首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spottedness parameters S (the fraction of the visible surface of the star occupied by spots) characterizing the activity of 674 stars in the Beehive Cluster (age 650 Myr) are estimated, together with variations of this parameter as a function of the rotation period, Rossby number Ro and other characteristics of the stars. The activity of the stars in this cluster is lower than the activity of stars in the younger Pleiades (125 Myr). The average S value for the Beehive Cluster stars is 0.014, while Pleiades stars have the much higher average value 0.052. The activity parameters of 61 solar-type stars in the Beehive Cluster, similar Hyades stars (of about the same age), and stars in the younger Pleiades are compared. The average S value of such objects in the Beehive Cluster is 0.014± 0.008, nearly coincident with the estimate obtained for solar-type Hyades stars. The rotation periods of these objects are 9.1 ± 3.4 day, on average, in agreement with the average rotation period of the Hyades stars (8.6 d ). Stars with periods exceeding 3–4 d are more numerous in the Beehive Cluster than in the Pleiades, and their periods have a larger range, 3–30 d . The characteristic dependence with a kink at Ro (saturation) = 0.13 is not observed in the S–Rossby number diagram for the Beehive and Hyades stars, only a clump of objects with Rossby numbers Ro > 0.7. The spottedness data for the Beehive Cluster and Hyades stars are in good agreement with the S values for dwarfs with ages of 600–700 Myr. This provides evidence for the reliability of the results of gyrochronological calibrations. The data for the Beehive and Pleiades stars are used to analyze variations in the spot-forming activity for a large number of stars of the same age that are members of a single cluster. A joint consideration of the data for two clusters can be used to draw conclusions about the time evolution of the activity of stars of different masses (over a time interval of the order of 500 Myr).  相似文献   

2.
Observations of the K2 mission (continuing the program of the Kepler Space Telescope) are used to estimate the spot coverage S (the fractional area of spots on the surface of an active star) for stars of the Hyades cluster. The analysis is based on data on the photometric variations of 47 confirmed single cluster members, together with their atmospheric parameters, masses, and rotation periods. The resulting values of S for these Hyades objects are lower than those stars of the Pleiades cluster (on average, by ΔS ~ 0.05?0.06). A comparison of the results of studies of cool, low-mass dwarfs in the Hyades and Pleiades clusters, as well as the results of a study of 1570 M stars from the main field observed in the Kepler SpaceMission, indicates that the Hyades stars are more evolved than the Pleiades stars, and demonstrate lower activity. The activity of seven solar-type Hyades stars (S = 0.013 ± 0.006) almost approaches the activity level of the present-day Sun, and is lower than the activity of solar-mass stars in the Pleiades (S = 0.031 ± 0.003). Solar-type stars in the Hyades rotate faster than the Sun (〈P〉 = 8.6 d ), but slower than similar Pleiades stars.  相似文献   

3.
The Hyades Cluster is used to analyze details of the AD-diagram method developed in our earlier works and applied to the corona of the Ursa Major stream. Hipparcos data are used to analyze the kinematics of the Hyades Cluster and determine its apex. Evidence for rotation of the cluster is presented.  相似文献   

4.
AIA/SDO data in the 193 Å channel preceding a coronal mass ejection observed at the solar limb on June 13, 2010 are used to simultaneously identify and examine two different shock fronts. The angular size of each front relative to the CME center was about 20°, and their propagation directions differed by ≈25° (≈4° in position angle). The faster front, called the blast shock, advanced the other front, called the piston shock, by R ≈ (0.02-0.03)R⊙ (R⊙ is the solar radius) and had a maximum initial speed of VB ≈ 850 km/s (with VP ≈ 700 km/s for the piston shock). The appearance and motion of these shocks were accompanied by a Type II radio burst observed at the fundamental frequency F and second harmonic H. Each frequency was split into two close frequencies f1 and f2 separated by Δf = f2 - f1 ? F, H. It is concluded that the observed frequency splitting Δf of the F and H components of the Type II burst could result from the simultaneous propagation of piston and blast shocks moving with different speeds in somewhat different directions displaying different coronal-plasma densities.  相似文献   

5.
We have obtained high-accuracy photoelectric measurements of ES Lac, an eclipsing binary with an elliptical orbit (B9III + B9III; P = 4.459d, e = 0.198) in 1985–2004 at the Sternberg Astronomical Institute’s Tien Shan High-Altitude Observatory. Our detailed analysis of the 19-year uniform series of measurements has yielded the first photometric elements for this system, as well as a self-consistent set of physical and geometrical parameters for the binary. The virtually identical components (M 1 = M 2 = 3.0 M ; R 1 = R 2 = 4.12 R ) are appreciably separated from the main sequence, and are located on the giant branch: their age is t = (3.5 ± 0.2) × 108 yrs. An analysis of our observations together with previously published times of minima has enabled a considerable refinement of the period of the apsidal motion, U = 355 ± 20 years, and a first determination of the apsidal parameter reflecting the radial density distributions for the components stars: k 2 obs = 0.00213(18). This value is in a good agreement with the value expected theoretically for current evolutionary models of such stars: k 2 th = 0.00257(15).  相似文献   

6.
The evolution of Population I stars with initial masses 60 M M ZAMS ≤ 120 M is computed up to the Wolf-Rayet stage, when the central helium abundance decreases to Y c ≈ 0.05. Several models from evolutionary sequences in the core helium-burning stage were used as initial conditions when solving the equations of radiative hydrodynamics for self-exciting stellar radial pulsations. The low-density envelope surrounding the compact core during the core helium burning is unstable against radial oscillations in a wide range of effective temperatures extending to T eff ~ 105 K. The e-folding time of the amplitude growth is comparable to the dynamical time scale of the star, and, when the instability ceases growing, the radial displacement of the outer layers is comparable to the stellar radius. Evolutionary changes of the stellar radius and luminosity are accompanied by a decrease in the amplitude of radial pulsations, but, at the effective temperature T eff ≈ 105 K, the stellar oscillations are still nonlinear, with a maximum expansion velocity of the outer layers of about one-third the local escape velocity. The period of the radial oscillations decreases from 9 hr to 4 min as stellar mass decreases from M = 28 M to M = 6 M in the course of evolution. The nonlinear oscillations lead to a substantial increase of the radii of the Lagrangian mass zones compared to their equilibrium radii throughout the instability region. The instability of Wolf-Rayet stars against radial oscillations is due to the action of the κ mechanism in the iron-group ionization zone, which has a temperature of T ~ 2 × 105 K.  相似文献   

7.
Observations of the K2 continuation of Kepler Space Telescope program are used to estimate the spot coverage S (the fractional spotted area on the surface of an active star) for stars of the Pleiades cluster. The analysis is based on data on photometric variations of 759 confirmed clustermembers, together with their atmospheric parameters, masses, and rotation periods. The relationship between the activity (S) of these Pleiades stars and their effective temperatures shows considerable change in S for stars with temperatures T eff less than 6100 K (this can be considered the limiting value for which spot formation activity begins) and a monotonic increase in S for cooler objects (a change in the slope for stars with Teff ~ 3700 K). The scatter in this parameter ΔS about its mean dependence on the (V ?Ks)0 color index remains approximately the same over the entire (V?K s )0 range, including cool, fully convective dwarfs. The computated S values do not indicate differences between slowly rotating and rapidly rotating stars with color indices 1.1 < (V?K s )0 < 3.7. The main results of this study include measurements of the activity of a large number of stars having the same age (759 members of the Pleiades cluster), resulting in the first determination of the relationship between the spot-forming activity and masses of stars. For 27 stars with masses differing from the solarmass by nomore than 0.1M⊙, themean spot coverage is S = 0.031±0.003, suggesting that the activity of candidate young Suns is more pronounced than that of the present-day Sun. These stars rotate considerably faster than the Sun, with an average rotation period of 4.3d. The results of this study of cool, low-mass dwarfs of the Pleiades cluster are compared to results from an earlier study of 1570 M stars.  相似文献   

8.
Lower limits for the percentages of stars with various luminosities in the cores of six globular clusters are derived using stellar spatial density distributions f(r) to deep limiting B magnitudes obtained earlier. For NGC 6535 and NGC 5466, the logarithmic density range and Kholopov parameters Df and Dr are also determined. These two parameters are correlated with the mean masses of stars of various subsystems and the total mass (number) of stars in the cluster.  相似文献   

9.
An analysis of monitoring observations for the pulsar PSR B0655+64, which is located in a binary system, at 111 MHz during 2002–2015 are presented. The Keplerian parameters of the pulsar have been refived: the longitude of periastron ω = 276.°5785 ± 0.°0005 and the orbital semi-major axis is ap sin i = 4.124976± 0.000003 s. The parameters of the perturbed motion have been determined: the motion of periastron ω = 0.°315 ± 0.°005/ year, and the derivative of the period of the binary system ? = (-1.66 ± 0.11) × 10-14 s/s = (-0.524 ± 0.038) µs/year. The estimated time scale for the decay of the PSR 0655+64 system is (1.7 ± 0.1) × 1011 yrs.  相似文献   

10.
We have modeled the magnetic fields of the slowly rotating stars HD 116458 and HD 126515 using the “magnetic charge” technique. HD 116458 has a small angle between its rotation axis and dipole axis (β = 12°), whereas this angle is large for HD 126515 (β = 86°). Both stars can be described with a decentered-dipole model, with the respective displacements being r = 0.07 and r = 0.24 in units of the stellar radius. The decentered-dipole model is able to satisfactorily explain the phase relations for the effective field, Be(P), and the mean surface field, Bs(P), for both stars, along with the fact that the Be(P) phase relation for HD 126515 is anharmonic. We discuss the role of systematic measurement errors possibly resulting from instrumental or methodical effects in one or both of the phase relations. The displacement of the dipole probably reflects real asymmetry of the stellar field structure, and is not due to measurement errors. Using both phase relations, Be(P) and Bs(P), in the modeling considerably reduces the influence of the nonuniform distribution of chemical elements on the stellar surface.  相似文献   

11.
Based on high-resolution observations (R = 60 000 and 75 000), we have studied the optical spectral variability of the star BD + 48°1220, identified with the IR source IRAS 05040+4820. We have measured the equivalent widths of numerous absorption lines of neutral atoms and ions at wavelengths from 4500 Å to 6760 Å, as well as the corresponding radial velocities. We use model atmospheres to determine the effective temperature T eff = 7900 K, surface gravity log g = 0.0, microturbulence velocity ξ t = 6.0, and the abundances for 16 elements. The star’s metallicity differs little from the solar value: [Fe/H] = ?0.10 dex. The main peculiarity of the chemical composition of the star is a large helium excess, derived from the Hel λ 5876 Å absorption, [He/H] = +1.04, and the equally large oxygen excess, [O/Fe] = +0.72 dex. The carbon excess is small, [C/Fe] = +0.09 dex, and the ratio [C/O] < 1. We obtained an altered relation for the light-metal abundances: [Na/Fe] = +0.87 dex with [Mg/Fe] = ?0.31 dex. The barium abundance is low, [Ba/Fe] = ?0.84 dex. It is concluded that the selective separation of elements onto dust grains of the envelope is probably efficient. The radial velocity of the star measured from photospheric absorption lines over three years of observations varies in the interval V = ?(7–15) km/s. Time-variable differential line shifts have been revealed. The entire set of available data (the luminosity M v ≈ ?5 m , velocity V lsr ≈ ?20 km/s, metallicity [Fe/H] = ?0.10, and peculiarities of the optical spectrum and chemical composition) confirms the status of BD + 48°1220 as a post-AGB star with He and O excesses belonging to the Galactic disk.  相似文献   

12.
Laboratory measurements are required to study geophysical properties of the subsurface because of lacking direct observation of Earth’s crust. In this research, compressional (P) and shear (S) wave velocity measurements have been conducted on cylindrical specimens of Quartz-micaschist cored using rock blocks taken from the zinc and lead Angouran mine, Zanjan, northwest of Iran. Cylindrical rock specimens were prepared from the blocks by coring in 0°, 30°, 45°, 60°, and 90° into the foliation direction. P- and S-wave velocities were measured along the cylindrical specimens with different foliation orientations. Percent variations of the P- and S-wave velocities (Thomsen’s anisotropic parameters ε and γ) and constant dynamic modulus of test results have been determined. Percent variations of the P-wave velocity (ε) increase with an increase of the foliation angle with respect to the propagating waves direction by a parabolic function as it shows P-wave velocity differences up to a maximum value of 50 %. Thomsen’s anisotropic parameter of γ has also the same function with the foliation angle. Meanwhile, foliation orientation has a much greater influence on ε than γ for foliation angle from 45° to 90° as \( \frac{\varepsilon }{\gamma } \) ratio increases with an increase of foliation angle. Values of dynamic elastic modulus (E), Poisson’s ratio (ν), shear modulus (μ), bulk modulus (K), and Lamé’s constant (λ) increase with the increase of foliation angle with the parabolic function. The results show that dynamic elastic modulus, Poisson’s ratio, shear modulus, bulk modulus, and Lamé’s constant have anisotropic behavior in relation with the foliation orientation.  相似文献   

13.
Spectroscopic and photometric data for the two rapidly rotating members of the α Persei cluster He 373 and AP 225 are analyzed. Improved estimates have been obtained for the projected equatorial rotation velocities: v sin i = 164 km/s for He 323 and v sin i = 129 km/s for AP 225. Multi-band photometric mapping is used to map the spot distributions on the surfaces of the two stars. The fractional spotted areas S and mean temperature difference ΔT between the unspotted photosphere and the spots are estimated (S = 7% and ΔT = 1000 K for He 373; S = 9% and ΔT = 800 K for AP 225). The H α line profiles of both stars have variable emission components whose widths are used to deduce the presence of extended regions of emission reaching the corotation radius.  相似文献   

14.
Theoretical absorption-line profiles and radial-velocity curves for tidally deformed optical stars in X-ray binary systems are calculated assuming LTE. The variations in the profile shapes and radial-velocity curve of the optical star are analyzed as a function of the orbital inclination of the X-ray binary system. The dependence of the shape of the radial-velocity curve on the orbital inclination i increases with decreasing component-mass ratio q = m x /m v . The integrated line profiles and radial-velocity curves of the optical star are calculated for the Cyg X-1 binary, which are then used to estimate the orbital inclination and mass of the relativistic object: i < 43° andm x = 8.2–12.8 M. These estimates are in good agreement with earlier results of fitting the radial-velocity curve of Cyg X-1 using a simpler model (i < 45°, m x = 9.0–13.2 M).  相似文献   

15.
Photometric observations of the variable star ASASSN-13cx acquired in the course of a program of studies of cataclysmic variables and their parameters recently carried out at the Sternberg Astronomical Institute (SAI) are presented. The star was observed with the 50-cm and 60-cm telescopes of the SAI Crimean Astronomical Station and a CCD photometer (~1800 images in the V and Rc filters) during the variable’s outburst of August–September 2014 and in a period of quiescence in October–November 2016. The ASASSN-13cx system is confirmed to be a SU UMa variable. Parameters of the system are derived from eight light curves using a “composite” model that takes into account the presence of a hot spot on the lateral surface of the geometrically thick disk and of a region of enhanced energy release near the disk edge, at the base of the gas flow (the so-called “hot line”). Parameters of the system for three light curves during the outburst were obtained in the framework of a “spiral” model that additionally takes into account the presence of geometric perturbations on the accretion-disk surface. The parameters of ASASSN-13cx determined using these models provide good accuracy in reproducing the system’s light curves in both states. The basic parameters of the system have been determined for the first time: the component mass ratio q = M1/M2 = 7.0 ± 0.2, the orbital inclination i = 79.9°?80.1°, the distance between the components’ centers of mass a0 = 0.821(1) R?, and the sizes and temperatures of the stars: R1 = 0.0124(5)a0 = 0.0102(4) R?, T1 = 12 500 ± 280 K, 〈R2〉 = 0.236(4)a0 = 0.194(3) R?, T2 = 2550 ± 400 K, corresponding to M4–9V for the spectral type of the secondary. Parameters of the accretion disk have been derived for both activity states. The mass of matter in the accretion disk increased by almost a factor of two during ~400 orbital periods in quiescence.  相似文献   

16.
A mechanism for the separation of chemical elements and isotopes in the atmospheres of chemically peculiar (CP) stars due to light-induced drift (LID) of ions is discussed. The efficiency of separation due to LID is proportional to the relative difference of the transport frequencies for collisions of ions of heavy elements located in the excited state (collision frequency ν e ) and ground state (collision frequency ν g ) with neutral buffer particles (hydrogen and helium), (ν e ? ν g )/ν g . The known interaction potentials are used to numerically compute the relative difference (ν e H ? ν g H )/νg H for collisions between the ions Be+, Mg+, Ca+, Sr+, Cd+, Ba+, Al+, and C+ and hydrogen atoms. These computations show that, at the temperatures characteristic of the atmospheres of CP stars, T = 7000?20 000 K, values of |ν e H g H |/ν g H ≈ 0.1?0.4 are obtained. With such relative differences in the transport collision frequencies, the LID rate of ions in the atmospheres of coolCP stars (T < 10000 K) can reach ~0.1 cm/s,which exceeds the drift rate due to light pressure by an order of magnitude. This means that, under these conditions, the separation of chemical elements under the action of LID of ions could be an order of magnitude more efficient than separation due to light pressure. Roughly the same manifestations of LID and light pressure are also expected in the atmospheres of hotter stars (20 000 > T > 10 000 K). LID of heavy ions is manifest only weakly in very hot stars (T > 20 000 K).  相似文献   

17.
The first high-accuracy CCD UBV RI(RI)C light curves for the recently discovered eclipsing binary V798 Cep (P = 16 d .08, V = 11 m . 8) are presented; this star is included in our program of eclipsing systems with considerable eccentricities. A photometric solution for the light curves and physical characteristics of the component stars are derived. The orbital eccentricity is quite high, e = 0.437. The longitude of periastron is close to 180°, making studies of the apsidal motion difficult. V798 Cep may be a hierarchical system.  相似文献   

18.
Both abiotic and biotic factors govern distributions of estuarine vegetation, and experiments can reveal effects of these drivers under current and future conditions. In upper San Francisco Estuary (SFE), increased salinity could result from sea level rise, levee failure, or water management. We used mesocosms to test salinity effects on, as well as competition between, the native Stuckenia pectinata (sago pondweed) and invasive Egeria densa (Brazilian waterweed), species with overlapping distributions at the freshwater transition in SFE. Grown alone at a salinity of 5, E. densa decreased fivefold in biomass relative to the freshwater treatment and decomposed within 3 weeks at higher salinities. In contrast, S. pectinata biomass accumulated greatly (~4× initial) at salinities of 0 and 5, doubled at 10, and was unchanged at 15. When grown together in freshwater, S. pectinata produced 75 % less biomass than in monoculture and significantly more nodal roots (suggesting increased nutrient foraging). At a salinity of 5, a decline in E. densa performance coincided with a doubling of S. pectinata shoot density. Additional experiments on E. densa showed elevated temperature (26 and 30 °C) suppressed growth especially at higher salinities (≥5). We conclude that salinity strongly influences distributions of both species and that competition from E. densa may impose limits on S. pectinata abundance in the fresher reaches of SFE. With a salinity increase of 5, S. pectinata is likely to maintain its current distribution while spreading up-estuary at the expense of E. densa, especially if increased temperature also reduces E. densa biomass.  相似文献   

19.
We have analyzed high-precision vby light curvesfor the semi-detached binary V Pup in a Roche model. They are consistent with the standard gravitational darkening coefficient for hot stars, β = 0.25, rather than the value β = 1.36 ± 0.04 derived by Kitamura and Nakamura [1] using a simpler model. We rigorously estimate the confidence intervals for the allowed gravitational darkening coefficients for a star filling its Roche lobe to be β = (?0.24, +1.29) for the 99% confidence level and β = (?0.21, +1.26) for the 67% confidence level.  相似文献   

20.
The spot coverages S for 2846 solar-type stars with effective temperatures from 5700 K to 5800 K and gravities from 4.4 to 4.5 have been measured. An analysis based on the MAST catalog, which presents photometric measurements obtained with the Kepler Space Telescope during Q9 is presented. The existence of two groups of solar-type stars, with S values between 0.001 and 0.007 and with S > 0.007, is inferred. The second group (active stars) contains 279 stars (about 10% of the total number of stars analyzed). The mean S parameter for the entire sample is 0.004, comparable to the mean spot coverage of the Sun. In general, the dependence of S on the rotation period for solar-type stars has characteristics similar to those found earlier for stars with exoplanets. For the vast majority of the stars in the sample, the activity is constant, and independent of age. The activity of the small number of active stars with S > 0.007 decreases with age. The age variations of the chromospheric activity index RHK are compared to variations of the spot coverage S. The relations analyzed have common characteristic features. It is likely that both the spot activity level and the chromospheric activity level abruptly decrease for stars older than 4 billion yrs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号