首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
System identification provides an effective way to predict the ship manoeuvrability. In this paper several measures are proposed to diminish the parameter drift in the parametric identification of ship manoeuvring models. The drift of linear hydrodynamic coefficients can be accounted for from the point of view of dynamic cancellation, while the drift of nonlinear hydrodynamic coefficients is explained from the point of view of regression analysis. To diminish the parameter drift, reconstruction of the samples and modification of the mathematical model of ship manoeuvring motion are carried out. Difference method and the method of additional excitation are proposed to reconstruct the samples. Using correlation analysis, the structure of a manoeuvring model is simplified. Combined with the measures proposed, support vector machines based identification is employed to determine the hydrodynamic coefficients in a modified Abkowitz model. Experimental data from the free-running model tests of a KVLCC2 ship are analyzed and the hydrodynamic coefficients are identified. Based on the regressive model, simulation of manoeuvres is conducted. Comparison between the simulation results and the experimental results demonstrates the validity of the proposed measures.  相似文献   

2.
We present an experimental investigation of a free-running manoeuvring inland waterway ship at extreme shallow water conditions. Physical tests of zig-zag manoeuvres at two different water depths were performed in model scale and investigated with regards to the effects of limited under-keel clearance. Experimental data comprise results from repeatability studies and may serve for validation of manoeuvring simulations.  相似文献   

3.
王雪刚  邹早建  余龙  蔡韡 《海洋工程》2015,29(4):519-534
Based on support vector machines, three modeling methods, i.e., white-box modeling, grey-box modeling and black-box modeling of ship manoeuvring motion in 4 degrees of freedom are investigated. With the whole-ship mathematical model for ship manoeuvring motion, in which the hydrodynamic coefficients are obtained from roll planar motion mechanism test, some zigzag tests and turning circle manoeuvres are simulated. In the white-box modeling and grey-box modeling, the training data taken every 5 s from the simulated 20°/20° zigzag test are used, while in the black-box modeling, the training data taken every 5 s from the simulated 15°/15°, 20°/20° zigzag tests and 15°, 25° turning manoeuvres are used; and the trained support vector machines are used to predict the whole 20°/20° zigzag test. Comparisons between the simulated and predicted 20?/20° zigzag tests show good predictive ability of the proposed methods. Besides, all mathematical models obtained by the proposed modeling methods are used to predict the 10°/10° zigzag test and 35° turning circle manoeuvre, and the predicted results are compared with those of simulation tests to demonstrate the good generalization performance of the mathematical models. Finally, the proposed modeling methods are analyzed and compared with each other in aspects of application conditions, prediction accuracy and computation speed. The appropriate modeling method can be chosen according to the intended use of the mathematical models and the available data needed for system identification.  相似文献   

4.
S. Sutulo 《Ocean Engineering》2010,37(10):947-958
The method of boundary integral equation developed by the authors was applied for computing inertial and damping characteristics of ship sections for the cases of multi-stepped and inclined bottoms. Comparative calculations for three typical ship hull sections were performed and analyzed. The frequency-dependent data computed for these ship sections can be used to assess the bottom geometry's influence onto the ship motions in waves by means of the strip theory. Limiting values of the same characteristics corresponding to the close-to-zero frequency can also be used for estimation of hydrodynamic forces in manoeuvring over shallow and confined waterways.  相似文献   

5.
刘晨飞  刘亚东 《海洋工程》2018,36(6):109-115
基于CFD技术和重叠网格技术完成了黏性流场中KVLCC2船模的操纵性水动力导数的数值计算。为保证计算的精确性,进行了网格的收敛性分析,给出了合适的网格划分方法;通过数值模拟斜航运动、纯横荡运动和纯艏摇运动计算出的水动力与相应条件下的试验值对比,计算结果与试验值吻合良好,计算出的水动力导数准确度较高。基于MMG分离建模方法建立KVLCC2船模的操纵性数学模型,利用龙格-库塔算法求解微分方程组,对船舶操纵运动进行仿真。回转试验和Z形操舵试验的仿真结果与试验结果对比,其回转直径和轨迹都非常吻合,表明采用的船舶操纵性预报是可行的。  相似文献   

6.
Computational fluid dynamics, CFD, is becoming an essential tool in the prediction of the hydrodynamic efforts and flow characteristics of underwater vehicles for manoeuvring studies. However, when applied to the manoeuvrability of autonomous underwater vehicles, AUVs, most studies have focused on the determination of static coefficients without considering the effects of the vehicle control surface deflection. This paper analyses the hydrodynamic efforts generated on an AUV considering the combined effects of the control surface deflection and the angle of attack using CFD software based on the Reynolds-averaged Navier–Stokes formulations. The CFD simulations are also independently conducted for the AUV bare hull and control surface to better identify their individual and interference efforts and to validate the simulations by comparing the experimental results obtained in a towing tank. Several simulations of the bare hull case were conducted to select the kω SST turbulent model with the viscosity approach that best predicts its hydrodynamic efforts. Mesh sensitivity analyses were conducted for all simulations. For the flow around the control surfaces, the CFD results were analysed according to two different methodologies, standard and nonlinear. The nonlinear regression methodology provides better results than the standard methodology does for predicting the stall at the control surface. The flow simulations have shown that the occurrence of the control surface stall depends on a linear relationship between the angle of attack and the control surface deflection. This type of information can be used in designing the vehicle's autopilot system.  相似文献   

7.
For the non-negligible roll-coupling effect on ship maneuvering motion, a system-based method is used to investigate 4-DOF ship maneuvering motion in calm water for the ONR tumblehome model. A 4-DOF MMG model is employed to describe ship maneuvering motion including surge, sway, roll, and yaw. Simulations of circular motion test, static drift and heel tests are performed by solving the Reynolds-averaged Navier-Stokes (RANS) equations, after a convergence study quantifying the necessary grid spacing and time step to resolve the flow field adequately. The local flow field is analyzed for the selected cases, and the global hydrodynamic forces acting on the ship model are compared with the available experiment data. Hydrodynamic derivatives relating to sway velocity, yaw rate, and heel angle are computed from the computed force/moment data using least square method, showing good agreement with those obtained from EFD data overall. In order to investigate further the validity of these derivatives, turning circle and zigzag tests are simulated by using the 4-DOF MMG model with these derivatives. The trajectories and the time histories of the kinematic variables show satisfactory agreement with the data of free-running model tests, indicating that the system-based method coupled with CFD simulation has promising capability to predict the 4-DOF ship maneuvering motion for the unconventional vessel.  相似文献   

8.
The hydrodynamic interaction between an Autonomous Underwater Vehicle (AUV) manoeuvring in close proximity to a larger underwater vehicle can cause rapid changes in the motion of the AUV. This interaction can lead to mission failure and possible vehicle collision. Being self-piloted and comparatively small, an AUV is more susceptible to these interaction effects than the larger body. In an aim to predict the manoeuvring performance of an AUV under the effects of the interaction, the Australian Maritime College (AMC) has conducted a series of computer simulations and captive model experiments. A numerical model was developed to simulate pure sway motion of an AUV at different lateral and longitudinal positions relative to a larger underwater vehicle using Computational Fluid Dynamics (CFDs). The variables investigated include the surge force, sway force and the yaw moment coefficients acting on the AUV due to interaction effects, which were in turn validated against experimental results. A simplified method is presented to obtain the hydrodynamic coefficients of an AUV when operating close to a larger underwater body by transforming the single body hydrodynamic coefficients of the AUV using the steady-state interaction forces. This method is considerably less time consuming than traditional methods. Furthermore, the inverse of this method (i.e. to obtain the steady state interaction force) is also presented to obtain the steady-state interaction force at multiple lateral separations efficiently. Both the CFD model and the simplified methods have been validated against the experimental data and are capable of providing adequate interaction predictions. Such methods are critical for accurate prediction of vehicle performance under varying conditions present in real life.  相似文献   

9.
Propeller modelling in CFD simulations is a key issue for the correct prediction of hull-propeller interactions, manoeuvring characteristics and the flow field in the stern region of a marine vehicle. From this point of view, actuator disk approaches have proved their reliability and computational efficiency; for these reasons, they are commonly used for the analysis of propulsive performance of a ship. Nevertheless, these models often neglect peculiar physical phenomena which characterise the operating propeller in off-design condition, namely the in-plane loads that are of paramount importance when considering non-standard or unusual propeller/rudder arrangements. In order to emphasize the importance of these components (in particular the propeller lateral force) and the need of a detailed propeller model for the correct prediction of the manoeuvring qualities of a ship, the turning circle manoeuvre of a self-propelled fully appended twin screw tanker-like ship model with a single rudder is simulated by the unsteady RANS solver χnavis developed at CNR-INSEAN; several propeller models able to include the effect of the strong oblique flow component encountered during a manoeuvre have been considered and compared. It is emphasized that, despite these models account for very complex and fundamental physical effects, which would be lost by a traditional actuator disk approach, the increase in computational resources is almost negligible. The accuracy of these models is assessed by comparison with experimental data from free running tests. The main features of the flow field, with particular attention to the vortical structures detached from the hull are presented as well.  相似文献   

10.
A time-domain analysis is used to predict wave loading and motion responses for a ship traveling at a constant speed in regular oblique waves. Considered as a distribution of normal velocities on the wetted hull surface, the combined diffraction and radiation perturbations caused by the forward moving ship and her motions are determined simultaneously. This way, the ship-hull boundary condition is exactly fulfilled. The 3-D time domain Green's function is used to express the combined diffraction/radiation potential in terms of impulsive and memory potentials. Application of the Bernoulli equation yields the pressure distribution and accordingly, the necessary hydrodynamic forces. The equations of motion of the ship are then developed and solved in the time domain.Forces and motions at forward speed are predicted for a Wigley ship-hull in head waves and for a catamaran-ferry in oblique waves. Comparison is made with published theoretical and experimental results for the Wigley ship-hull, and the agreement is good. For the catamaran, a self-propelled model is built and tested both in a large towing tank and in a seakeeping basin in order to measure the six-degrees-of-freedom forces, moments and motions at forward speed in regular waves of different directions. For the longitudinal motions, the agreement between measurements and predictions is generally good. For the transverse motions, however, acceptable discrepancy exists. The discrepancy is thought to be mainly due to the exclusion from the analysis of the rudder forces and viscous damping. The inclusion of such nonlinear effects in the time domain simulation involves complex analysis and this problem is left to a future research.  相似文献   

11.
在对海洋监视监测的过程中,高频地波雷达的船只目标检测能力与其对海杂波的抑制能力密切相关。但是,传统海杂波时域抑制方法存在目标回波参数与海杂波相近时难以区分其各自分量,对消时目标被误消除的问题。针对上述问题,本文提出了一种适用于高频地波雷达海杂波的边界约束循环对消方法。该方法综合海杂波频移理论和实际海杂波特性分析制定出边界条件,约束建模对消过程,实现海杂波分量的抑制。实测地波雷达数据和船舶自动识别系统(AIS)数据检验的结果表明,本文方法克服了传统方法的不足且信杂比改善更加稳定,能够更加有效地实现海杂波循环对消。  相似文献   

12.
The hydrodynamic interaction forces/moments acting on a moored ship due to the passage of another ship in its proximity is researched by considering the influence of ship form against the idealized approach of the use of parabolic sectional area distribution. Comparisons with experimental results show that the interaction effects are predicted better by inclusion of ship's form.  相似文献   

13.
The problem of simulating the ship manoeuvring motion is studied mainly in connection with manoeuvring simulators. Several possible levels of solution to the problem with different degrees of complexity and accuracy are discussed. It is shown that the structure of the generic manoeuvring mathematical model leads naturally to two basic approaches based respectively on dynamic and purely kinematic prediction models. A simplified but fast dynamic manoeuvring model is proposed as well as two new advances in kinematic prediction methods: a prediction based on current values of velocities and accelerations and a method of anticipating the ship's trajectory in a course changing manoeuvre.  相似文献   

14.
The use of the side-scan sonar SAR brings to light a new problem for the IFREMER teams in charge of operations: how to master the half-turn manoeuvre of the ship, cable and fish as a whole in order to cover the entire maritime area under study, the mesh being in this case greatly reduced (900 m).Having defined the criteria necessary for manoeuvring under optimal conditions, a mathematical model for simulating cable dynamics—the only method adapted to this kind of study—was introduced in order to determine typical behaviour patterns of half-turn manoeuvres for the various immersions envisaged (from 2000 to 6000 m).  相似文献   

15.
The large roll motion of ships sailing in the seaway is undesirable because it may lead to the seasickness of crew and unsafety of vessels and cargoes, thus it needs to be reduced. The aim of this study is to design a rudder roll stabilization system based on Radial Basis Function Neural Network (RBFNN) control algorithm for ship advancing in the seaway only through rudder actions. In the proposed stabilization system, the course keeping controller and the roll damping controller were accomplished by utilizing modified Unscented Kalman Filter (UKF) training algorithm, and implemented in parallel to maintain the orientation and reduce roll motion simultaneously. The nonlinear mathematical model, which includes manoeuvring characteristics and wave disturbances, was adopted to analyse ship’s responses. Various sailing states and the external wave disturbances were considered to validate the performance and robustness of the proposed roll stabilizer. The results indicate that the designed control system performs better than the Back Propagation (BP) neural networks based control system and conventional Proportional-Derivative (PD) based control system in terms of reducing roll motion for ship in waves.  相似文献   

16.
This paper presents an experimental investigation on the manoeuvring characteristics of a pusher-barge system for deep (H/d>3) and shallow water (H/d=1.3) condition. Since, the operation of pusher-barge mainly concentrates on confined waters, there is a need to predict and analyze the manoeuvring characteristic of the system for a safe and acceptable performance. A time domain simulation programme was developed for this purpose. A series of model experiments were carried out to determine the hydrodynamic coefficients using a planar motion mechanism (PMM). The time domain simulation shows the manoeuvring characteristic in the form of turning circle trajectories and zig-zag manoeuvre based on the hydrodynamic coefficients, which were derived based on experimental results. The manoeuvring characteristics in shallow and deep water conditions were compared through the simulation results. A comparison of simulation results based on experimental and empirical driven coefficients for both conditions shows that the experimental coefficients gave better manoeuvring characteristics for both turning circle trajectories and zig-zag manoeuvre.  相似文献   

17.
The hydrodynamic interaction and mechanical coupling effects of two floating platforms connected by elastic lines are investigated by using a time-domain multi-hull/mooring/riser coupled dynamics analysis program. Particular attention is paid to the contribution of off-diagonal hydrodynamic interaction terms on the relative motions during side-by-side offloading operation. In this regard, the exact method (CMM: combined matrix method) including all the vessel and line dynamics, and the 12×12 hydrodynamic coefficients in a combined matrix is developed. The performance of two typical approximation methods (NHI/No Hydrodynamic Interaction: iteration method between two vessels without considering hydrodynamic interaction effects; SMM/Separated Matrix Method: iteration method between two vessels with partially considering hydrodynamic interaction effects, i.e. ignoring off-diagonal cross-coupling terms in the 12×12 hydrodynamic coefficient matrix) is also tested for the same side-by-side offloading operation in two different environmental conditions. The numerical examples show that there exists significant discrepancy at sway and roll modes between the exact and the approximation methods, which means that the cross-coupling (off-diagonal block) terms of the full hydrodynamic coefficient matrix play an important role in the case of side-by-side offloading operation. Therefore, such approximation methods should be used with care. The fender reaction forces, which exhibit large force with contact but no force without contact, are also numerically modeled in the present time-domain simulation study.  相似文献   

18.
Maneuverability is an important aspect of marine vehicle design. The performance of a rudder, as the most important means of maneuvering, has significant impacts on ship controllability characteristics. This study investigated the effect of five rudder profiles (NACA 0012, NACA0025, IFS, Fish tail, HSVA) on the turning characteristics of KCS containership model. This investigation was performed by direct simulation of the ship turning circle maneuver in computational fluid dynamic environment based on the ITTC verification procedure. All rudders were defined with the same lateral area. Simulations were conducted with the commercial software STAR-CCM+. The rudder turning and the ship's dynamic motion were modeled by the use of an overset technique and six-DOF dynamic solver, respectively. Roll, pitch and heave motions and forward speed reduction during the turning maneuver with different rudders were computed and compared. Results show that the rudder profiles designed specifically for marine applications (Fishtail, IFS and HSVA) perform better than the traditional NACA series.  相似文献   

19.
This paper presents a Recursive Neural Network (RNN) manoeuvring simulation model for surface ships. Inputs to the simulation are the orders of rudder angle and ship’s speed and also the recursive outputs velocities of sway and yaw. This model is used to test the capabilities of artificial neural networks in manoeuvring simulation of ships. Two manoeuvres are simulated: tactical circles and zigzags. The results between both simulations are compared in order to analyse the accuracy of the RNN. The simulations are performed for the Mariner hull. The data generated to train the network are obtained from a manoeuvrability model performing the simulation of different manoeuvring tests. The RNN proved to be a robust and accurate tool for manoeuvring simulation.  相似文献   

20.
K. Sariz  E. Narli 《Ocean Engineering》2003,30(12):1535-1551
During the past 30 years there has been a steady growth in the size and number of ships that use the Strait of Istanbul (Bosporus) which is one of the most hazardous, crowded, difficult and potentially dangerous waterways in the world. There have been over 200 accidents over the past decade resulting in loss of life and serious damage to the environment. This paper presents the results of a real-time ship manoeuvring simulation study investigating the manoeuvring performance of large tankers in the Bosporus. The study was conducted with a ship manoeuvring simulator which is capable of subjecting a given hull form to any combination of environmental conditions, i.e. wind, current and wave drift forces. The results indicate that when realistic environmental conditions are taken into account the size of ships which can navigate safely in compliance with the traffic separation lanes is limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号