首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A renewable energy harvester using the piezoelectric effect is developed for the ocean tidal and wind flow. The harvester is made of connected driving blades to an octo-generator, which has a rotator with n blades and a stator attached by eight mass-spring-piston-cylinder-piezoelectricity devices. The resonance and force magnification are utilized to increase the power output of the harvester. A corresponding mathematical model is developed to calculate the root mean square of the generated electric power. The simulation results indicate that the generated power is largely enhanced when the near-resonant condition is established. The power increases with increases in the magnetic flux density, the large-to-small diameter ratio of the cylinder, the size of magnetic bar face, and decreases in the gap between two magnetic faces and the size of the piezoelectric bar face. A generated power of 5 kW is realized by the harvester working under an ocean tidal speed, V = 1.75 m/s, and its geometric and material properties of driving length L = 7.5 m, spring constant kv = 65000 N/m, gap between the two magnets s = 0.0015 m, large to small diameter ratio of the cylinder z = 6, and magnetic flux density Br = 1.45 T.  相似文献   

2.
A lift based cycloidal wave energy converter (WEC) was investigated using potential flow numerical simulations in combination with viscous loss estimates based on published hydrofoil data. This type of wave energy converter consists of a shaft with one or more hydrofoils attached eccentrically at a radius. The main shaft is aligned parallel to the wave crests and submerged at a fixed depth. The operation of the WEC as a wave-to-shaft energy converter interacting with straight crested waves was estimated for an actual ocean wave climate. The climate chosen was the climate recorded by a buoy off the north-east shore of Oahu/Hawaii, which was a typical moderate wave climate featuring an average annual wave power PW = 17 kWh/m of wave crest. The impact of the design variables radius, chord, span and maximum generator power on the average annual shaft energy yield, capacity factor and power production time fraction were explored. In the selected wave climate, a radius R = 5 m, chord C = 5 m and span of S = 60 m along with a maximum generator power of PG = 1.25 MW were found to be optimal in terms of annual shaft energy yield. At the design point, the CycWEC achieved a wave-to-shaft power efficiency of 70%. In the annual average, 40% of the incoming wave energy was converted to shaft energy, and a capacity factor of 42% was achieved. These numbers exceeded the typical performance of competing renewables like wind power, and demonstrated that the WEC was able to convert wave energy to shaft energy efficiently for a range of wave periods and wave heights as encountered in a typical wave climate.  相似文献   

3.
Energy harvesting using piezoelectric materials can be realised by periodic external force. Piezoelectric material directly converts strain energy into electric power to capture a wasted ambient kinetic energy. This recovered energy can be used for operating wireless sensors, such as those found in environmental monitoring, mechanical sensing and structural diagnostic. In our previous work, a flexible piezoelectric device, FPED, was proposed and developed as an energy harvester for generating electric power from flow-induced vibration in ocean and wind environments. In this study a FPED with a painted piezoelectric layer, highly durable in order to withstand extreme bending and weathering caused by waves and currents, is proposed and developed by spray coating for use as an ocean energy harvester. A numerical method is developed to predict electro-fluid–structure interactions and to evaluate electrical performance and mechanical behaviours of the painted FPED. Additionally, validation of the numerical model is provided through several experimental tests. This study also investigates the relationship between the stiffness of the painted FPED and the vibrated frequency, as well as determining their influence on the electrical performance. Finally, the outcomes from a field test, conducted in real ocean space, is presented to provide information on electrical performance, mechanical behaviours and durability of painted FPEDs. The paper shows that a painted FPED is a useful and robust energy harvester for generating electric power from harsh environments.  相似文献   

4.
Based on the linear potential flow theory and matching eigen-function expansion technique, an analytical model is developed to investigate the hydrodynamics of two-dimensional dual-pontoon floating breakwaters that also work as oscillating buoy wave energy converters (referred to as the integrated system hereafter). The pontoons are constrained to heave motion independently and the linear power take-off damping is used to calculate the absorbed power. The proposed model is verified by using the energy conservation principle. The effects of the geometrical parameters on the hydrodynamic properties of the integrated system, including the reflection and transmission coefficients and CWR (capture width ratio, which is defined as the ratio of absorbed wave power to the incident wave power in the device width). It is found that the natural frequency of the heave motion and the spacing of the two pontoons are the critical factors affecting the performance of the integrated system. The comparison between the results of the dual-pontoon breakwater and those of the single-pontoon breakwater shows that the effective frequency range (for condition of transmission coefficient KT < 0.5 and the total capture width ratio ηtotal > 20%) of the dual-pontoon system is broader than that of the single-pontoon system with the same total volume. For the two-pontoon system, the effective frequency range can be broadened by decreasing the draft of the front pontoon within certain range.  相似文献   

5.
Energy harvesting is a topic of global interest in both academic research and practical application across many fields. The main concept in energy harvesting is to convert wasted ambient energy into useful electrical energy. In particular, piezoelectric materials can be used to convert strain energy into electric power directly, and piezoelectric materials can be used to harvest external vibration forces.This paper proposes and develops a highly flexible piezoelectric energy device (FPED) to harvest flow-induced vibration by converting ambient kinetic energy such as ocean, current and wind energy into electric power. The energy harvesting device uses piezoelectric layers (e.g. PVDF) and elastomer materials (e.g. rubber or silicone) to achieve high electric performance and efficiency. The design of the FPED was optimized by considering the aspect ratio, support system, initial tension and incorporates a bluff body to generate turbulence. A theoretical model based on the transfer matrix method was used with the initial tension force and natural frequency of the harvester. The model demonstrated the maximum electric performance and optimized the structural layers and size under the parameter studies. Numerical and experimental results proved the potential of the highly flexible piezoelectric energy device to convert ambient kinetic energy from flow-induced vibration into useful electrical energy.  相似文献   

6.
Rapid ‘swing’, compass variations O(10°) in O(10 s), and ‘spin’, complete rotations around the vertical axis within a few minutes, are a concern of acoustic current meters moored in-line. Observations are used from fast sampling, at once per 1 and 30 s, instrumentation on deep-ocean moorings mainly outside surface wave and bottom boundary influences. Such instruments do not require a vane common to some historic mechanical current meters and they are often moored in a much easier to handle sub-surface buoy or mounting rack, without vanes. In their mountings they are nearly symmetric, so that they can spin freely in (turbulent; shear) flows. A comparison is made between noise levels of such free spinning instrumentation with those of instruments mounted in a fixed bottom-frame and with those of instruments equipped with a vane to one side. Typical spinning has a single rotation varying between 40 and 200 s. Spinning is shown to be highly binary: on or off. Its effects are found negligible on estimates of ocean currents, provided compass updates are adequate as in existing instrumentation. Acoustic noise is O(10) times larger than noise due to spinning. Some effects of spinning are noticed in the acoustic echo amplitude showing higher noise at frequencies >100 cpd, cycles per day. The character of this noise changes dramatically due to spinning. However, it is mainly in the ocean turbulence range and does not affect measurements of internal waves or periodic zooplankton motions.  相似文献   

7.
Argo-type profiling float observations under the Arctic multiyear ice   总被引:1,自引:0,他引:1  
To monitor and better understand temperature and salinity conditions in the Arctic Ocean interior, we developed a new Argo-type ocean profiling system for the polar oceans. This Polar Ocean Profiling System (POPS) consists mainly of an ice platform and an Argo-type subsurface CTD profiler. The ice platform includes a system controller that manages all data acquisition, processing, formatting, and messaging. Iridium satellite communication technology sends the observation data and also allows remote commands to be sent from the laboratory to the buoy. The profiler is mounted on an oceanographic cable interfaced to the platform; the profiler moves along the cable between depths of 10 and 1000 m. The inductive modem system provides data transfer between the ice platform and the profiler. In April 2005, field tests of the POPS were conducted in the Arctic Ocean near the North Pole. Later on, commands were sent via Iridium from the laboratory to the buoy to change the data sampling acquisition frequency, allowing us to obtain 14 temperature and salinity profiles during the first 22 days. We confirmed that POPS could measure temperature and salinity with conservative accuracies better than 0.01 °C for temperature and 0.01 for salinity. Following this test, we initiated the observation of the Arctic Ocean from 10 m down to 1000 m depths in April 2006 using POPS, and we also started sending the data to the global telecommunication system (GTS) in real time. These data are the first Argo data sent from the Arctic Ocean. Not only Arctic oceanographers but also everyone who is interested in Arctic oceanographic conditions can easily access these data from the Argo data server.  相似文献   

8.
The concentration of dissolved and particulate Re have been measured in the Narmada, Tapi and the Mandovi estuaries in the Arabian Sea and the Hooghly estuary in the Bay of Bengal. Re concentration in water and particulate matter of these estuaries is highly variable. Re in river waters analysed varies from 1 to 41 pmol/kg, the lowest in the Mandovi and the highest in the Mahi river. Re concentrations in the rivers analysed except in the Mandovi river are higher than the average global riverine Re concentration of 2.1 pmol/kg. Based on this study and the available data, the contemporary global annual flux of dissolved riverine Re is estimated to be ~ 350 × 103 mol with an average concentration of ~ 9.2 pmol/kg, much higher than the earlier estimates. Residence time of Re in the oceans based on this estimate is 175,000 years, ~ 4 times lower compared to earlier estimates. Re behaves conservatively in all the estuaries studied. Re concentrations of seawater in the Bay of Bengal and in the Arabian Sea, estimated from the data of the Hooghly and the Mandovi estuaries respectively are ~ 40 pmol/kg, similar to the open ocean Re values of the Arabian Sea measured in this study and the values reported for in other oceanic regions. However, the dissolved Re in the Gulf of Cambay is 2 to 5 times higher, consistent with the high Re measured in the Mahi estuary and in the coastal waters of the Gulf of Cambay. The source of high Re in the Gulf of Cambay seems to be anthropogenic, measurements of Re in rivers and industrial waste waters draining into the Gulf supply amount to ~ 2300 mol of Re annually. This anthropogenic supply coupled with high residence time of water in the Gulf contribute to its high Re. Re concentration in suspended sediments of the Narmada estuary varies from 1 to 2 pmol/g, and does not show any discernible trend with salinity.The contemporary global riverine Re supply to the oceans estimated in this study is ~ 2–4 times higher compared to its removal in the reducing (anoxic/suboxic) sediments, indicating non-steady state of Re in the ocean. High dissolved riverine Re flux coupled with high Re content in the Gulf of Cambay highlights the need of a detailed study of Re in the various global rivers and in oceans including coastal regions and semi enclosed basins of the world to understand its behaviour in various reservoirs and to constrain the residence time of Re in the ocean.  相似文献   

9.
A towed surface sampling device coupled to two automated flow injection analysis (FIA) systems is described. The towed system permits uncontaminated sampling of seawater from research vessels while underway at full speed. Coupling the sampler to the FIA systems permits automatic determination of Al and Fe in surface waters at natural levels at 5 min intervals, equivalent to ∼1.5 km spacing at a ship speed of 10 knots (5 m s−1). Results from the tropical Atlantic indicate significant (50%) variation in concentrations of both Al and Fe on space scales of less than 90 km. The combined system facilitates surface mapping of large regions of the ocean for dissolved Al and Fe, thus identifying the sites and magnitude of eolian deposition to the surface ocean. In combination with the determination of nutrients and other biological parameters this permits the investigation of the role that eolian deposition plays in modifying surface water biogeochemical cycles.  相似文献   

10.
Simulations from a coupled ice–ocean model that highlight the importance of synoptic forcing on sea-ice dynamics are described. The ocean model is a non-hydrostatic primitive equation model coupled to a dynamic thermodynamic sea ice model. The ice modelling sensitivity study presented here is part of an ongoing research programme to define the role played by sea ice in the energy balance of the Greenland Sea. The different categories of sea ice found in the subpolar regions are simulated through the use of equations for thin ice, thick ice and the Marginal Ice Zone. A basin scale numerical model of the Greenland, Iceland and Norwegian Seas has a horizontal resolution of 20 km and a vertical grid spacing of 50 m. This resolution is adequate for resolving the mesoscale topographic structures known to control the circulation in this region. The spin-up reproduces the main features of the circulation, including the cyclonic gyres in the Norwegian and Greenland Basins and Iceland Plateau. Topographic steering of the flow is evident. The baroclinic Rossby radius of deformation is between 5 and 10 km so that the model is not eddy-resolving. The coupled ice–ocean model was run for a period of two weeks. The influence of horizontal resolution of the atmospheric model was tested by comparing simulations using six hourly wind fields from the ECMWF with those generated using six hourly fields from a HIRLAM, with horizontal resolutions of 1° and 0.18° respectively. The simulations show reasonable agreement with satellite ice compactness data and data of ice transports across sections at 79°N, 75°N and Denmark Strait.  相似文献   

11.
To describe the larval and juvenile fish fauna and to evaluate the relative contribution of the ocean and the estuary as settlement areas for benthic species, we compared the composition and abundance of larval fish supply to that of recently settled juvenile fishes in both ocean and an adjacent estuary habitats in southern New Jersey. The study was conducted from May to November 1992 in the Great Bay–Little Egg Harbor estuary (<1–8 m sampling depth) and on the adjacent inner continental shelf in the vicinity of Beach Haven Ridge (8–16 m). During the study more larvae nearing settlement (postflexion) were captured in the estuary than in the ocean. Settlement occurred earlier in the estuary than in the ocean perhaps under the influence of earlier, seasonal warming of estuarine waters. There appeared to be two spatial patterns of settlement in the study area based on the dominant species (n = 17) represented by a sufficient number of individuals (n  25 individuals). There were species that primarily settle in the estuary, as represented by both estuarine residents (n = 3) and transients (n = 4), and those that settle in both the estuary and the ocean (n = 10). However, there were no species whose larvae were present in the estuary yet settle in the ocean. The fact that many of the species settle in both the estuary and the ocean indicates an overlap between these habitats because, at least for some species, these habitats may function in the same way. Further resolution of fish settlement patterns, and its influence on recruitment will need to rely on synoptic comparisons between estuaries and the ocean over multiple years.  相似文献   

12.
Fiber reinforced polymer composite deck panels are effectively used in the construction of offshore structures such as pontoons, floating docks, oil drilling platforms, ocean thermal energy conversion (OTEC) systems and harbor structures due to their excellent corrosion and fatigue resistance, high strength to weight ratio and stiffness to weight ratio and less maintenance cost. The main objective of this investigation is to study the load–deflection behavior of glass fiber reinforced polymer (GFRP) composite deck panels under static loading. Three prototype GFRP composite deck panels each with a size of 3000 mm×1000 mm×300 mm were fabricated using hand lay-up process and tested under a factored load of AASHTO HS20/IRC Class A wheeled vehicle. The deck panels were analyzed using the standard FE software, ANSYS. Maximum deflection and strain at factored load, and flexural and shear rigidities were calculated in the FE analysis and compared with the experimental data, and also with the specifications given by the Ohio Department of Transportation (ODOT), USA. From this study, it is concluded that the fabricated GFRP deck panels satisfied the performance criteria specified by ODOT and can be used in berthing structures, bridges in coastal regions, offshore oil platforms, OTEC systems and also in seismic prone areas.  相似文献   

13.
A novel shipboard gas tension device (GTD) that measures total dissolved air pressure in ocean surface waters is described and demonstrated. In addition, an improved method to estimate dissolved N2 levels from simultaneous measurements of gas tension, dissolved O2, water temperature, and salinity is described. Other than a flow-through plenum, the shipboard GTD is similar to the previously described moored-mode GTD (McNeil et al., 1995, Deep-Sea Research I 42, 819–826). The plenum has an integrated water-side screen to protect the membrane, and prevent the membrane from flexing in super-saturated near surface waters. The sampling scheme uses a well mixed and thermally insulated 15 L container that is flushed by the ship's seawater intake at a rate of 3–15 L min−1. Dissolved gas sensors are placed inside this container and flushed with a small recirculation pump. Laboratory data that characterize the response of the modified GTD are presented. The modified GTD has a constant, isothermal, characteristic (e-folding) response time of typically 11±2 min at 20 °C. The response time decreases with increasing temperature and varies by ±35% over a temperature range of 5–35 °C. Results of field measurements, collected on the R.V. Brown between New York and Puerto Rico during September 2002, are presented, and provide the first look at co-variability in surface ocean N2, O2, and CO2 levels over horizontal length scales of several kilometers. Dissolved N2 concentrations decreased by approximately 16% as the ship sailed from the colder northern continental shelf waters, across the Gulf Stream, and into the warmer northwestern Atlantic Ocean. Historical database measurements, buoy time series, and satellite imagery, are used to aid interpretation of the dissolved gas levels.  相似文献   

14.
The amount of metabolic energy available for primary production by chemolithoautotrophic microorganisms in a submarine hydrothermal plume is evaluated using geochemical models. Oxidation of elemental sulfur and metal sulfides precipitated in the hydrothermal plume represent the largest potential sources of metabolic energy in the plume (∼600 cal/kg vent fluid from each source). Among dissolved substrates, oxidation of H2 potentially provides the greatest amount of energy (∼160 cal/kg). Smaller, but still significant, amounts of energy are also available from sulfate reduction (54 cal/kg), methanogenesis (17 cal/kg), and methanotrophy (13 cal/kg). Only negligible amounts of energy are available from oxidation of Fe(II) or Mn(II) compounds or Fe3+ reduction (<1 cal/kg vent fluid). The models suggest that most primary production in the plume should occur in the early stages of plume development from sulfur- and H2-oxidizers entrained in the plume or colonizing the surfaces of minerals settling from the plume. The total primary productivity potential in the plume is estimated to be about 50 mg dry wt biomass/kg vent fluid. This translates to a global annual biomass production in hydrothermal plumes on the order of 1012 g dry wt/yr, which represents only a small fraction of the total photosynthetic biomass production in the oceans (∼1017 g dry wt/yr). Nevertheless, biomass generated in hydrothermal plumes may represent a significant fraction of the organic matter in the deep ocean as well as that deposited in sediments in ocean basins.  相似文献   

15.
The geographical distribution of barotropic to baroclinic transfer of tidal energy by baroclinic wave drag in the abyssal ocean is estimated. Using tidal velocities from a state-of-the-art numerical tidal model, the total loss of barotropic tidal energy in the deep ocean (between 70°S and 70°N and at depths greater than 1000 m) is estimated to be about 0.7 TW (M2) corresponding to a mean value of the energy flux (e) of 2.4×10−3 W/m2. The distribution of e is however highly skewed with a median of about 10−6 W/m2. Only 10% of the area is responsible for more than 97% of the total energy transfer.To assess the possible influence of the relatively coarse bathymetry representation upon the present estimate, complementary calculations using better resolved sea floor topography are carried out over a control area around the Hawaiian Ridge. There are no major differences between the results achieved using the two different bathymetry databases. Fluxes of about 16 GW or 6×10−3 W/m2 are computed in both cases, and the main contributions to the total fluxes originate in the same range of e-values and cover equally large parts of the total area.It is not clear whether the present model is valid at flat or subcritical bottom slopes. However, for the Hawaiian region, only 2% of the total energy flux as calculated in the present study originates in areas of critical and subcritical slopes.  相似文献   

16.
Current estimates point to a mismatch of particulate organic carbon supply derived from the surface ocean and the microbial organic carbon demand in the meso- and bathypelagic realm. Based on recent findings that chemoautotrophic Crenarchaeota are abundant in the mesopelagic zone, we quantified dissolved inorganic carbon (DIC) fixation in the meso- and bathypelagic North Atlantic and compared it with heterotrophic microbial activity. Measuring 14C-bicarbonate fixation and 3H-leucine incorporation revealed that microbial DIC fixation is substantial in the mesopelagic water masses, ranging from 0.1 to 56.7 μmol C m−3 d−1, and is within the same order of magnitude as heterotrophic microbial activity. Integrated over the dark ocean’s water column, DIC fixation ranged from 1–2.5 mmol C m−2 d−1, indicating that chemoautotrophy in the dark ocean represents a significant source of autochthonously produced ‘new organic carbon’ in the ocean’s interior amounting to about 15–53% of the phytoplankton export production. Hence, chemoautotrophic DIC fixation in the oxygenated meso- and bathypelagic water column of the North Atlantic might substantially contribute to the organic carbon demand of the deep-water microbial food web.  相似文献   

17.
We report results from the first deployment of a buoy-mounted aerosol sampler on the Bermuda Testbed Mooring (BTM) in the Sargasso Sea, in which a time-series of 21 aerosol samples were collected over the period May 5–September 29, 2004. These aerosol samples were analyzed for iron and soluble sodium (as a proxy for sea salt). Also analyzed was a time-series of 22 aerosol samples collected over the same period at the Tudor Hill atmospheric sampling tower on Bermuda. The buoy sampler worked as intended and successfully collected a time-series of aerosol samples, thus demonstrating that moored buoys can be used as oceanic observatories to provide information on the temporal (weekly, monthly and seasonal) variability in the concentration of aerosol iron (and other trace elements) over the surface ocean. The magnitude and time variation of aerosol Fe concentrations calculated from the BTM buoy samples are in close agreement with the corresponding aerosol Fe record from the Tudor Hill tower, which is located approximately 80 km northwest of the mooring site. Both the BTM and Tudor Hill samples record periods of high aerosol iron loadings in late June and late July 2004, reflecting the transport of soil dust from North Africa, with the highest concentration of aerosol iron at the BTM site (0.83 μg m−3) measured in late June. Concentrations of sea-salt aerosol calculated from the BTM samples are comparable to values measured over the Sargasso Sea and for samples collected at the Tudor Hill tower. Sea-salt aerosols do not appear to impede the collection of mineral aerosols by the buoy-mounted sampler.  相似文献   

18.
Satellite remote sensing offers new means of quantifying particulate organic carbon, POC, concentration over large oceanic areas. From SeaWiFS ocean color, we derived 10-year data of POC concentration in the surface waters of the global ocean. The 10-year time series of the global and basin scale average surface POC concentration do not display any significant long-term trends. The annual mean surface POC concentration and its seasonal amplitude are highest in the North Atlantic and lowest in the South Pacific, when compared to other ocean basins. POC anomalies in the North Atlantic, North Pacific, and global concentrations seem to be inversely correlated with El Niño index, but longer time series are needed to confirm this relationship. Quantitative estimates of POC reservoir in the oceanic surface layer depend on the choice of what should represent this layer. Global average POC biomass is 1.34 g m?2 if integrated over one optical depth, 3.62 g m?2 if integrated over mixed layer depth, and up to 6.41 g m?2 if integrated over 200-m layer depth (when assumed POC concentration below MLD is 20 mg m?3). The global estimate of total POC reservoir in the surface 200-m layer of the ocean is 228.61×1013 g. We expect that future estimates of POC reservoir may be even larger, when more precise calculations account for deep-water organic-matter maxima in oligotrophic regions, and POC biomass located just below the seasonal mixed layer in spring and summer in the temperate regions.  相似文献   

19.
Marginal seas provide a globally important interface between land and interior ocean where organic carbon is metabolized, buried or exported. The trophic status of these seas varies seasonally, depending on river flow, primary production, the proportion of dissolved to particulate organic carbon and other factors. In the Strait of Georgia, about 80% of the organic carbon in the water column is dissolved. Organic carbon enters at the surface, with river discharge and primary production, particularly during spring and summer. The amount of organic carbon passing through the Strait (∼16 × 108 kg C yr−1) is almost twice the standing inventory (∼9.4 × 108 kg C). The organic carbon that is oxidized within the Strait (∼5.6 × 108 kg yr−1) presumably supports microbial food webs or participates in chemical or photochemical reactions, while that which is exported (7.2 × 108 kg yr−1) represents a local source of organic carbon to the open ocean.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号