首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using both the photosynthetically active chlorophylla (chla) content of the organic carbon fraction of suspended particulate matter (chla/POC) and the percentage of photosynthetically, active chla in fluorometrically measured chla plus pheophytina (% chla), we determined that under specified hydrodynamic conditions, neap-spring tidal differentiation in particle dynamics could be observed in the Columbia River estuary. During summer time neap tides, when river discharge was moderate, bottom chla/POC remained relatively unchanged from riverine chla/POC over the full 0–30 psu salinity range, suggesting a benign trapping environment. During summertime spring tides, bottom chla/POC decreased at mid range salinities indicating resuspension of chla-poor POC during flood-ebb transitions. Bottom % chla during neap tides tended to average higher than that during spring tides, suggesting that neap particles were more recently hydrodynamically trapped than those on the spring tides. Such differentiation supported the possibility of operation of a particle conveyor belt process, a process in which low-amplitude neap tides favor selective particle trapping in estuarine turbidity maxima (ETM)., while high-amplitude spring tides favor particle resuspension from the ETM. Untrapped river-derived particles at the surface would continue through the estuary to the coastal ocean on the neap tide; during spring tide some particles eroded from the ETM would combine with unsettled riverine particles in transit toward the ocean. Because in tensified biogeochemical activity is associated with ETM, these neap-spring differences may be critical to maintenance and renewal of populations and processes in the estuary. Very high river discharge (15, 000 m3 s−1) tended to overwhelm neap-spring differences, and significant oceanic input during very low river discharge (5,000 m3 s−1) tended to do the same in the estuarine channel most exposed to ocean input. During heavy springtime phytoplankton blooms, development of a thick bottom fluff layer rich in chla also appeared to negate neapspring differentiation because spring tides apparently acted to resuspend the same rich bottom material that was laid down during neap tides. When photosynthetic assimilation numbers [μgC (μgchl,a)−1h−1] were measured across, the full salinity range, no neap-spring differences and no river discharge effects occurred, indicating that within our suite of measurements the compositional distinction of suspended particulate material was mainly a function of chla/POC, and to a lesser extent % chla. Even though these measurements suggest the existence of a conveyor belt process, proof of actual operation of this phenomenon requires scalar flux measurements of chla properties in and out of the ETM on both neap and spring tides.  相似文献   

2.
SeaWiFS ocean color measurements were used to investigate interannual, monthly, and weekly variations in chlorophylla (chla) on the Louisiana shelf and to assess relationships with river discharge, nitrate load, and hypoxia. During the study period (2000–2003), interannual changes in shelf-wide chla concentrations averaged over January–July ranged from +57% to −33% of the 4-yr average, in accord with freshwater discharge changes of +20% to −29% and nitrate load changes of +20% to −35% from the Mississippi and Atchafalaya Rivers. Chla variations were largest on the shelf between the Mississippi and Atchafalaya Deltas. Within this region, which corresponds spatially to the area of most frequent hypoxia, lowest January–July mean chla concentrations (5.5 mg m−3 over 7,000 km2) occurred during 2000, the year of lowest freshwater discharge (16,136 m3 s−1) and nitrate load (55,738 MT N d−1) onto the shelf. Highest January–July mean chla concentrations (13 mg m−3 over 7,000 km2) were measured in 2002, when freshwater discharge (27,440 m3s−1) and nitrate load (101,761 MT N d−1) were highest and second highest, respectively. Positive correlations (R2=0.4–0.5) were found between chla and both fresh water and nitrate loads with 0 to 1 month lags, with the strongest relationships just west of the Mississippi Delta. In 2001, unusually clear skies allowed the identification of distinct spring and summer chla blooms west of the Mississippi Delta 4–5 wk after peaks in river discharge. East of the delta, the chla concentrations peaked in June and July, following the seasonal reversal in the coastal current. A clear linkage was not detected between satellite-measured chla and hypoxia during the 4-yr period, based on a time series of bottom oxygen concentrations at one station within the area of most frequent hypoxia. Clear relationships are confounded by the interaction of physical processes (wind stress effects) with the seasonal cycle of nutrient-enhanced productivity and are influenced by the prior year's nitrate load and carbon accumulation at the seabed.  相似文献   

3.
Data on hydrography, nutrients, suspended particles, and sedimented particles were collected at weekly intervals from November to May during 1995 to 1997 at a station in the coastal waters of Dona Paula Bay, India. Suspended and sedimented particles were analyzed for total suspended matter (SPM), total sedimented particulate matter (TPM), particulate organic carbon (POC), particulate organic nitrogen (PON), chlorophylla (chla), and diatom abundance. Variations in hydrography and nutrients influenced the quantity and composition of sedimented particles. The TPM, POC, PON, and chla fluxes showed small-scale seasonal variations and were higher in the summer (February to May) than in the winter (November to January). Resuspension of carbon accounted for approximately 25% of the gross POC and was highest in April 1997 (45%). The mean net POC flux was 197±90 mg C m−2 d−1 and accounts for 4.6% of the TPM. The average C∶N (w∶w) ratio of the sedimented material was 13.2±6.6. The POC:chla ratio was relatively higher in the sedimented material as compared to the suspended material. The particulate carbon reaching the bottom sediment was 39% of the primary production. The low organic carbon concentration (approximately 0.1% of dry sediment) in the sediments implies that about 98% of the sedimented carbon was either consumed at the sedimentwater interface or resuspended/advected before it was finally buried into the sediments.  相似文献   

4.
The size-fractionated phytoplankton biomass and primary production were investigated in four contrasting areas of Hong Kong waters in 2006. Phytoplankton biomass and production varied seasonally in response to the influence of the Pearl River discharge. In the dry season, the phytoplankton biomass and production were low (<42 mg chl m−2 and <1.8 g C m−2 day−1) in all four areas, due to low temperatures and dilution and reduced light availability due to strong vertical mixing. In contrast, in the wet season, in the river-impacted western areas, the phytoplankton biomass and production increased greater than five-fold compared to the dry season, especially in summer. In summer, algal biomass was 15-fold higher than in winter, and the mean integrated primary productivity (IPP) was 9 g C m−2 day−1 in southern waters due to strong stratification, high temperatures, light availability, and nutrient input from the Pearl River estuary. However, in the highly flushed western waters, chl a and IPP were lower (<30 mg m−2 and 4 g C m−2 day−1, respectively) due to dilution. The maximal algal biomass and primary production occurred in southern waters with strong stratification and less flushing. Spring blooms (>10 μg chl a L−1) rarely occurred despite the high chl-specific photosynthetic rate (mostly >10 μg C μg chl a −1 day−1) as the accumulation of algal biomass was restricted by active physical processes (e.g., strong vertical mixing and freshwater dilution). Phytoplankton biomass and production were mostly dominated by the >5-μm size fraction all year except in eastern waters during spring and mostly composed of fast-growing chain-forming diatoms. In the stratified southern waters in summer, the largest algal blooms occurred in part due to high nutrient inputs from the Pearl River estuary.  相似文献   

5.
Net primary production was measured in three characteristic salt marshes of the Ebre delta: anArthrocnemum macrostachyum salt marsh,A. macrostachyum-Sarcocornia fruticosa mixed salt marsh andS. fruticosa salt marsh. Above-ground and belowground biomass were harvested every 3 mo for 1 yr. Surface litter was also collected from each plot. Aboveground biomass was estimated from an indirect non-destructive method, based on the relationship between standing biomass and height of the vegetation. Decomposition of aboveground and belowground components was studied by the disappearance of plant material from litter bags in theS. fruticosa plot. Net primary production (aboveground and belowground) was calculated using the Smalley method. Standing biomass, litter, and primary production increased as soil salinity decreased. The annual average total aboveground plus belowground biomass was 872 g m−2 in theA. macrostachyum marsh, 1,198 g m−2 in theA. macrostachyum-S. fruticosa mixed marsh, and 3,766 g m−2 in theS. fruticosa biomass (aboveground plus belowground) was 226, 445, and 1,094 g m−2, respectively. Total aboveground plus below-ground net primary production was 240, 1,172, and 1,531 g m−2 yr−1. There was an exponential loss of weight during decomposition. Woody stems and roots, the most recalcitrant material, had 70% and 83% of the original material remaining after one year. Only 20–22% of leafy stem weight remained after one year. When results from the Mediterranean are compared to other salt marshes dominated by shrubbyChenopodiaceae in Mediterranean-type climates, a number of similarities emerge. There are similar zonation patterns, with elevation and maximum aboveground biomass and primary production occurring in the middle marsh. This is probably because of stress produced by waterlogging in the low marsh and by hypersalinity in the upper marsh.  相似文献   

6.
We present a comparative analysis of 1400 data series of water chemistry (particularly nitrogen and phosphorus concentrations), phytoplankton biomass as chlorophylla (chla) concentrations, concentrations of suspended matter and Secchi depth transparency collected from the mid-1980s to the mid-1990s from 162 stations in 27 Danish fjords and coastal waters. The results demonstrate that Danish coastal waters were heavily eutrophied and had high particle concentrations and turbid waters. Median values were 5.1 μg chla 1−1, 10.0 mg DW 1−1 of suspended particles, and Secchi depth of 3.6 m. Chlorophyll concentration was strongly linked to the total-nitrogen concentration. The strength of this relationship increased from spring to summer as the concentration of total nitrogen declined. During summer, total nitrogen concentrations accounted for about 60% of the variability in chlorophyll concentrations among the different coastal systems. The relationship between chlorophyll and total phosphorus was more consistant over the year and correlations were much weaker than encountered for total nitrogen. Secchi depth could be predicted with good precision from measurements of chlorophyll and suspended matter. In a multiple stepwise regression model with In-transformed values the two variables accounted for most of the variability in water transparency for the different seasons and the period March–October as a whole (c. 80%). We were able to demonstrate a significant relationship between total nitrogen and Secchi depth, with important implications for management purposes.  相似文献   

7.
A study of Halodule wrightii in a shallow subtropical Texas lagoon was performed to obtain seasonal data on its physiological ecology. Leaf production and biomass dynamics of H. wrightii were intensively monitored along with the underwater light environment at a 1.2-m depth study site over a 21-month period from June 1995 to February 1997. The annual photosynthetically active radiation (PAR) flux of 6,764 mol m−2 year−1 was more than twice as high as 2,400 mol m−2 year−1, the minimum annual PAR required for maintenance of growth. As light intensity declined, blade chlorophyll a/b ratios increased suggesting that the plants were photo-adapting. Seasonal trends were evident in shoot growth and biomass. Compared to other Halodule populations in Texas, H. wrightii in LLM displayed slow growth and low biomass, high leaf tissue N content, and low C/N ratio but high N/P ratio of 38 suggesting that the plants were phosphorus-limited.  相似文献   

8.
The climatology and interannual variability of winter phytoplankton was analyzed at the Long Term Ecological Research Station MareChiara (LTER-MC, Gulf of Naples, Mediterranean Sea) using data collected from 1985 to 2006. Background winter chlorophyll values (0.2–0.5 μg chl a dm−3) were associated with the dominance of flagellates, dinoflagellates, and coccolithophores. Winter biomass increases (<5.47 μg chl a dm−3) were often recorded until 2000, generally in association with low-salinity surface waters (37.3–37.9). These blooms were most often caused by colonial diatoms such as Chaetoceros spp., Thalassiosira spp., and Leptocylindrus danicus. In recent years, we observed more modest and sporadic winter biomass increases, mainly caused by small flagellates and small non-colonial diatoms. The resulting negative chl a trend over the time series was associated with positive surface salinity and negative nutrient trends. Physical and meteorological conditions apparently exert a strict control on winter blooms, hence significant changes in winter productivity can be foreseen under different climatic scenarios.  相似文献   

9.
Experiments were performed seasonally to estimate grass shrimp,Palaemonetes pugio, grazing on the epiphytic microalgae of cordgrass,Spartina alterniflora, and to determine if grass shrimp have the potential to regulate epiphyte abundance. Grass shrimp were given access to live culms with low and high epiphytic abundance and standing dead culms collected from the streamside levee of a Louisiana salt marsh. Plexiglas frames were used to hold culms upright in aquaria and to restrict grass shrimp access to one half of each culm. We compared epiphyte biomass on the sides of culms exposed to shrimp with the corresponding unexposed sides. Epiphytes were removed from the lowest 10 cm of culms on days 0, 3, and 10, and chlorophylla (chla) measurements on each culm half were made by fluorometry. Chla biomass on culm halves not exposed to grass shrimp significantly increased over time. Percent reductions in chla on culm halves exposed to grass shrimp (calculated by subtraction from the corresponding half not exposed to shrimp) significantly increased over time for at least one culm type in all seasons. Grass shrimp caused an average 30% reduction of epiphyte biomass over 3 d and a 40% reduction over 10 d, suggesting that grass shrimp have the capability of consuming a substantial proportion of the daily production of epiphytes. Epiphytes from standing-dead culms may be more important than those from live culms at the marsh edge to the diet of grass shrimp because chla biomass was, on average, high, and standing-dead culms were seasonally abundant. Diagnostic photosynthetic pigments from selected culms, grass shrimp gut contents, and fecal pellets were identified by high performance liquid chromatography and were used to quantify the taxonomic groups of epiphytic microalgae. Results suggested that diatoms, brown algae, green algae, red algae, and cyanobacteria were present on all culms. Similarities in the pigment content of grass shrimp gut contents and fecal pellets suggested that all algal groups were ingested. Pigment data analysis could not detect a change in the composition of the microalgal assemblage associated with grass shrimp grazing. Assuming that the reduction in chla was due exclusively to grazing, grass shrimp consumed an average of 0.5–1.5 g epiphyte carbon shrimp?1 d?1, suggesting that grass shrimp benefit significantly from the consumption ofS. alterniflora epiphytic algae.  相似文献   

10.
In May of 2007, a study was initiated by the National Institute of Oceanography (NIO), Goa, India, to investigate the influence of monsoonal rainfall on hydrographic conditions in the Mandovi River of India. The study was undertaken at a location ∼2 km upstream of the mouth of this estuary. During the premonsoon (PreM) in May, when circulation in the estuary was dominated by tidal activity, phytoplankton communities in the high saline (35–37 psu) waters at the study site were largely made up of the coastal neritic species Fragilaria oceanica, Ditylum brightwellii and Trichodesmium erythraeum. During the later part of the intermonsoon (InterM) phase, an abrupt decline in salinity led to a surge in phytoplankton biomass (Chlorophyll a ∼14 mg m − 3), of a population that was dominated by Thalassiosira eccentricus. As the southwest monsoon (SWM) progressed and the estuary freshened salinity and Chlorophyll a (Chl a) concentrations decreased during the MoN, Skeletonema costatum established itself as the dominant form. Despite the low biomass (Chl a <2 mg m − 3), the phytoplankton community of the MoN was the most diverse of the entire study. During the postmonsoon (PostM), the increase in salinity was marked by a surge in dinoflagellate populations comprising of Ceratium furca, Akashiwo sanguinea, and Pyrophacus horologium.  相似文献   

11.
The mummichog,Fundulus heteroclitus, is one of the most important macrofaunal components of salt marsh surfaces and an important link to subtidal areas of the adjacent estuary along the east coast of the U.S. We estimated growth, population size, and production of the mummichog in a restored marsh in order to improve our understanding of the role of this resident fish and to evaluate the success of the restoration. The restored marsh, covering 234 ha, was a former salt hay farm located in the mesohaline portion of Delaware Bay that was restored to tidal influence in August 1996. We separated the mummichog population into two components based on life history stage and summer habitat use patterns. One component, consisting of adults and large young-of-the-year (YOY), exhibited tidal movements to and from the marsh surface and the subtidal creeks. These were examined with an intensive mark and recapture program using coded wire tags. Another component, consisting of small YOY, remained on the marsh surface throughout the tidal cycle. Throw traps were used to sample these small YOY. The mean annual population density of adults and large YOY for the entire marsh was approximately 1.2 fish m−2 and mean monthly density peaked at 2.9 fish m−2. The mean annual density of small YOY on the marsh surface was 15.1 fish m−2 and mean monthly density peaked at 41.4 fish m−2. Size and season influenced the growth rate of individual fish and instantaneous growth rates ranged from 0.03 to 2.26 mo−1. Total annual mummichog production was estimated to be 8.37 g dw m−2 yr−1, with adults and large YOY contributing 28.4% (2.38 g dw m−2 yr−1) and small YOY on the marsh surface contributing 71.6% (5.99 g dw m−2 yr−1). The seasonal use and population densities were comparable to previous studies in natural marshes while growth and production of mummichog in this restored marsh appeared to be higher. Coupled with the results of other studies on the feeding, movement, and habitat use of this species in this restored marsh, the species has responded well to the restoration.  相似文献   

12.
During June 2003, a period of mid level discharge (17,400 m−3 s−1), a parcel of water in the lower Mississippi River was sampled every 2 h during its 4-d transit from river km 362 near Baton Rouge to km 0 at Head of Passes, Louisiana, United States. Properties measured at the surface during each of the 48 stations were temperature, salinity, dissolved organic carbon (DOC), total dissolved nitrogen, dissolved macronutrients (NO3+NO2, PO4, Si(OH)4), chlorophylla (chla; three size fractions: < 5 μm, 5–20 μm, and > 20 μm) pigment composition by HPLC, total suspended matter (TSM), particulate organic carbon (POC), and particulate nitrogen (PN). Air-water CO2 flux was calculated from surface water dissolved inorganic carbon and pH. During the 4 d transit, large particles appeared to be settling out of the surface water. Concentrations of chla containing particles > 20 μm declined 37%, TSM declined 43%, POC declined 42% and PN declined 57%. Concentrations of the smaller chla containing particles did not change suggesting only large particulate materials were settling. There was no measurable loss of dissolved NO3, PO4, or Si(OH)4, consistent with the observation that chla did not increase during the 4-d transit. DOC declined slightly (3%). These data indicate there was little autotrophic or heterotrophic activity in the lower Mississippi River at this time, but the system was slightly net heterotrophic.  相似文献   

13.
Within the KUSTOS program (Coastal Mass and Energy Fluxes-the Land-Sea Transition in the Southeastern North Sea) 28 to 36 German Bight stations were seasonally surveyed (summer 1994, spring 1995, winter 1995–1996) for light conditions, dissolved inorganic nutrient concentrations, chlorophylla (chla), and photosynthesis versus light intensity (P:E) parameters. Combining P:E curve characteristics with irradiance, attenuation, and chlorophyll data resulted in seasonal estimates of the spatial distribution of total primary production. These data were used for an annual estimate of the total primary production in the Bight. In winter 1996 the water throughout the German Bight was well mixed. Dissolved inorganic nutrient concentrations were relatively high (nitrogen [DIN], soluble reactive phosphorus [SRP], and silicate [Si]: 23, 1, and 10 μM, respectively). Chla levels generally were low (< 2 μg l−1) with higher concentrations (4–16 μg l−1) in North Frisian coastal waters. Phytoplankton was limited by light. Total primary production averaged 0.2 g C m−2 d−1. Two surveys in April and May 1995 captured the buildup of a strong seasonal thermo-cline accompained by the development of a typical spring diatom bloom. High nutrient levels in the mixed layer during the first survey (DIN, SRP, and Si: 46, 0.45, and 11 μM, respectively) decreased towards the second survey (DIN, SRP, and Si: 30.5, 0.12, and 1.5 μM, respectively) and average nutrient ratios shifted further towards highly imbalanced values (DIN:SRP: 136 in survey 1, 580 in survey 2; DIN:Si: 13.5 in survey 1, 96 in survey 2). Chla ranged from 2 to 16 μg l−1 for the first survey and rose to 12–50 μg l−1 in the second survey. Phytoplankton in nearshore areas continued to be light limited during the second survey, while data from the stratified regions in the open German Bight indicates SRP and Si limitation. Total primary production ranged from 4.0 to 6.3 g C m−2 d−1. During summer 1994 a strong thermal stratification was present in the German Bight proper and shallow coastal areas showed unusually warm (up to 22°C), mixed waters. Chla concentrations ranged from 2 to 18 μg l−1. P:E characteristics were relatively high despite the low nutrient regime (DIN, SRP, and Si: 2, 0.2, and 1.5 μM, respectively), resulting in overall high total primary production values with an average of 7.7 g C m−2 d−1. Based on the seasonal primary production estimates of the described surveys a budget calculation yielded a total annual production of 430 g C m−2 yr−1 for the German Bight.  相似文献   

14.
This study was carried out to evaluate the seasonal variations of seaweed biomass and species composition at six different sites along the coastal areas in Bushehr Province. Sampling depths varied among sites, from 0.3 to 2.0 m below mean sea level. A total of 37 (i.e., 10 Chlorophyta, 12 Phaeophyta and 15 Rhodophyta) seaweed species were collected. Studies were conducted for quantifying the seaweeds during four seasons from October 2008 until July 2009. During present research, Ulva intestinalis and Cladophora nitellopsis of green, Polycladia myrica, Sirophysalia trinodis and Sargassum angustifolium of brown and Gracilaria canaliculata and Hypnea cervicornis of red seaweeds showed highest biomass in coastal areas of Bushehr Province. The Cheney‘s ratio of 2.1 indicated a temperate algal flora to this area. All sites exhibited more than 50% similarity of algal species, indicating a relatively homogenous algal distribution. Total biomass showed the highest value of 3280.7 ± 537.8 g dry wt m − 2 during summer and lowest value of 856.9 ± 92.0 g dry wt m − 2 during winter. During this study, the highest and lowest seaweed biomass were recorded on the site 2 (2473.7 ± 311.0 g dry wt m − 2) and site 5 (856.7 ± 96.8 g dry wt m − 2), respectively.  相似文献   

15.
Freshwater inputs often play a more direct role in estuarine phytoplankton biomass (chlorophyll a) accumulation than nitrogen (N) inputs, since discharge simultaneously controls both phytoplankton residence time and N loading. Understanding this link is critical, given potential changes in climate and human activities that may affect discharge and watershed N supply. Chlorophyll a (chla) relationships with hydrologic variability were examined in 3-year time series from two neighboring, shallow (<5?m), microtidal estuaries (New and Neuse River estuaries, NC, USA) influenced by the same climatic conditions and events. Under conditions ranging from drought to floods, N concentration and salinity showed direct positive and negative responses, respectively, to discharge for both estuaries. The response of chla to discharge was more complex, but was elucidated through conversion of discharge to freshwater flushing time, an estimate of transport time scale. Non-linear fits of chla to flushing time revealed non-monotonic, unimodal relationships that reflected the changing balance between intrinsic growth and losses through time and along the axis of each estuary. Maximum biomass occurred at approximately 10-day flushing times for both systems. Residual analysis of the fitted data revealed positive relationships between chla and temperature, suggesting enhanced growth rates at higher temperatures. N loading and system-wide, volume-weighted chla were positively correlated, and biomass yields per N load were greater than other marine systems. When combined with information on loss processes, these results on the hydrologic control of phytoplankton biomass will help formulate mechanistic models necessary to predict ecosystem responses to future climate and anthropogenic changes.  相似文献   

16.
Seasonal variation patterns of aboveground and belowground biomass, net primary production, and nutrient accumulation were assessed inAtriplex portulacoides L. andLimoniastrum monopetalum (L.) Boiss. in Castro Marim salt marsh, Portugal. Sampling was conducted for five periods during 2001–2002 (autumn, winter, spring, summer, and autumn). This study indicates that both species have a clear seasonal variation pattern for both aboveground and belowground biomass. Mean live biomass was 2516 g m−2 yr−1 forL. monopetalum and 598 g m−2 yr−1 forA. portulacoides. Peak living biomass, in spring for both species, was three times greater in the former, 3502 g m−2 yr−1, than in the latter, 1077 g m−2 yr−1. For both the Smalley (Groenendijk 1984) and Weigert and Evans (1964) methods, productivity ofL. monopetalum (2917 and 3635 g m−2 yr−1, respectively) was greater than that ofA. portulacoides (1002 and 1615 g m−2 yr−1, respectively). Belowground biomass ofL. monopetalum was 1.7 times greater than that ofA. portulacoides. In spite of this, the root:shoot ratio forA. monopetalum to aerial components. Leaf area index was similar for both species, but specific leaf area ofA. portulacoides was twice that ofL. monopetalum. The greatest nutrient contents were found in leaves. Leaf nitrogen content was maximum in summer for both species (14.6 mg g−1 forA. portulacoides and 15.5 mg g−1 forL. monopetalum). Leaf phosphorus concentration was minimum in summer (1.1 mg g−1 inA. portulacoides and 1.2 mg g−1 inL. monopetalum). Leaf potassium contents inA. portulacoides were around three times greater than inL. monopetalum. Leaf calcium contents inL. monopetalum were three times greater than inA. portulacoides. There was a pronounced seasonal variation of calcium content in the former, while in the latter no clear variation was registered. Both species exhibited a decrease in magnesium leaf contents in the summer period. Mangamese content inL. monopetalum leaves was tenfold that inA. portulacoides. Seasonal patterns of nutrient contents inA. portulacoides andL. monopetalum suggest that availability of these elements was not a limiting factor to biomass production.  相似文献   

17.
Many Gulf of Mexico estuaries have low ratios of water volume to bottom surface area, and benthic processes in these systems likely have a major influence on system structure and function. The purpose of this study was to determine the spatiotemporal distribution of biomass and community composition of subtidal benthic microalgal (BMA) communities in Galveston Bay, TX, USA, compare BMA community composition and biomass to phytoplankton in overlying waters, and estimate the potential contribution of BMA to the trophodynamics in this shallow, turbid, subtropical estuary. The estimates of BMA biomass (mean = 4.21 mg Chl a m−2) for Galveston Bay were within the range of the reported values for similar Gulf of Mexico estuaries. BMA biomass in the central part of the bay was essentially homogeneous, whereas biomass at the seaward and upper bay ends of the transect were significantly lower. Peridinin, fucoxanthin, and alloxanthin were the three carotenoids with the highest concentrations, with fucoxanthin having the highest mean concentration (1.82 mg m−2). The seaward and landward ends of the transect differed from the central region of the bay with respect to the relative abundances of chlorophytes, cyanobacteria, and photosynthetic bacteria. Benthic microalgal community composition also showed a gradual shift over time due to changes in the relative abundances of photosynthetic bacteria, cryptophytes, dinoflagellates, and cyanobacteria. Major changes in community composition occurred in the spring months (March to April). On an areal basis, BMA biomass in Galveston Bay occurred at minor concentrations (16.5%) relative to phytoplankton. Furthermore, the concentrations of carotenoid pigments for phytoplankton and BMA (fucoxanthin, alloxanthin, and zeaxanthin) were correlated (r = 0.48 to 0.61), suggesting a close linkage between microalgae in the water column and sediments. The contribution of BMA to the primary productivity of the deeper waters (>2 m) of Galveston Bay is probably very small in comparison to shallower waters along the bay margins. The significant similarities in the community composition of phytoplankton and BMA illustrate the potential importance of deposition and resuspension processes in this turbid, shallow estuary.  相似文献   

18.
We investigated whether climate change results in long-term changes in phytoplankton biomass and phenology in a turbid eutrophic coastal plain estuary. Changes in annual mean chlorophyll a (chla) concentrations were studied for the period 1978–2006 in the eutrophic and turbid macro-tidal Western Scheldt estuary. Three stations were investigated: WS1, at the mouth of the estuary; station WS6, halfway up the estuary; and station WS11, near the Dutch–Belgian border near the upstream end of the estuary. No significant long-term changes in yearly averaged chla concentrations were observed in WS1 and WS6, but in WS11 the phytoplankton biomass decreased considerably. This is most likely due to an increase in grazing pressure as a result of an improvement in the dissolved oxygen concentrations. Spectral analyses revealed a possible periodicity of 7 years in the mean chla which was related to periodicity in river discharge. We also observed strong phenological responses in the timing of the spring/summer bloom which were related to a well-documented increase in the temperature in the estuary. The fulcrum, the center of gravity or the day at which 50% of the cumulative chla was reached during the year, advanced by 1–2 days/year. A similar trend was observed for the month in which the maximum bloom was observed, with the exception of station WS1. All stations showed an earlier initiation of the bloom, whereas the day at which the phytoplankton bloom was terminated also moved forward in time excepted for WS11. As a result, the bloom length decreased at station WS1, remained the same at station WS6, and increased at WS11. This complicated pattern in bloom phenology demonstrates the complex nature of ecosystem functioning in estuaries.  相似文献   

19.
While the ecological impacts of crude oil exposure have been widely studied, its sublethal effects on phytoplankton community structure in salt marsh estuaries have not been well documented. The purpose of this study was to simulate oil spill conditions using a microcosm design to examine short-term (2 day) changes in phytoplankton community composition and total biomass following exposure to crude oil obtained from the Deepwater Horizon oil spill and a mixture of Texas crude oils. Microcosm experiments were performed in situ in North Inlet Estuary near Georgetown, SC. A control and six replicated experimental treatments of crude oil additions at final concentrations of 10, 50, or 100 μl l−1 of either Deepwater Horizon spill oil or the Texas crude mixture were incubated under in situ conditions. Photopigments were analyzed using high-performance liquid chromatography and community composition was determined using ChemTax. Total phytoplankton biomass (as chl a) declined with increasing crude oil concentrations. Prasinophytes, the most abundant microalga in both experiments, showed no response to oil exposure in one experiment and a significant negative response in the other. Diatoms euglenophytes and chlorophytes appeared relatively resistant to oil contamination at the exposure levels used in this study, maintaining or increasing their relative abundance with increasing oil concentrations. Chlorophytes and cyanobacteria increased in relative abundance while cryptophyte abundance decreased with increasing oil concentrations. The results of these experiments suggest that low levels of crude oil exposure may reduce total biomass and alter phytoplankton community composition with possible cascade effects at higher trophic levels in salt marsh estuaries.  相似文献   

20.
The New River Estuary consists of a series of broad shallow lagoons draining a catchment area of 1,436 km2, located in Onslow County, North Carolina. During the 1980s and 1990s it was considered one of the most eutrophic estuaries in the southeastern United States and sustained dense phytoplankton blooms, bottom water anoxia and hypoxia, toxic outbreaks of the dinoflagellatePfiesteria, and fish kills. High nutrient loading, especially of phosphorus (P), from municipal and military sewage treatment plants was the principal cause leading to the eutrophic conditions. Nutrient addition bioassay experiments showed that additions of nitrogen (N) but not P consistently yielded significant increases in phytoplankton production relative to controls. During 1998 the City of Jacksonville and the U.S. Marine Corps Base at Camp Lejeune completely upgraded their sewage treatment systems and achieved large improvements in nutrient removal, reducing point source inputs of N and P to the estuary by approximately 57% and 71%, respectively. The sewage treatment plant upgrades led to significant estuarine decreases in ammonium, orthophosphate, chlorophylla, and turbidity concentrations, and subsequent increases in bottom water dissolved oxygen (DO) and light penetration. The large reduction in phytoplankton biomass led to a large reduction in labile phytoplankton carbon, likely an important source of biochemical oxygen demand in this estuary. The upper estuary stations experienced increases in average bottom water DO of 0.9 to 1.4 mg l−1, representing an improvement in benthic habitat for shellfish and other organisms. The reductions in light attenuation and turbidity should also improve the habitat conditions for growth of submersed aquatic vegetation, an important habitat for fish and shellfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号