首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The study analyses the long-term biophysical and demographic changes in Dal lake, located in the heart of Srinagar city, Kashmir India, using a repository of historical, remote sensing, socio-economic and water quality data supported by the extensive field observations. The lake faces multiple pressures from the unplanned urbanization, high population growth, nutrient load from intensive agriculture and tourism. The data showed that the lake has shrunk from 31 km2 in 1859–24 km2 in 2013. Significant changes were observed in the land use and land cover (LULC) within the lake (1859–2013) and in the vicinity of the lake (1962–2013). Analysis of the demographic data indicates that the human population within the lake has shown more than double the national growth rate. Additionally, 7 important water quality parameters from 82 well distributed sites across the lake were analyzed and compared with the past data to determine the historical changes in the water quality from 1971 to 2014. The changes in the LULC and demography have adversely affected the pollution status of this pristine lake. Ortho-phosphate phosphorous concentration has increased from 16.75 μg L−1 in 1977–45.78 μg L−1 in 2014 and that of the nitrate-nitrogen from 365 μg L−1 to 557 μg L−1, indicating nutrient enrichment of the lake over the years. Built-up area within the lake has increased 40 times since 1859, which, together with the changes in the population and settlements, have led to the high discharge of untreated nutrient-rich sewage into the lake. Similarly the expansion of floating gardens within the lake and agriculture lands in the catchment has contributed to the increased nutrient load into the lake due to the increasing use of fertilizers. The information about the existing land cover, demography and water quality was integrated and analyzed in GIS environment to identify the trophic status of the lake. The analysis indicated that 32% of the lake falls under sever degradation, 48% under medium degradation while as 20% of the lake waters are relatively clean. It is believed that the results provide improved knowledge and insights about the lake health and causal factors of its degradation necessary for effectively restoring its ecological and hydrological functionality.  相似文献   

2.
《Marine pollution bulletin》2012,64(5-12):243-248
Herein we present results from one of the first extensive bay-wide oceanographic surveys of Manila Bay, wherein 31 stations were sampled during the northeast monsoon (cold and dry season). A band of hypoxic bottom water (dissolved oxygen <2.8 mg/L) spanned the midsection of the bay from east to west. Bottom nitrate concentrations (5.7–16.8 μM; avg. 11.1 μM) and total organic carbon values in sediments (1.7–3.1%; avg. 2.4%) were high in the midsection, which coincided with the band of hypoxic bottom water. Physical processes and site-specific accumulation of organic material likely lead to hypoxic conditions in Manila Bay, even during the northeast monsoon period when the water column is relatively well mixed. The results of this study complement the previously reported widespread hypoxia that occurs during the rainy season. Thus, hypoxia may be pervasive in the bay throughout the year, although it varies in intensity and spatial extent.  相似文献   

3.
《Marine pollution bulletin》2014,78(1-2):428-433
In November 2011 gold was found at Mount Botak, Buru Island, Mollucas Province, Indonesia. Since 2012 mercury has been used to extract the gold requiring large volumes of water and resulting in deposition of mercury into Wamsait River and Kayeli Bay. Total mercury in waste ponds was over 680 mg/kg. In sediments at the mouth of the local river and a small feeder creek >3.00 mg/kg and >7.66 mg/kg respectively. River and bay sediments were proportionately higher in available mercury than elemental mercury and more strongly bound mercuric sulfide compared to that in trommel waste. This preliminary investigation raises concerns about the long term distribution and speciation of mercury. The floodplain is an important agricultural resource, and Mollucas Province is recognised nationally as the centre for Indonesian fish stocks. Challenges for management include communicating the potential future risks to the community and leaders and identifying mechanisms to reduce mercury waste.  相似文献   

4.
The lake monitoring programme compliant with the Water Framework Directive has been implemented in Poland since 2007. Currently, the methods for three biological quality elements (BQEs): phytoplankton (the Phytoplankton Multimetric for Polish Lakes, PMPL), macrophytes (the Ecological State Macrophyte Index, ESMI) and phytobenthos (the Diatom Index for Lakes, IOJ) are officially applied and internationally intercalibrated. Based on the monitoring data from 256 lakes surveyed in 2010–2013 and assessed for all the three BQEs, we tested whether the assessment results obtained by the three biological methods were consistent and we searched for the causes of inconsistencies which we found. The lake classifications obtained from the PMPL and ESMI were highly consistent and the relationship between these metrics was relatively strong (R = 0.66, p < 0.001). Both metrics correlated equally strongly with water quality indicators. However, the PMPL and ESMI indicated systematic dissimilarities in the sensitivity to eutrophication between shallow and deep lakes. In shallow lakes, the alarming symptoms of macrophyte community deterioration (lower values of ESMI) occurred at lower nutrient and Chla concentrations and were accompanied by a better status of phytoplankton (higher values of PMPL) than in deep lakes that can be explained by a synergistic effect of inorganic suspended solids and algal growth on water transparency. As a consequence, the positions of phytoplankton and macrophytes as early warning indicators in the eutrophication gradient in shallow lakes were inverted compared to those in deep lakes. Compared to the PMPL and ESMI, the IOJ method gave the least stringent assessment results, with 22% of lakes failing to meet the environmental objectives. The relationships between IOJ and PMPL, and ESMI were relatively weak (R = 0.17, p = 0.008 and R = 0.17, p = 0.007, respectively). Moreover, the phytobenthos index IOJ correlated significantly more weakly with all the water quality indicators than either PMPL or ESMI did. The poor performance of the phytobenthos method in this study may suggest a limited indicator value of this BQE for lake assessment or inappropriate sampling design.  相似文献   

5.
《Marine pollution bulletin》2008,56(10-12):555-563
Sulina, the middle distributary of the Danube Delta, has been significantly changed by human activities over the past 150 yr. These include engineering works in the second half of the 19th century, when the channel was transformed for navigation and the construction of jetties which nowadays extend 8 km seawards.These interventions have strongly affected the natural processes of the Black Sea coast near the Sulina mouth. To the south of the Sulina mouth, the natural mild erosion has been reversed in the area close to the jetties where accretion is occurring, while southwards the greatest erosion rate along the entire Romanian coast, of more than 20 m/yr, has been recorded.Sediment accumulation in the northern part of the mouth is also huge and has brought to the creation and swift elongation of a sediment spit in several decades. Thus, the bay located here suffers from a rapid transformation into a lagoon.  相似文献   

6.
Port Blair is the capital city of Andaman & Nicobar Islands, the union territory of India. More than 50% of the population of these islands lives around Port Blair Bay. Therefore the anthropogenic effects in the bay water were studied for monitoring purpose from seven stations. Physico-chemical parameters of seawater were analyzed in samples collected once in every 3 months for 2 years from seven sampling stations located in Port Blair Bay, South Andaman Island to evaluate the spatial and tidal variation. Cluster analysis and factor analysis were applied to the experimental data in an attempt to understand the sources of variation of physico-chemical parameters. In cluster analysis, the stations Junglighat Bay and Phoenix Bay having high anthropogenic influence formed a separate group. The factors obtained from factor analysis indicated that the parameters responsible for physico-chemical variations are mainly related to land run-off, sewage outfall and tidal flow.  相似文献   

7.
The feasibility of a potential bioindicator based on functional groups of microzooplankton tintinnids for bioassessments of water quality status was studied during southwest monsoon (June to September) along the coastal waters of Kalpakkam, India during 2012–2015. The work highlights the following features (1) tintinnid community composed of 28 species belonging to 11 genera and 9 families, revealed significant differences among the four study sites (2) maximum numerical abundance (2224 ± 90 ind. l? 1) and species diversity (H′ = 2.66) of tintinnid were recorded towards Bay of Bengal whereas minimum abundance (720 ± 35 ind. l? 1) and diversity (H′ = 1.74) were encountered in the backwater sites, (3) multivariate analyses [RELATE, Biota-environment (BIOENV) and canonical analysis of principal coordinates (CAP)] reveal that chl a, nitrate and phosphate were the potential causative factors for tintinnid distribution. Based on the results, we suggest that tintinnids may be used as a potential bioindicator of water quality status in marine ecosystem.  相似文献   

8.
With anthropogenic changes, the structure and quantity of nitrogen nutrients have changed in coastal ocean, which has dramatically influenced the water quality. Water quality modeling can contribute to the necessary scientific grounding of coastal management. In this paper, some of the dynamic functions and parameters of nitrogen were calibrated based on coastal field experiments covering the dynamic nitrogen processes in Jiaozhou Bay (JZB), including phytoplankton growth, respiration, and mortality; particulate nitrogen degradation; and dissolved organic nitrogen remineralization. The results of the field experiments and box model simulations showed good agreement (RSD = 20% ± 2% and SI = 0.77 ± 0.04). A three-dimensional water quality model of nitrogen (3DWQMN) in JZB was improved and the dynamic parameters were updated according to field experiments. The 3DWQMN was validated based on observed data from 2012 to 2013, with good agreement (RSD = 27 ± 4%, SI = 0.68 ± 0.06, and K = 0.48 ± 0.04), which testifies to the model's credibility.  相似文献   

9.
A combination of geophysical methods including continuous electrical resistivity and high-resolution Chirp sub-bottom profiling were utilized to characterize geologic controls on pore fluid salinity in the nearshore of Long Bay, SC. Resistivity values ranged from less than 1 Ω m to greater than 40 Ω m throughout the bay. Areas of elevated electrical resistivity suggest the influence of relatively fresher water on pore water composition. Geophysical evidence alone does not eliminate all ambiguity associated with lithological and porosity variations that may also contribute to electrical structure of shallow marine sediments. The anomalous field is of sufficient magnitude that lithological variation alone does not control the spatial distribution of elevated electrical resistivity zones. Geographical distribution of electrical anomalies and structures interpreted from nearby sub-bottom profiles indicates abrupt changes in shallow geologic units control preferential pathways for discharge of fresh water into the marine environment. Shore parallel resistivity profiles show dramatic decreases in magnitude with increasing distance from shore, suggesting a significant portion of the terrestrially driven fresh SGD in Long Bay is occurring via the surficial aquifer within a few hundred meters of shore.  相似文献   

10.
《Marine pollution bulletin》2014,85(1-2):373-378
The surficial coastal sediments in Kendari Bay are sampled in the field to determine the concentration and pollution level of three heavy metals (Pb, Cd and Cr). Twenty-five sampling points ranging from the inner (Wanggu River) to the outer area of the bay have been chosen. The physicochemical properties, such as temperature, pH, salinity and TDS of the overlying water, as well as the sediment type and TOC of the surficial sediments, are also measured. The total concentrations of the Pb, Cd and Cr in the sediment samples are quantified using inductively-coupled plasma mass spectrometry (ICP-MS). The concentrations of the heavy metals (Pb, Cd and Cr) ranged from 0.84 to 17.02 μg/g, 0.02 to 0.17 μg/g and 1.92 to 40.11 μg/g (dry weight), respectively, following the Cr > Pb > Cd sequence. To assess the degree of contamination, a geoaccumulation index (Igeo) is measured. Kendari Bay is not a contaminated area regarding Pb, Cd and Cr.  相似文献   

11.
Biomonitoring methods based on macrophytes have been used mandatorily in the assessment of freshwaters since the implementation of the Water Framework Directive (WFD). The Macrophyte Index for Rivers (MIR) was developed in Poland for the monitoring of running waters under the WFD requirements. This index shows the degree of river degradation under the influence of water pollutants, especially nutrients. The aim of the present study was to determine the relationship between the MIR and various hydrochemical parameters using artificial neural networks (ANNs). Physico-chemical parameters of water (monthly results for the whole year), which were derived from 147 lowland river survey sites, all located in Poland, were applied to model the MIR values. Water quality variables were determined over three timeframes: the annual average; the average for the vegetation period; and the average for the summer period. Quality of the networks was assessed using coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE) and root mean square error (RMSE). The best modeling quality was obtained for yearly average values of water quality parameters. The quality statistics were: R2 = 0.722, NSE = 0.721 and RMSE = 0.056 (training dataset); R2 = 0.555, NSE = 0.533 and RMSE = 0.101 (validation dataset); R2 = 0.650. NSE = 0.600 and RMSE = 0.089 (testing dataset). This indicates that macrophytes reflect the whole year impact of pollution, whereas summer.  相似文献   

12.
The distributions of 41 polychlorinated biphenyls (PCBs) were determined in the aqueous phase, suspended particulate matter (SPM), and sediment of the Daliao River estuary in Liaodong Bay, Bohai Sea (China). The total PCB concentrations ranged from 5.51 to 40.28 ng L−1 in the surface water, from 6.78 to 66.55 ng L−1 dry weight in the SPM, and from 0.83 to 7.29 ng g−1 dry weight in the sediment. The PCB concentrations in water, SPM, and sediment were moderate relative to those reported for other estuary and marine systems around the world. Sedimentary PCB concentrations decreased offshore due to the active deposition of laterally transported river-borne particles. The predominance of the highly chlorinated congeners for the water, SPM, and sediment samples are an indication of either a lack of degradation or the presence of nearby or recent releases into the environment.  相似文献   

13.
The seasonal pattern of size-fractionated phytoplankton biomass, primary production and respiration was investigated along the longitudinal axis of the Nervión–Ibaizabal estuary (Bay of Biscay) from April 2003 to September 2004. Environmental factors influencing phytoplankton dynamics were also studied. Chlorophyll a biomass showed a longitudinal pattern of increase from the outer Abra bay to the inner estuary. On a seasonal scale, in the intermediate and inner estuary phytoplankton biomass maxima were registered in summer, the warmest and driest season, whereas in the outer bay chlorophyll a peaks occurred in May 2004, but were delayed to August 2003, likely due to a very rainy spring. Data suggest that river flow exerts a marked influence on the timing of phytoplankton biomass maxima in this estuary, decreased river flows providing a lowering of turbidity and an increase in water residence time needed for chlorophyll a to build up. Nutrient concentrations were high enough not to limit phytoplankton growth throughout the annual cycle, except silicate and occasionally phosphate in the outer bay during summer. Silicate concentration correlated positively with river flow, whereas ammonium and phosphate maximum values were generally measured in the mid-estuary, suggesting the importance of allochthonous anthropogenic sources. In the intermediate and inner estuary phytoplankton biomass was generally dominated by >8 μm size-fraction (ca. 60%), but in August 2003 <8 μm size-fraction increased its contribution in the intermediate estuary. It is argued that the lower nutrient concentrations measured in August 2003 than in August 2004 could have played a role. This is the first study in which phytoplankton primary production rates have been measured along the longitudinal axis of the Nervión–Ibaizabal estuary. Throughout the annual cycle these rates ranged from 0.001 to 3.163 g C m?3 d?1 and were comparable to those measured in nearby small estuaries of the Basque coast and other larger estuaries on the Bay of Biscay. Surface plankton community respiration rate maxima were measured during the spring 2004 chlorophyll a peak in the Abra bay and in summer months at the mid and inner estuary, coinciding with chlorophyll a biomass and primary production maxima. In general, respiration rates showed a positive correlation with temperature. In order to compare results from the Nervión–Ibaizabal estuary with other nearshore coastal and estuarine ecosystems within the Bay of Biscay a review of existing information on phytoplankton biomass and primary production dynamics was performed.  相似文献   

14.
《Marine pollution bulletin》2012,65(12):2877-2884
We investigated heavy metal concentrations of zinc (Zn), copper (Cu), chromium (Cr), and lead (Pb), their spatial distribution and enrichment factor index in surface sediments of the Gorgan Bay. Sediment Quality Guidelines were also applied to assess adverse biological effects of these metals. Heavy metals were determined by inductively coupled plasma-mass spectroscopy (ICP-MS). The results indicated mean concentrations (ppm) of heavy metals were (mean ± S.D.) Pb: 11.5 ± 4.88, Cu: 18 ± 8.83, Zn: 42 ± 22.15 and Cr: 32 ± 15.19. Based on Enrichment index, the Gorgan Bay is a low-enriched to non-enriched bay. Heavy metal contents were lower than the standard limits of PEL, ERL, and ERM that reveal no threatening influence of the metals in the Bay.  相似文献   

15.
We investigated the importance of meteorological and lake physical conditions for temporal, horizontal and vertical differences in the concentration of dissolved oxygen (DO) and water temperature, and the derived daily estimates of gross primary production (GPP), ecosystem respiration (R) and net ecosystem production (NEP). Our study was conducted in a subtropical and polymictic lake in Southern Brazil, during a spring–summer transition. Metabolic rates were determined from two sites using the open water oxygen technique. At the central deep site, oxygen sondes were deployed at three depths to assess patterns in vertical variability. During 10 days, an additional DO and temperature sonde was placed near the shoreline allowing us to compare metabolic differences in the surface layers between the central pelagic and littoral site. While GPP was similar, R was significantly higher at the shallower littoral site, causing NEP to be lower, although NEP was still positive. The littoral site had less diel changes in DO and higher daily variability in all metabolic rates. Variability in GPP and R at the littoral site was related to temperature, wind speed and rainfall suggesting that short-term variability in metabolic rates in shallow areas are sensitive to resuspension of sediments caused by a less stable water column. A clear vertical gradient was furthermore found for the metabolic rates at the central deep part of the lake, related to the light extinction, with highest GPP around 0.3 m and decreasing with depth, while respiration showed the inverse pattern. Below subsurface, respiration prevailed at 5.0 m depth and was uncoupled to primary production. Under conditions with high light and temperature, and low wind speeds, the mixing depth became shallower, in turn increasing the water column stability at the deep pelagic site, which resulted in higher mean light available and higher GPP in the water column. Our results confirm that deployment of sensors in different sites and depths allows for spatially, as well as temporally more representative estimates of lake metabolism.  相似文献   

16.
In Malawi, shallow wells constitute the most important water sources for domestic purposes. However, increasing human population coupled with poor sanitation and infrastructure is undermining the quality of shallow well water. An assessment of microbial and geochemical quality of shallow well water in high-density areas of Zolozolo, Ching’ambo and Chiputula in Mzuzu City, Northern Malawi, has been carried out. The study aimed at characterising domestic water sources, identifying possible sources of water contamination and determining levels of microbial and chemical contamination. Arc-view GIS was used to map the water sources. A questionnaire survey was carried out to elicit information on characteristics of drinking water sources. Water samples were collected from quasi-randomly selected shallow wells and analysed for microbial and chemical parameters using standard methods. HCA, performed using R-programme, was used to group sampled sites according to their bio-physicochemical characteristics. Compliance of the water with MBS/WHO water quality guidelines was determined. The WQI was computed to turn multifaceted data obtained from laboratory analyses into simple information that is comprehensible and useable by the public to assess overall quality of water at a specific water points. The GW-chart was used to show hydrogeochemical water types from each sampled site. Microbial analysis revealed that water from 96.3% of shallow wells recorded faecal coliforms ranging from 129 to 920 cfu per 100 ml which were significantly higher than the Malawi Standards and WHO thresholds. In general, shallow well water is of low mineralisation (EC range 80–500 μS cm−1), with hydrogeochemical facies dominated by Ca–HCO3, which evolves to Ca–Cl water type. The shallow well water registered a WQI range of 50.16–66.04%, with a medium WQ rating. This suggested that the water obtained from the shallow wells is unsuitable for direct human consumption. It was observed that 100% of the shallow wells were at risk of pollution from onsite sanitation because of their proximity to sanitary facilities. It was strongly recommended that onsite treatment interventions have to be mobilised and initiated to protect the households from further possible consequences of using the water.  相似文献   

17.
The present study is a pilot magnetic gradient survey inserted in a set of geological and geophysical works that are planned to understand the infilling process of the Portman Bay (Murcia, Spain).In a period of 33 years (from 1957 until 1990) the Portman Bay has been silted up with mine tailings. This mining waste, after being discharged into the sea, was transported by littoral currents which sorted it and concentrated the densest mineral fractions (mainly magnetite and other iron oxides). In this sedimentary context, the magnetic gradient map obtained did not detect any massive accumulation of magnetic minerals, but rather a regular distribution following parallel-banded structures in the successive contours of the bay. It has been observed that one of these magnetic bands perfectly superimposes on the ancient coastline visible in aerial photo of 1972, interpreting that this coincidence is explained by the fact that the magnetite was concentrated along the sandy ridges, oriented according to the refraction of the littoral currents.In this document we analyse the magnetic gradient map obtained in a restricted sector of the Portman Bay. This sector covers an area of 2 ha and it was chosen as a first test. The significant results suggest the suitability of this method to be conducted to the whole bay. The main objective of this study is to show the usefulness of magnetic gradient method to obtain a paleogeographic reconstruction of the infilling process of this bay.  相似文献   

18.
Changes in the water properties and biological characteristics of the highly acidic Hromnice Lake (Western Bohemia) were investigated. This 110-year-old lake, formed as a consequence of the mining of pyritic shales, is permanently meromictic. Two chemoclines separate an extremely acidic (pH  2.6) mixolimnion from a metal-rich anoxic monimolimnion. The absence of spring mixolimnetic turnover due to ice melting and very slow heat propagation through the chemocline with a 6-month delay were observed. Extreme mixolimnetic oxygen maxima (up to 31 mg l?1) in phosphorus-rich lake (PO43? up to 1.6 mg l?1) well correlated with outbursts of phytoplankton. Phytoplankton consist of several acido-tolerant species of the genera Coccomyxa, Lepocinclis, Chlamydomonas and Chromulina. Surface phytoplankton biomass expressed as chlorophyll-a varies from 2 to 140 μg l?1. Multicellular zooplankton are almost absent with the exception of Cephalodella acidophila, a small rotifer occurring in low numbers. Large red larvae of the midge Chironomus gr. plumosus were found at the bottom close to the shore, with larvulae in the open water. Developmental stages (protonemata) of a moss, resembling filamentous algae, dwell in the otherwise plant-free littoral zone.  相似文献   

19.
Variability in water-exchange time between Tokyo Bay and the Pacific Ocean during winter is investigated based on the results of intensive field observation from November 2000 to March 2001. Water-exchange time between Tokyo Bay and the Pacific Ocean during winter mainly depends on the strength of northerly monsoon, being about 16 days under the weak monsoon and about 12 days under the strong monsoon. Moreover, it becomes longer by about 1 day in spring tide and shorter in neap tide due to the coupling effect of estuarine circulation and vertical mixing. Water-exchange time also varies depending on the open-ocean condition. When the warm water mass approaches from the Pacific Ocean to the mouth of Tokyo Bay through the eastern channel of Sagami Bay, which connects Tokyo Bay and the Pacific Ocean, water-exchange time becomes longer by about 2 days because the warm water mass is blocked in the surface layer at the bay mouth. On the other hand, when the warm water mass approaches to the mouth of Tokyo Bay through the western channel of Sagami Bay, water-exchange time becomes shorter by about 1 day because the warm water mass intrudes into the middle or lower layers of Tokyo Bay. Such different behavior of warm water mass at the mouth of Tokyo Bay is due to the difference in density of approaching warm water masses, that is, the density of the warm water mass through the eastern channel is smaller than that of the warm water mass through the western channel of Sagami Bay.Responsible Editors: Yens Kappenberg  相似文献   

20.
Soda lakes and pans represent saline ecosystems with unique chemical composition, occurring on all continents. The purpose of this study was to identify and characterise the main environmental gradients and trophic state that prevail in the soda pans (n = 84) of the Carpathian Basin in Central Europe. Underwater light conditions, dissolved organic matter, phosphorus and chlorophyll a were investigated in 84 pans during 2009–2010. Besides, water temperature was measured hourly with an automatic sensor throughout one year in a selected pan. The pans were very shallow (median depth: 15 cm), and their extremely high turbidity (Secchi depth median: 3 cm, min: 0.5 cm) was caused by high concentrations of inorganic suspended solids (median: 0.4 g L−1, max: 16 g L−1), which was the dominant (>50%) contributing factor to the vertical attenuation coefficient in 67 pans (80%). All pans were polyhumic (median DOC: 47 mg L−1), and total phosphorus concentration was also extremely high (median: 2 mg L−1, max: 32 mg L−1). The daily water temperature maximum (44 °C) and fluctuation maximum (28 °C) were extremely high during summertime. The combination of environmental boundaries: shallowness, daily water temperature fluctuation, intermittent hydroperiod, high turbidity, polyhumic organic carbon concentration, high alkalinity and hypertrophy represent a unique extreme aquatic ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号