two spiral galaxies with a complex photometric structure: NGC 834 and NGC 1134. We propose to introduce the combined color indices Q BVI and Q VRI to investigate the photometric structure of the galaxies. These color indices depend only slightly on selective absorption, which allows them to be used to study the photometric structure of “dusty” galaxies. Evolutionary stellar-population models show that Q BVI is most sensitive to the presence of blue stars, while Q VRI depends on local Hα equivalent width. A ring with active star formation manifests itself on the Q BVI map for NGC 834 at a distance of ~15 from its center, and a spiral structure shows up on the Q VRI map for NGC 1134 in its inner region. The Q BVI Q VRI diagram can provide information about the current stage of a star's formation in various galactic regions. A comparison of the color indices for the galaxies with their model values allows us to estimate the color excesses and extinction in various galactic regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号