首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Diamond crystallization in multicomponent melts of variable composition is studied. The melt carbonates are K2CO3, CaCO3?MgCO3, and K-Na-Ca-Mg-Fe-carbonatites, and the melt silicates are model peridotite (60 wt.% olivine, 16 wt.% orthopyroxene, 12 wt.% clinopyroxene, and 12 wt.% garnet) and eclogite (50 wt.% garnet and 50 wt.% clinopyroxene). In the experiments carried out under the PT-conditions of diamond stability, the carbonate-silicate melts behave like completely miscible liquid phases. The concentration barriers of diamond nucleation (CBDN) in the melts with variable proportions of silicates and carbonates have been determined at 8.5 GPa. In the system peridotite–K2CO3–CaCO3?MgCO3–carbonatite they correspond to 30, 25, and 30 wt.% silicates, respectively, and in the analogous eclogite–carbonate system, 45, 30, and 35 wt.%. In the silicate-carbonate melts with higher silicate contents seed diamond growth occurs, which is accompanied by the crystallization of thermodynamically unstable graphite phase. In the experiments with melts compositionally corresponding to the CBDN at 7.0 GPa and 1200–1700 °C, a full set of silicate minerals of peridotite (olivine, orthopyroxene, clinopyroxene, garnet) and eclogite (garnet, clinopyroxene) parageneses was obtained. The minerals occur as syngenetic inclusions in natural diamonds; moreover, the garnets contain an impurity of Na, and the pyroxenes, K. The experimental data indicate that peridotite-carbonate and eclogite-carbonate melts are highly effective for the formation of diamond (or unstable graphite) together with syngenetic minerals and melts, which agrees with the carbonate-silicate (carbonatite) model for the mantle diamond formation.  相似文献   

2.
A generalized diagram was constructed for the compositions of multicomponent heterogeneous parental media for diamonds of kimberlite deposits on the basis of the mantle carbonatite concept of diamond genesis. The boundary compositions on the diagram of the parental medium are defined by the components of minerals of the peridotite and eclogite parageneses, mantle carbonatites, carbon, and the components of volatile compounds of the C-O-H system and accessory phases, both soluble (chlorides, phosphates, and others) and insoluble (sulfides and others) in carbonate-silicate melts. This corresponds to the compositions of minerals, melts, and volatile components from primary inclusions in natural diamonds, as well as experimental estimations of their phase relations. Growth media for most natural diamonds are dominated by completely miscible carbonate-silicate melts with dissolved elemental carbon. The boundary compositions for diamond formation (concentration barriers of diamond nucleation) in the cases of peridotite-carbonate and eclogite-carbonate melts correspond to 30 wt % peridotite and 35 wt % eclogite; i.e., they lie in the carbonatite concentration range. Phase relations were experimentally investigated at 7 GPa for the melting of the multicomponent heterogeneous system eclogite-carbonatite-sulfide-diamond with a composition close to the parental medium under the conditions of the eclogite paragenesis. As a result, “the diagram of syngenesis” was constructed for diamond, as well as paragenetic and xenogenic mineral phases. Curves of diamond solubility in completely miscible carbonate-silicate and sulfide melts and their relationships with the boundaries of the fields of carbonate-silicate and sulfide phases were determined. This allowed us to establish the physicochemical mechanism of natural diamond formation and the P-T conditions of formation of paragenetic silicate and carbonate minerals and coexistence of xenogenic sulfide minerals and melts. Physicochemical conditions of the capture of paragenetic and xenogenic phases by growing diamonds were revealed. Based on the mantle carbonatite concept of diamond genesis and experimental data, a genetic classification of primary inclusions in natural diamond was proposed. The phase diagrams of syngenesis of diamond, paragenetic, and xenogenic phases provide a basis for the analysis of the physicochemical history of diamond formation in carbonatite magma chambers and allow us to approach the formation of such chambers in the mantle material of the Earth.  相似文献   

3.
Diamond crystallization from carbon solutions in compositionally variable melts of model eclogite with dolomite [CaMg(CO3)2], potassium carbonate (K2CO3), and multicomponent K-Na-Ca-Mg-Fe carbonates was studied at 7.0–8.5 GPa. Concentration barriers for the nucleation of the diamond were determined at a standard pressure of 8.5 GPa for variable proportions of silicate and carbonate components in the growth solutions. They correspond to 35, 65, and 40 wt % of silicate components for systems with dolomite, K2CO3, and carbonatites, respectively. At higher contents of silicates in silicate-carbonate melts, the nucleation of diamond phase ceases, but diamond crystallization on seed crystals continues and is accompanied by the spontaneous crystallization of thermodynamically unstable graphite. In melts of the albite (NaAlSi3O8)-K2CO3-C compositions, the concentration barrier of diamond nucleation at 8.5 GPa is up to 90–92 wt % of the albite component, and diamond growth on seeds was observed in albite-carbon melts. Using mineralogical and experimental data, we developed a model of mantle carbonate-silicate (carbonatite) melts as the main parental media for natural diamonds; it was shown that the composition of the silicate constituent of such parental melts is variable and corresponds to the mantle ultrabasic-basic series. With respect to concentration contributions and dominant role in the genesis of diamond in the Earth’s mantle, major (carbonate and silicate) and minor or admixture components were distinguished. The latter include both soluble in carbonate-silicate melts (oxides, phosphates, chlorides, carbon dioxide, and water) and insoluble components (sulfides, metals, and carbides). Both major and minor components may affect the position of the concentration barriers of diamond nucleation in natural parent media.  相似文献   

4.
Phase relations of diamond and syngenetic minerals were experimentally investigated in the multicomponent system natural carbonatite-diamond at a pressure of 8.5 GPa and temperatures of 1300–1800°C (within the thermodynamic stability field of diamond). Under such conditions, the natural carbonatite of the Chagatai complex (Uzbekistan) acquires the mineralogy of Ca-rich eclogites (grospydites). The melting phase diagram of this system (syngenesis diagram) was constructed; an important element of this diagram is the diamond solubility curve in completely miscible carbonate-silicate melts (solubility values are 15–18 wt % C). The diamond solubility curve divides the phase diagram into two fields corresponding to (1) phase relations involving diamond-undersaturated melts-solutions of carbon with garnet as a liquidus phase (region of diamond dissolution) and (2) phase relations with diamond-saturated melts-solutions with diamond as a liquidus phase (region of diamond crystallization). During a temperature decrease in the region of diamond crystallization from carbonate-silicate melts, the crystallization of diamond is accompanied by the sequential formation of the following phase assemblages: diamond + garnet + melt, diamond + garnet + clinopyroxene + melt, and diamond + garnet + clinopyroxene + carbonate + melt, and the subsolidus assemblage diamond + garnet + clinopyroxene + carbonate is eventually formed. This is indicative of the paragenetic nature of silicate and carbonate minerals co-crystallizing with diamond and corresponding primary inclusions trapped by the growing diamond. A physicochemical mechanism was proposed for the formation of diamond in carbonate-silicate melts. The obtained results were used to analyze the physicochemical behavior of a natural diamond-forming magma chamber.  相似文献   

5.
Experimental studies of diamond formation in the alkaline silicate-carbon system Na2O–K2O–MgO–CaO–Al2O3–SiO2–C were carried out at 8.5 GPa. In accordance with the diamond nucleation criterion, a high diamond generation efficiency (spontaneous mass diamond crystallization) has been confirmed for the melts of the system Na2SiO3–carbon and has been first established for the melts of the systems CaSiO3–carbon and (NaAlSi3O8)80(Na2SiO3)20–carbon. It is shown that in completely miscible carbonate-silicate melts oversaturated with dissolved diamond-related carbon, a concentration barrier of diamond nucleation (CBDN) arises at a particular ratio of carbonate and silicate components. Study of different systems (eclogite–K-Na-Mg-Ca-Fe-carbonatite–carbon, albite–K2CO3–carbon, etc.) has revealed a dependence of the barrier position on the chemical composition of the system and the inhibiting effect of silicate components on the nucleation density and rate of diamond crystal growth. In multicomponent eclogite-carbonatite solvent, the CBDN is within the range of carbonatite compositions (<50 wt.% silicates). Based on the experimental criterion for the syngenesis of diamond and growth inclusions in them, we studied the syngenesis diagram for the system melanocratic carbonatite–diamond and determined a set of the composition fields and physical parameters of the system that are responsible for the cogeneration of diamond and various mineral and melt parageneses. The experimental results were applied to substantiate a new physicochemical concept of carbonate-silicate (carbonatite) growth media for most of natural diamonds and to elaborate a genetic classification of growth mineral, melt, and fluid inclusions in natural diamonds of mantle genesis.  相似文献   

6.
Results of experimental study at 7.0–8.5 GPa and 1300–1900°C of the systems pyrope Mg3Al2Si3O12 (Prp)-Na2MgSi5O12 (NaGrt) modeling solid solutions of Na-bearing garnets, Prp-jadeite NaAlSi2O6 (Jd) in a simplified mode demonstrating melting relations of Na-rich eclogite, and Prp-Na2CO3 are presented. Prp-Na2MgSi5O12 join is a pseudobinary that results from the decomposition of NaGrt on to coesite and Na-pyroxene. Synthesized garnets are characterized by Na admixture (>0.32 wt % Na2O) and excess Si (3.05–3.15 f.u.). Maximal Na2O concentrations (1.5 wt % Na2O) are reached on the solidus of the system at 8.5 GPa. Clear correlation between Na and Si was established in synthesized garnets; this provides evidence for heterovalent isomorphism of the Mg + Al → Na + Si type with the appearance of Na2MgSi5O12 component as a mechanism of such garnet formation. The Prp-Jd join is also pseudobinary that results from the formation of two series of solid solutions: (1) garnet (Prp-NaGrt-majorite) and (2) pyroxene (Jd-clinoenstatite-Eskola molecule), and the appearance of kyanite at the solidus of the system, where garnets with the highest Na2O contents (>0.8 wt %) are formed. In spite of quite a wide field of garnet crystallization (20–100 mol % Prp), garnets with significant sodium concentration (>0.3 wt % Na2O) are formed in a Jd-rich part of the system (20–50 mol % Prp). In the Prp-Na2CO3 system at 8.5 GPa garnet crystallizes in a wide range of starting compositions as a liquidus mineral containing up to 0.9 wt % Na2O. Our experiments demonstrate that melt alkalinity, as well as PT-parameters control the crystallization of Na-bearing majoritic garnets. The results obtained provide evidence for the fact that the majority of natural diamonds with inclusions of Na-bearing majoritic garnets containing <0.4 wt % Na2O were formed in alkaline silicate (carbonate-silicate) melts at a pressure of <7 GPa. Only a small portion of garnets with higher sodium concentrations (>1 wt % Na2O) could be formed at a pressure of >8.5 GPa. 1 This article was translated by the authors.  相似文献   

7.
This paper presents new major and trace element data from 150 garnet xenocrysts from the V. Grib kimberlite pipe located in the central part of the Arkhangelsk diamondiferous province (ADP). Based on the concentrations of Cr2O3, CaO, TiO2 and rare earth elements (REE) the garnets were divided into seven groups: (1) lherzolitic “depleted” garnets (“Lz 1”), (2) lherzolitic garnets with normal REE patterns (“Lz 2”), (3) lherzolitic garnets with weakly sinusoidal REE patterns (“Lz 3”), (4) lherzolitic garnets with strongly sinusoidal REE patterns (“Lz 4”), (5) harzburgitic garnets with sinusoidal REE patterns (“Hz”), (6) wehrlitic garnets with weakly sinusoidal REE patterns (“W”), (7) garnets of megacryst paragenesis with normal REE patterns (“Meg”). Detailed mineralogical and geochemical garnet studies and modeling results suggest several stages of mantle metasomatism influenced by carbonatite and silicate melts. Carbonatitic metasomatism at the first stage resulted in refertilization of the lithospheric mantle, which is evidenced by a nearly vertical CaO-Cr2O3 trend from harzburgitic (“Hz”) to lherzolitic (“Lz 4”) garnet composition. Harzburgitic garnets (“Hz”) have probably been formed by interactions between carbonatite melts and exsolved garnets in high-degree melt extraction residues. At the second stage of metasomatism, garnets with weakly sinusoidal REE patterns (“Lz 3”, “W”) were affected by a silicate melt possessing a REE composition similar to that of ADP alkaline mica-poor picrites. At the last stage, the garnets interacted with basaltic melts, which resulted in the decrease CaO-Cr2O3 trend of “Lz 2” garnet composition. Cr-poor garnets of megacryst paragenesis (“Meg”) could crystallize directly from the silicate melt which has a REE composition close to that of ADP alkaline mica-poor picrites. P-T estimates of the garnet xenocrysts indicate that the interval of ~60–110 km of the lithospheric mantle beneath the V. Grib pipe was predominantly affected by the silicate melts, whereas the lithospheric mantle deeper than 150 km was influenced by the carbonatite melts.  相似文献   

8.
We present petrography and mineral chemistry for both phlogopite,from mantle-derived xenoliths(garnet peridotite,eclogite and clinopyroxene-phlogopite rocks)and for megacryst,macrocryst and groundmass flakes from the Grib kimberlite in the Arkhangelsk diamond province of Russia to provide new insights into multi-stage metasomatism in the subcratonic lithospheric mantle(SCLM)and the origin of phlogopite in kimberlite.Based on the analysed xenoliths,phlogopite is characterized by several generations.The first generation(Phil)occurs as coarse,discrete grains within garnet peridotite and eclogite xenoliths and as a rock-forming mineral within clinopyroxene-phlogopite xenoliths.The second phlogopite generation(Phl2)occurs as rims and outer zones that surround the Phil grains and as fine flakes within kimberlite-related veinlets filled with carbonate,serpentine,chlorite and spinel.In garnet peridotite xenoliths,phlogopite occurs as overgrowths surrounding garnet porphyroblasts,within which phlogopite is associated with Cr-spinel and minor carbonate.In eclogite xenoliths,phlogopite occasionally associates with carbonate bearing veinlet networks.Phlogopite,from the kimberlite,occurs as megacrysts,macrocrysts,microcrysts and fine flakes in the groundmass and matrix of kimberlitic pyroclasts.Most phlogopite grains within the kimberlite are characterised by signs of deformation and form partly fragmented grains,which indicates that they are the disintegrated fragments of previously larger grains.Phil,within the garnet peridotite and clinopyroxene-phlogopite xenoliths,is characterised by low Ti and Cr contents(TiO_21 wt.%,Cr_2 O_31 wt.% and Mg# = 100 × Mg/(Mg+ Fe)92)typical of primary peridotite phlogopite in mantle peridotite xenoliths from global kimberlite occurrences.They formed during SCLM metasomatism that led to a transformation from garnet peridotite to clinopyroxene-phlogopite rocks and the crystallisation of phlogopite and high-Cr clinopyroxene megacrysts before the generation of host-kimberlite magmas.One of the possible processes to generate low-Ti-Cr phlogopite is via the replacement of garnet during its interaction with a metasomatic agent enriched in K and H_2O.Rb-Sr isotopic data indicates that the metasomatic agent had a contribution of more radiogenic source than the host-kimberlite magma.Compared with peridotite xenoliths,eclogite xenoliths feature low-Ti phlogopites that are depleted in Cr_2O_3 despite a wider range of TiO_2 concentrations.The presence of phlogopite in eclogite xenoliths indicates that metasomatic processes affected peridotite as well as eclogite within the SCLM beneath the Grib kimberlite.Phl2 has high Ti and Cr concentrations(TiO_22 wt.%,Cr_2O_31 wt.% and Mg# = 100× Mg/(Mg + Fe)92)and compositionally overlaps with phlogopite from polymict brecc:ia xenoliths that occur in global kimberlite formations.These phlogopites are the product of kimberlitic magma and mantle rock interaction at mantle depths where Phl2 overgrew Phil grains or crystallized directly from stalled batches of kimberlitic magmas.Megacrysts,most macrocrysts and microcrysts are disintegrated phlogopite fragments from metasomatised peridotite and eclogite xenoliths.Fine phlogopite flakes within kimberlite groundmass represent mixing of high-Ti-Cr phlogopite antecrysts and high-Ti and low-Cr kimberlitic phlogopite with high Al and Ba contents that may have formed individual grains or overgrown antecrysts.Based on the results of this study,we propose a schematic model of SCLM metasomatism involving phlogopite crystallization,megacryst formation,and genesis of kimberlite magmas as recorded by the Grib pipe.  相似文献   

9.
High-temperature, high-pressure eclogite and garnet pyroxenite occur as lenses in garnet peridotite bodies of the Gföhl nappe in the Bohemian Massif. The high-pressure assemblages formed in the mantle and are important for allowing investigations of mantle compositions and processes. Eclogite is distinguished from garnet pyroxenite on the basis of elemental composition, with mg number <80, Na2O > 0.75 wt.%, Cr2O3 < 0.15 wt.% and Ni < 400 ppm. Considerable scatter in two-element variation diagrams and the common modal layering of some eclogite bodies indicate the importance of crystal accumulation in eclogite and garnet pyroxenite petrogenesis. A wide range in isotopic composition of clinopyroxene separates [Nd, +5.4 to –6.0; (87Sr/86Sr)i, 0.70314–0.71445; 18OSMOW, 3.8–5.8%o] requires that subducted oceanic crust is a component in some melts from which eclogite and garnet pyroxenite crystallized. Variscan Sm-Nd ages were obtained for garnet-clinopyroxene pairs from Dobeovice eclogite (338 Ma), Úhrov eclogite (344 Ma) and Nové Dvory garnet pyroxenite (343 Ma). Gföhl eclogite and garnet pyroxenite formed by high-pressure crystal accumulation (±trapped melt) from transient melts in the lithosphere, and the source of such melts was subducted, hydrothermally altered oceanic crust, including subducted sediments. Much of the chemical variation in the eclogites can be explained by simple fractional crystallization, whereas variation in the pyroxenites indicates fractional crystallization accompanied by some assimilation of the peridotite host.  相似文献   

10.
We explore the partial melting behavior of a carbonated silica-deficienteclogite (SLEC1; 5 wt % CO2) from experiments at 3 GPa and comparethe compositions of partial melts with those of alkalic andhighly alkalic oceanic island basalts (OIBs). The solidus islocated at 1050–1075 °C and the liquidus at 1415 °C.The sub-solidus assemblage consists of clinopyroxene, garnet,ilmenite, and calcio-dolomitic solid solution and the near solidusmelt is carbonatitic (<2 wt % SiO2, <1 wt % Al2O3, and<0·1 wt % TiO2). Beginning at 1225 °C, a stronglysilica-undersaturated silicate melt (34–43 wt % SiO2)with high TiO2 (up to 19 wt %) coexists with carbonate-richmelt (<5 wt % SiO2). The first appearance of carbonated silicatemelt is 100 °C cooler than the expected solidus of CO2-freeeclogite. In contrast to the continuous transition from carbonateto silicate melts observed experimentally in peridotite + CO2systems, carbonate and silicate melt coexist over a wide temperatureinterval for partial melting of SLEC1 carbonated eclogite at3 GPa. Silicate melts generated from SLEC1, especially at highmelt fraction (>20 wt %), may be plausible sources or contributingcomponents to melilitites and melilititic nephelinites fromoceanic provinces, as they have strong compositional similaritiesincluding their SiO2, FeO*, MgO, CaO, TiO2 and Na2O contents,and CaO/Al2O3 ratios. Carbonated silicate partial melts fromeclogite may also contribute to less extreme alkalic OIB, asthese lavas have a number of compositional attributes, suchas high TiO2 and FeO* and low Al2O3, that have not been observedfrom partial melting of peridotite ± CO2. In upwellingmantle, formation of carbonatite and silicate melts from eclogiteand peridotite source lithologies occurs over a wide range ofdepths, producing significant opportunities for metasomatictransfer and implantation of melts. KEY WORDS: carbonated eclogite; experimental phase equilibria; partial melting; liquid immiscibility; ocean island basalts  相似文献   

11.
Representative diamond-bearing gneisses and dolomitic marble, eclogite and Ti-clinohumite-bearing garnet peridotite from Unit I at Kumdy Kol and whiteschist from Unit II at Kulet, eastern Kokchetav Massif, northern Kazakhstan, were studied. Diamond-bearing gneisses contain variable assemblages, including Grt+Bt+Qtz±Pl±Kfs±Zo±Chl±Tur±Cal and minor Ap, Rt and Zrn; abundant inclusions of diamond, graphite+chlorite (or calcite), phengite, clinopyroxene, K-feldspar, biotite, rutile, titanite, calcite and zircon occur in garnet. Diamond-bearing dolomitic marbles consist of Dol+Di±Grt+Phl; inclusions of diamond, dolomite±graphite, biotite, and clinopyroxene were identified in garnet. Whiteschists carry the assemblage Ky+Tlc+Grt+Rt; garnet shows compositional zoning, and contains abundant inclusions of talc, kyanite and rutile with minor phlogopite, chlorite, margarite and zoisite. Inclusions and zoning patterns of garnet delineate the prograde P–T path. Inclusions of quartz pseudomorphs after coesite were identified in garnet from both eclogite and gneiss. Other ultrahigh-pressure (UHP) indicators include Na-bearing garnet (up to 0.14 wt% Na2O) with omphacitic Cpx in eclogite, occurrence of high-K diopside (up to 1.56 wt% K2O) and phlogopite in diamond-bearing dolomitic marble, and Cr-bearing kyanite in whiteschist. These UHP rocks exhibit at least three stages of metamorphic recrystallization. The Fe-Mg partitioning between clinopyroxene and garnet yields a peak temperature of 800–1000 °C at P >40 kbar for diamond-bearing rocks, and about 740–780 °C at >28–35 kbar for eclogite, whiteschist and Ti-bearing garnet peridotite. The formation of symplectitic plagioclase+amphibole after clinopyroxene, and replacement of garnet by biotite, amphibole, or plagioclase mark retrograde amphibolite facies recrystallization at 650–680 °C and pressure less than about 10 kbar. The exsolution of calcite from dolomite, and development of matrix chlorite and actinolite imply an even lower grade greenschist facies overprint at c. 420 °C and 2–3 kbar. A clockwise P–T path suggests that supracrustal sediments together with basaltic and ultramafic lenses apparently were subjected to UHP subduction-zone metamorphism within the diamond stability field. Tectonic mixing may have occurred prior to UHP metamorphism at mantle depths. During subsequent exhumation and juxtaposition of many other tectonic units, intense deformation chaotically mixed and mylonitized these lithotectonic assemblages.  相似文献   

12.
 Multianvil experiments were carried out at 10–15 GPa and 1600–1700 °C to match the compositions of majoritic garnet inclusions from diamonds, and to determine the compositions of other phases potentially coexisting with these inclusions in the source. Most experiments produced coexisting majoritic garnet, diopsidic clinopyroxene, one or more (Mg,Fe)2SiO4 polymorphs, and quenched carbonatic melt. The experimental garnets had relatively high Ca and Fe contents similar to the observed Ca and Fe contents of the inclusions. The resulting Si contents confirmed that the depth of origin of the inclusion with the highest Si content did not exceed 410 km, thus none of the majoritic garnet inclusions found so far originated in the transition zone (410–660 km). The evidence from inclusions and experiments is consistent with the presence of an eclogite layer occurring globally between 200 and 410 km. Compositional variations observed among more than 100 majoritic garnet inclusions with their Si content, which is a measure of pressure and depth, are consistent with the origin of the eclogite layer by crystal fractionation in a magma ocean. The compositions of olivine coexisting with majoritic garnet in the experimental products had the average Fe/(Fe + Mg) ratios between 0.16 and 0.28. Inclusions with such high Fe contents have not been found; the Fe/(Fe + Mg) ratio of the olivine inclusions in diamonds usually varies between 0.05 and 0.09. Hence, the mantle between 200 and 410 km may not contain olivine. In the absence of olivine, the discontinuity at 410 km is most likely a chemical boundary between the 200-km-thick eclogite layer and a more mafic transition zone. Received: 15 March 2001 / Accepted: 14 September 2001  相似文献   

13.
Petrochemistry of eclogites from the Koidu Kimberlite Complex,Sierra Leone   总被引:1,自引:0,他引:1  
Petrography, mineral and bulk chemistry of upper mantle-derived eclogites (garnet and clinopyroxene) from the Koidu Kimberlite Complex, Sierra Leone, are presented in the first comprehensive study of these xenoliths from West Africa. Although peridotite-suite xenoliths are generally more common in kimberlites, the upper mantle sample preserved in Pipe Number 1 at Koidu is exclusively eclogitic, making this the fifth locality in which eclogite is the sole polymineralic xenolith in kimberlite. Over 2000 xenoliths were collected, of which 47 are described in detail that include diamond, graphite, kyanite, corundum, quartz after coesite, and amphibole eclogites. Grossular-pyrope-almandine garnets are chromium-poor (<0.72 wt% Cr2O3) and fall into two distinct groups based on magnesium content. High-MgO garnets have an average composition of Pyr67Alm22Gross11, low-MgO garnets are grossular- and almandine-rich with an average composition of Gross34Pyr33Alm33. Clinopyroxenes are omphacitic with a range in jadeite contents from 7.7 to 70.1 mol%. Three eclogites contain zoned and mantled garnets with almandine-rich cores and pyrope-rich rims, and zoned clinopyroxenes with diopside-rich cores and jadeite-rich rims, and are among a very rare group of eclogites reported on a world-wide basis. The bulk compositions of eclogites have ranges comparable to that of basalts. High-MgO eclogites (16–20 wt% MgO) have close chemical affinities to picrites, whereas low-MgO eclogites (6–13 wt% MgO) are similar to alkali basalts. High-MgO eclogites contain high-MgO garnets and jadeiterich clinopyroxenes. Low-MgO eclogites contain low-MgO garnets, diopside and omphacite, and the group of primary accessory phases (diamond, graphite, quartz after coesite, kyanite, and corundum); grospydites are peraluminous. Estimated temperatures and pressures of equilibration of diamond-bearing eclogites, using the diamond-graphite stability curve and the Ellis and Green (1979) geothermometer, are 1031°–1363° C at 45–50 kb.K D values of Fe-Mg in garnet and clinopyroxene range from 2.3 to 12.2. Diamonds in eclogites are green, yellow, and clear, and range from cube to octahedral morphologies; the entire spectrum in color and morphology is present in a single metasomatized eclogite with zoned garnet and clinopyroxene. Ages estimated from Sm-Nd mineral isochrons range from 92–247 Ma. Nd values range from +4.05 to 5.23. Values of specific gravity range from 3.06–3.60 g/cc, with calculated seismic Vp of 7.4–8.7 km/s. Petrographie, mineral, and bulk chemical data demonstrate an overall close similarity between the Koidu xenolith suite and upper mantle eclogites from other districts in Africa, Siberia and the United States. At least two origins are implied byP-T, bulk chemistry and mineral compositions: low-MgO eclogites, with diamond and other accessory minerals, are considered to have formed from melts trapped and metamorphically equilibrated in the lithosphere; high-MgO eclogites are picritic and are the products of large degrees of partial melting, with equilibration in the asthenosphere. Fluid or diluted melt metasomatism is pervasive and contributed here and elsewhere to the LIL and refractory silicate incompatible element signature in kimberlites and lamproites, and to secondary diamond growth.  相似文献   

14.
The occurrence of CO2-rich lavas (carbonatites, kimberlites) and carbonate-rich xenoliths provide evidence for the existence of carbonatitic melts in the mantle. To model the chemical composition of such melts in the deep mantle, we experimentally determined partition coefficients for 23 trace elements (including REE, U-Th, HFSE, LILE) between deep mantle minerals and carbonatite liquids at 20 and 25 GPa and 1600 °C. Under these conditions, majoritic garnet and CaSiO3 perovskite are the main reservoirs for trace elements. This study used both femtosecond LA-ICP-MS and SIMS techniques to measure reliable trace element concentrations. Comparison of the two techniques shows a general agreement, except for Sc and Ba. Our experimentally determined partition coefficients are consistent with the lattice strain model. The data suggest an effect of melt structure on partition coefficients in this pressure range. For instance, strain-free partition coefficient (D0) for majorite-carbonatite melts do not follow the order of cation valence, , observed for majorite-CO2-free silicate melts. The newly determined partition coefficients were combined with trace element composition of majoritic garnets found as inclusions in diamond to model trace element patterns of deep-seated carbonatites. The result compares favorably with natural carbonatites. This suggests that carbonatites can originate from the mantle transition zone.  相似文献   

15.
Clinopyroxene/melt pairs in strongly potassic silicate and carbonatite melts exhibit unusually high U/Th partitioning ratios of ˜ 3 and ˜ 2, respectively. These values are much higher than those found for aluminous clinopyroxenes in peridotite, and have the potential to cause significant (230Th)/(238U) isotope enrichment in volcanics. The potassic silicate (lamproite) and carbonatite melts correspond closely to the main agents of mantle metasomatism, indicating that clinopyroxene in metasomatized regions of the mantle may greatly affect U/Th disequilibria. Recycling of alkali pyroxenite veins in the oceanic lithosphere formed by solidification of melt in the extremities of the MORB melting region presents an alternative to eclogite recycling in MORB and OIB genesis.  相似文献   

16.
Melting relations in the multicomponent diamond-forming systems of the upper mantle with a boundary of K–Na–Mg–Fe–Ca carbonate, phases of the model peridotite and eclogite, carbon, and titanium minerals from kimberlite (ilmenite FeTiO3, perovskite CaTiO3, and rutile TiO2) were studied experimentally at 7–8 GPa and 1600–1650°C. Perovskite reacts with the formation of rutile in the diamond-forming silicate–carbonate melts. We discovered liquid immiscibility between melts of titanium minerals, on the one hand, and carbonate–carbon, peridotite–carbonate–carbon, and eclogite–carbonate–carbon diamond-forming melts, on the other. The solubility of titanium mineral in diamond-forming melts is negligible independent of their concentration in the experimental systems. Growth melts retain high diamond-forming efficiency. In general, the experimental results are evident for the xenogenic nature of titanium minerals in inclusions in diamond and, therefore, in diamond-forming melts. It is shown that the physicochemical factors that may correlate the diamond content with the concentration of Ti in kimberlite do not occur during the diamond genesis in silicate–carbonate–carbon parental melts containing titanium minerals and their melts.  相似文献   

17.
Carbonation and decarbonation of eclogites: the role of garnet   总被引:3,自引:0,他引:3  
Carbonates are potentially significant hosts for primordial and subducted carbon in the Earth's mantle. In addition, the coexistence of carbonate with silicates and reduced carbon (diamond or graphite), allows constraints to be placed on the oxidation state of the mantle. Carbonate-silicate-vapor reactions control how carbonate + silicate assemblages may form from carbon-bearing vapor + silicate assemblages with increasing pressure. In olivine-bearing rocks such as peridotite, considered the dominant rock type in the upper mantle, the lowest-pressure carbonate-forming reactions involve olivine (±clinopyroxene) reacting with CO2 (e.g., Wyllie et al. 1983). In eclogitic rocks, the essential mineral assemblage is omphacitic clinopyroxene + garnet, without olivine. Therefore, alternative carbonate-forming reactions must be sought. The carbonation of clinopyroxene via the reaction dolomite + 2 coesite = diopside + 2 CO2 was studied experimentally by Luth (1995). The alternative possibility that garnet reacts with CO2 is explored here by determining the location of the reaction 3 magnesite + kyanite + 2 coesite = pyrope + 3 CO2 between 5 and 11 GPa in multi-anvil apparatus. At the temperatures ≥1200 °C, carbonation of eclogitic rocks with increasing pressure will proceed initially by reaction with clinopyroxene, because the pyrope-carbonation reaction lies at higher pressures for a given temperature than does the diopside-carbonation reaction. Diluting the pyrope component of garnet and the diopside component of clinopyroxene to levels appropriate for mantle eclogites does not change this conclusion. At lower temperatures, appropriate for “cold” slabs, it is possible that the converse situation will hold, with initial carbonation proceeding via reaction with garnet, but this possibility awaits experimental confirmation. Decarbonation of an eclogite under “normal mantle” geothermal conditions by a decrease in pressure, as in an ascending limb of a mantle convection cell, would be governed by the formation of clinopyroxene + CO2. At higher pressure than this reaction, any CO2 produced by the breakdown of magnesite reacting with kyanite and coesite would react with clinopyroxene to produce dolomite + coesite. Release of CO2 from eclogite into mantle peridotite would form carbonate at sub-solidus conditions and produce a dolomitic carbonate melt if temperatures are above the peridotite-CO2 solidus. Received: 4 May 1998 / Accepted: 23 December 1998  相似文献   

18.
《International Geology Review》2012,54(12):1443-1455
Experimental studies on the partial melting of eclogite and peridotite provide important clues on mantle metasomatism. Here, we review results from some of the recent experiments and show that melting of carbonated eclogite and peridotite can produce carbonatitic to carbonated silicate melt, in which carbonates melt preferentially before Ti oxides and silicates. Low-degree melting results in carbonatitic melt coexisting with Ti oxides and silicates. This process also leads to the fractionation between some high-field strength elements (Nb, Ta, Zr, Hf, and HREE) and highly incompatible elements (U and Th) in the melt. When Ti oxides are nearly exhausted in eclogite, extremely high TiO2 contents (e.g. 19 wt.%) are present in the melt with marked concentration of Nb and Ta. These results help to explain the features of carbonatitic metasomatism and the Nb–Ta spike in oceanic island basalts as identified in experimental studies. These studies also explain the reducing conditions that stabilize diamond in the deep mantle (>150 km) as well as the occurrence of diamond at different depths reported in various studies. Melting in such a reduced mantle can happen through redox reaction between diamond, pyroxene, and olivine, in which the initial liquid is a carbonated silicate melt. However, the theoretical oxygen fugacity (fO2) in the asthenosphere is much lower than that predicted by the reaction and requires elevated fO2, which can be caused by the addition of relatively oxidized materials from the lower mantle, deep asthenospheric material, and various recycled components. A combination of these processes generates locally oxidized domains in the deep mantle.  相似文献   

19.
This experimental study examines the mineral/melt partitioning of incompatible trace elements among high-Ca clinopyroxene, garnet, and hydrous silicate melt at upper mantle pressure and temperature conditions. Experiments were performed at pressures of 1.2 and 1.6 GPa and temperatures of 1,185 to 1,370 °C. Experimentally produced silicate melts contain up to 6.3 wt% dissolved H 2O, and are saturated with an upper mantle peridotite mineral assemblage of olivine+orthopyroxene+clinopyroxene+spinel or garnet. Clinopyroxene/melt and garnet/melt partition coefficients were measured for Li, B, K, Sr, Y, Zr, Nb, and select rare earth elements by secondary ion mass spectrometry. A comparison of our experimental results for trivalent cations (REEs and Y) with the results from calculations carried out using the Wood-Blundy partitioning model indicates that H 2O dissolved in the silicate melt has a discernible effect on trace element partitioning. Experiments carried out at 1.2 GPa, 1,315 °C and 1.6 GPa, 1,370 °C produced clinopyroxene containing 15.0 and 13.9 wt% CaO, respectively, coexisting with silicate melts containing ~1–2 wt% H 2O. Partition coefficients measured in these experiments are consistent with the Wood-Blundy model. However, partition coefficients determined in an experiment carried out at 1.2 GPa and 1,185 °C, which produced clinopyroxene containing 19.3 wt% CaO coexisting with a high-H 2O (6.26±0.10 wt%) silicate melt, are significantly smaller than predicted by the Wood-Blundy model. Accounting for the depolymerized structure of the H 2O-rich melt eliminates the mismatch between experimental result and model prediction. Therefore, the increased Ca 2+ content of clinopyroxene at low-temperature, hydrous conditions does not enhance compatibility to the extent indicated by results from anhydrous experiments, and models used to predict mineral/melt partition coefficients during hydrous peridotite partial melting in the sub-arc mantle must take into account the effects of H 2O on the structure of silicate melts.  相似文献   

20.
Trace element concentrations in the four principal peridotitic silicate phases (garnet, olivine, orthopyroxene, clinopyroxene) included in diamonds from Akwatia (Birim Field, Ghana) were determined using SIMS. Incompatible trace elements are hosted in garnet and clinopyroxene except for Sr which is equally distributed between orthopyroxene and garnet in harzburgitic paragenesis diamonds. The separation between lherzolitic and harzburgitic inclusion parageneses, which is commonly made using compositional fields for garnets in a CaO versus Cr2O3 diagram, is also apparent from the Ti and Sr contents in both olivine and garnet. Titanium is much higher in the lherzolitic and Sr in the harzburgitic inclusions. Chondrite normalised REE patterns of lherzolitic garnets are enriched (10–20 times chondrite) in HREE (LaN/YbN = 0.02–0.06) while harzburgitic garnets have sinusoidal REEN patterns, with the highest concentrations for Ce and Nd (2–8 times chondritic) and a minimum at Ho (0.2–0.7 times chondritic). Clinopyroxene inclusions show negative slopes with La enrichment 10–100 times chondritic and low Lu (0.1–1 times chondritic). Both a lherzolitic and a harzburgitic garnet with very high knorringite contents (14 and 21 wt% Cr2O3 respectively) could be readily distinguished from other garnets of their parageneses by much higher levels of LREE enrichment. The REE patterns for calculated melt compositions from lherzolitic garnet inclusions fall into the compositional field for kimberlitic-lamproitic and carbonatitic melts. Much more strongly fractionated REE patterns calculated from harzburgitic garnets, and low concentrations in Ti, Y, Zr, and Hf, differ significantly from known alkaline and carbonatitic melts and require a different agent. Equilibration temperatures for harzburgitic inclusions are generally below the C-H-O solidus of their paragenesis, those of lherzolitic inclusions are above. Crystallisation of harzburgitic diamonds from CO2-bearing melts or fluids may thus be excluded. Diamond inclusion chemistry and mineralogy also is inconsistent with known examples of metasomatism by H2O-rich melts. We therefore favour diamond precipitation by oxidation of CH4-rich fluids with highly fractionated trace element patterns which are possibly due to “chromatographic” fractionation processes. Received: 27 January 1996 / Accepted: 5 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号